Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.967
Filtrar
1.
Fungal Biol ; 128(4): 1859-1867, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38876538

RESUMEN

Volatile organic compounds (VOCs) produced by yeasts can positively affect crops, acting as antifungals or biostimulants. In this study, Aureobasidium pullulans and Metschnikowia pulcherrima were evaluated as potential antagonists of Trichoderma spp., common fungal pathogen in mushroom cultivation. To assess the biocontrol ability and biostimulant properties of the selected yeast species, in vitro co-culture and VOCs exposure assays were conducted. In both assays, VOCs produced by Aureobasidium spp. showed the stronger antifungal activity with a growth inhibition up to 30 %. This result was further confirmed by the higher volatilome alcohol content revealed by solid phase microextraction-gas chromatography mass spectrometry (SPME/GC-MS). Overall, Aureobasidium strains can be potentially used as biocontrol agent in Pleorotus ostreatus and Cyclocybe cylindracea mycelial growth, without affecting their development as demonstrated by VOCs exposure assay and Fourier-transform infrared spectroscopy (FT-IR). Conversely, M. pulcherrima was characterized by a lower or absent antifungal properties and by a volatilome composition rich in isobutyl acetate, an ester often recognized as plant growth promoter. As confirmed by FT-IR, Lentinula mycelia exposed to M. pulcherrima VOCs showed a higher content of proteins and lipids, suggesting an improvement of some biochemical properties. Our study emphasizes that VOCs produced by specific yeast strains are potentially powerful alternative to synthetic fungicide in the vegetative growth of mushroom-forming fungi and also able to modify their biochemical composition.


Asunto(s)
Agaricales , Cromatografía de Gases y Espectrometría de Masas , Micelio , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/farmacología , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/química , Micelio/crecimiento & desarrollo , Micelio/efectos de los fármacos , Micelio/química , Agaricales/química , Agaricales/crecimiento & desarrollo , Agaricales/efectos de los fármacos , Agaricales/metabolismo , Antifúngicos/farmacología , Antifúngicos/metabolismo , Agentes de Control Biológico/farmacología , Agentes de Control Biológico/química , Metschnikowia/crecimiento & desarrollo , Metschnikowia/efectos de los fármacos , Metschnikowia/metabolismo , Antibiosis , Aureobasidium , Trichoderma/crecimiento & desarrollo , Trichoderma/química , Trichoderma/metabolismo , Microextracción en Fase Sólida
2.
Pestic Biochem Physiol ; 202: 105932, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38879298

RESUMEN

The marine antifungal peptide epinecidin-1 (EPI) have been shown to inhibit Botrytis cinerea growth, while the molecular mechanism have not been explored based on omics technology. This study aimed to investigate the molecular mechanism of EPI against B. cinerea by transcriptome technology. Our findings indicated that a total of 1671 differentially expressed genes (DEGs) were detected in the mycelium of B. cinerea treated with 12.5 µmol/L EPI for 3 h, including 773 up-regulated genes and 898 down-regulated genes. Cluster analysis showed that DEGs (including steroid biosynthesis, (unsaturated) fatty acid biosynthesis) related to cell membrane metabolism were significantly down-regulated, and almost all DEGs involved in DNA replication were significantly inhibited. In addition, it also induced the activation of stress-related pathways, such as the antioxidant system, ATP-binding cassette transporter (ABC) and MAPK signaling pathways, and interfered with the tricarboxylic acid (TCA) cycle and oxidative phosphorylation pathways related to mitochondrial function. The decrease of mitochondrial related enzyme activities (succinate dehydrogenase, malate dehydrogenase and adenosine triphosphatase), the decrease of mitochondrial membrane potential and the increase content of hydrogen peroxide further confirmed that EPI treatment may lead to mitochondrial dysfunction and oxidative stress. Based on this, we speculated that EPI may impede the growth of B. cinerea through its influence on gene expression, and may lead to mitochondrial dysfunction and oxidative stress.


Asunto(s)
Antifúngicos , Péptidos Catiónicos Antimicrobianos , Botrytis , Transcriptoma , Transcriptoma/fisiología , Antifúngicos/metabolismo , Péptidos Catiónicos Antimicrobianos/toxicidad , Botrytis/efectos de los fármacos , Botrytis/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Peróxido de Hidrógeno , Expresión Génica , Transportadoras de Casetes de Unión a ATP/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos , Mitocondrias , Estrés Oxidativo
3.
Microb Pathog ; 192: 106702, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38825090

RESUMEN

The soil bacterium DP1B was isolated from a marine sediment collected off the coast of Randayan Island, Kalimantan Barat, Indonesia and identified based on 16S rDNA as Nocardiopsis alba. The bacterium was cultivated in seven different media (A1, ISP1, ISP2, ISP4, PDB, PC-1, and SCB) with three different solvents [distilled water, 5 % NaCl solution, artificial seawater (ASW)] combinations, shaken at 200 rpm, 30 °C, for 7 days. The culture broths were extracted with ethyl acetate and each extract was tested for its antimicrobial activity and brine shrimp lethality, and the chemical diversity was assessed using thin-layer chromatography (TLC), gas chromatography (GC), and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). The result showed that almost all extracts showed antibacterial but not antifungal activity, whereas their brine shrimp toxicity levels vary from high to low. The best medium/solvent combinations for antibacterial activity and toxicity were PC-1 (in either distilled water, 5% NaCl solution, or ASW) and SCB in ASW. Different chemical diversity profiles were observed on TLC, GC-MS, and LC-MS/MS. Extracts from the PC-1 cultures seem to contain a significant number of cyclic dipeptides, whereas those from the SCB cultures contain sesquiterpenes, indicating that media and solvent compositions can affect the secondary metabolite profiles of DP1B. In addition, untargeted metabolomic analyses using LC-MS/MS showed many molecular ions that did not match with those in the Global Natural Products Social Molecular Networking (GNPS) database, suggesting that DP1B has great potential as a source of new natural products.


Asunto(s)
Antibacterianos , Artemia , Sedimentos Geológicos , ARN Ribosómico 16S , Animales , Artemia/efectos de los fármacos , Sedimentos Geológicos/microbiología , ARN Ribosómico 16S/genética , Antibacterianos/farmacología , Cromatografía Liquida , Metabolómica , Medios de Cultivo/química , Indonesia , Espectrometría de Masas en Tándem , Actinobacteria/metabolismo , Actinobacteria/química , Actinobacteria/genética , Actinobacteria/clasificación , Pruebas de Sensibilidad Microbiana , Agua de Mar/microbiología , Cromatografía de Gases y Espectrometría de Masas , Metaboloma , Cromatografía en Capa Delgada , Filogenia , Antifúngicos/farmacología , Antifúngicos/metabolismo , Antifúngicos/aislamiento & purificación , Antifúngicos/química
4.
BMC Microbiol ; 24(1): 200, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851702

RESUMEN

There is an urgent need for new bioactive molecules with unique mechanisms of action and chemistry to address the issue of incorrect use of chemical fertilizers and pesticides, which hurts both the environment and the health of humans. In light of this, research was done for this work to isolate, identify, and evaluate the germination-promoting potential of various plant species' fungal endophytes. Zea mays L. (maize) seed germination was examined using spore suspension of 75 different endophytic strains that were identified. Three promising strains were identified through screening to possess the ability mentioned above. These strains Alternaria alternate, Aspergilus flavus, and Aspergillus terreus were isolated from the stem of Tecoma stans, Delonix regia, and Ricinus communis, respectively. The ability of the three endophytic fungal strains to produce siderophore and indole acetic acid (IAA) was also examined. Compared to both Aspergillus flavus as well as Aspergillus terreus, Alternaria alternata recorded the greatest rates of IAA, according to the data that was gathered. On CAS agar versus blue media, all three strains failed to produce siderophores. Moreover, the antioxidant and antifungal potentials of extracts from these fungi were tested against different plant pathogens. The obtained results indicated the antioxidant and antifungal activities of the three fungal strains. GC-Mass studies were carried out to determine the principal components in extracts of all three strains of fungi. The three strains' fungus extracts included both well-known and previously unidentified bioactive compounds. These results may aid in the development of novel plant growth promoters by suggesting three different fungal strains as sources of compounds that may improve seed germination. According to the study that has been given, as unexplored sources of bioactive compounds, fungal endophytes have great potential.


Asunto(s)
Alternaria , Aspergillus , Bioprospección , Endófitos , Germinación , Semillas , Sideróforos , Zea mays , Endófitos/metabolismo , Endófitos/aislamiento & purificación , Endófitos/fisiología , Semillas/microbiología , Semillas/crecimiento & desarrollo , Alternaria/crecimiento & desarrollo , Alternaria/fisiología , Zea mays/microbiología , Zea mays/crecimiento & desarrollo , Aspergillus/metabolismo , Aspergillus/crecimiento & desarrollo , Sideróforos/metabolismo , Bioprospección/métodos , Ácidos Indolacéticos/metabolismo , Antifúngicos/farmacología , Antifúngicos/metabolismo , Hongos/clasificación , Hongos/aislamiento & purificación , Hongos/metabolismo , Hongos/fisiología , Antioxidantes/metabolismo , Aspergillus flavus/crecimiento & desarrollo , Aspergillus flavus/metabolismo
5.
Carbohydr Res ; 541: 109170, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38830279

RESUMEN

The development of chitinase tailored for the bioconversion of chitin to chitin oligosaccharides has attracted significant attention due to its potential to alleviate environmental pollution associated with chemical conversion processes. In this present investigation, we purified extracellular chitinase derived from marine Bacillus haynesii to homogeneity and subsequently characterized it. The molecular weight of BhChi was approximately 35 kDa. BhChi displayed its peak catalytic activity at pH 6.0, with an optimal temperature of 37 °C. It exhibited stability across a pH range of 6.0-9.0. In addition, BhChi showed activation in the presence of Mn2+ with the improved activity of 105 U mL-1. Ca2+ and Fe2+ metal ions did not have any significant impact on enzyme activity. Under the optimized enzymatic conditions, there was a notable enhancement in catalytic activity on colloidal chitin with Km of 0.01 mg mL-1 and Vmax of 5.75 mmol min-1. Kcat and catalytic efficiency were measured at 1.91 s-1 and 191 mL mg-1 s-1, respectively. The product profiling of BhChi using thin layer chromatography and Mass spectrometric techniques hinted an exochitinase mode of action with chitobiose and N-Acetyl glucosamine as the products. This study represents the first report on an exochitinase from Bacillus haynesii. Furthermore, the chitinase showcased promising antifungal properties against key pathogens, Fusarium oxysporum and Penicillium chrysogenum, reinforcing its potential as a potent biocontrol agent.


Asunto(s)
Antifúngicos , Bacillus , Quitina , Quitinasas , Quitinasas/metabolismo , Quitinasas/aislamiento & purificación , Quitinasas/química , Quitinasas/farmacología , Quitina/química , Quitina/metabolismo , Quitina/farmacología , Antifúngicos/farmacología , Antifúngicos/química , Antifúngicos/aislamiento & purificación , Antifúngicos/metabolismo , Bacillus/enzimología , Fusarium/enzimología , Fusarium/efectos de los fármacos , Concentración de Iones de Hidrógeno , Temperatura
6.
Food Microbiol ; 122: 104557, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38839221

RESUMEN

To investigate the potential antifungal mechanisms of rhizosphere Actinobacteria against Ceratocystis fimbriata in sweet potato, a comprehensive approach combining biochemical analyses and multi-omics techniques was employed in this study. A total of 163 bacterial strains were isolated from the rhizosphere soil of sweet potato. Among them, strain MEPS155, identified as Streptomyces djakartensis, exhibited robust and consistent inhibition of C. fimbriata mycelial growth in in vitro dual culture assays, attributed to both cell-free supernatant and volatile organic compounds. Moreover, strain MEPS155 demonstrated diverse plant growth-promoting attributes, including the production of indole-3-acetic acid, 1-aminocyclopropane-1-carboxylate deaminase, phosphorus solubilization, nitrogen fixation, and enzymatic activities such as cellulase, chitinase, and protease. Notably, strain MEPS155 exhibited efficacy against various sweet potato pathogenic fungi. Following the inoculation of strain MEPS155, a significant reduction (P < 0.05) in malondialdehyde content was observed in sweet potato slices, indicating a potential protective effect. The whole genome of MEPS155 was characterized by a size of 8,030,375 bp, encompassing 7234 coding DNA sequences and 32 secondary metabolite biosynthetic gene clusters. Transcriptomic analysis revealed 1869 differentially expressed genes in the treated group that cultured with C. fimbriata, notably influencing pathways associated with porphyrin metabolism, fatty acid biosynthesis, and biosynthesis of type II polyketide products. These alterations in gene expression are hypothesized to be linked to the production of secondary metabolites contributing to the inhibition of C. fimbriata. Metabolomic analysis identified 1469 potential differently accumulated metabolites (PDAMs) when comparing MEPS155 and the control group. The up-regulated PDAMs were predominantly associated with the biosynthesis of various secondary metabolites, including vanillin, myristic acid, and protocatechuic acid, suggesting potential inhibitory effects on plant pathogenic fungi. Our study underscores the ability of strain S. djakartensis MEPS155 to inhibit C. fimbriata growth through the production of secretory enzymes or secondary metabolites. The findings contribute to a theoretical foundation for future investigations into the role of MEPS155 in postharvest black rot prevention in sweet potato.


Asunto(s)
Ascomicetos , Ipomoea batatas , Enfermedades de las Plantas , Rizosfera , Streptomyces , Ipomoea batatas/microbiología , Streptomyces/genética , Streptomyces/metabolismo , Streptomyces/aislamiento & purificación , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Ascomicetos/crecimiento & desarrollo , Ascomicetos/metabolismo , Ascomicetos/genética , Microbiología del Suelo , Antifúngicos/farmacología , Antifúngicos/metabolismo , Multiómica
7.
Pak J Biol Sci ; 27(5): 256-267, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38840466

RESUMEN

<b>Background and Objective:</b> The prioritisation of oil palm studies involves the exploration of novel bacterial isolates as possible agents for suppressing <i>Ganoderma boninense</i>. The objective of this study was to evaluate and characterise the potential of rhizospheric bacteria, obtained from the rhizosphere of oil palm plants, in terms of their ability to demonstrate anti-<i>Ganoderma </i>activity. <b>Materials and Methods:</b> The study began by employing a dual culture technique to select hostile bacteria. Qualitative detection was performed to assess the antifungal activity, as well as the synthesis of chitinase and glucanase, from certain isolates. The candidate strains were molecularly identified using 16S-rRNA ribosomal primers, specifically the 27F and 1492R primers. <b>Results:</b> The findings of the study indicated that the governmental plantation exhibited the highest ratio between diazotroph and indigenous bacterial populations in comparison to the other sites. Out of a pool of ninety bacterial isolates, a subset of twenty-one isolates demonstrated the ability to impede the development of <i>G. boninense</i>, as determined using a dual culture experiment. Twenty-one bacterial strains were found to exhibit antifungal activity. Nine possible bacteria were found based on the sequence analysis. These bacteria include <i>Burkholderia territorii</i> (RK2, RP2, RP3, RP5), <i>Burkholderia stagnalis</i> (RK3), <i>Burkholderia cenocepacia</i> (RP1), <i>Serratia marcescens</i> (RP13) and <i>Rhizobium multihospitium</i> (RU4). <b>Conclusion:</b> The findings of the study revealed that a significant proportion of the bacterial population exhibited the ability to perform nitrogen fixation, indole-3-acetic acid (IAA) production and phosphate solubilization. However, it is worth noting that <i>Rhizobium multihospitium</i> RU4 did not demonstrate the capacity for phosphate solubilization, while <i>B. territory</i> RK2 did not exhibit IAA production.


Asunto(s)
Ganoderma , Rizosfera , Ganoderma/metabolismo , Ganoderma/crecimiento & desarrollo , Agentes de Control Biológico , Bioprospección/métodos , Microbiología del Suelo , Bacterias/metabolismo , Bacterias/crecimiento & desarrollo , Bacterias/genética , Bacterias/aislamiento & purificación , Arecaceae/microbiología , Desarrollo de la Planta , Aceite de Palma/metabolismo , Antifúngicos/metabolismo , Antifúngicos/farmacología
8.
Appl Environ Microbiol ; 90(6): e0045524, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38809045

RESUMEN

Phytopathogenic Fusarium graminearum poses significant threats to crop health and soil quality. Although our laboratory-cultivated Pseudomonas sp. P13 exhibited potential biocontrol capacities, its effectiveness against F. graminearum and underlying antifungal mechanisms are still unclear. In light of this, our study investigated a significant inhibitory effect of P13 on F. graminearum T1, both in vitro and in a soil environment. Conducting genomic, metabolomic, and transcriptomic analyses of P13, we sought to identify evidence supporting its antagonistic effects on T1. The results revealed the potential of P13, a novel Pseudomonas species, to produce active antifungal components, including phenazine-1-carboxylate (PCA), hydrogen cyanide (HCN), and siderophores [pyoverdine (Pvd) and histicorrugatin (Hcs)], as well as the dynamic adaptive changes in the metabolic pathways of P13 related to these active ingredients. During the logarithmic growth stage, T1-exposed P13 strategically upregulated PCA and HCN biosynthesis, along with transient inhibition of the tricarboxylic acid (TCA) cycle. However, with growth stabilization, upregulation of PCA and HCN synthesis ceased, whereas the TCA cycle was enhanced, increasing siderophores secretion (Pvd and Hcs), suggesting that this mechanism might have caused continuous inhibition of T1. These findings improved our comprehension of the biocontrol mechanisms of P13 and provided the foundation for potential application of Pseudomonas strains in the biocontrol of phytopathogenic F. graminearum. IMPORTANCE: Pseudomonas spp. produces various antifungal substances, making it an effective natural biocontrol agent against pathogenic fungi. However, the inhibitory effects and the associated antagonistic mechanisms of Pseudomonas spp. against Fusarium spp. are unclear. Multi-omics integration analyses of the in vitro antifungal effects of novel Pseudomonas species, P13, against F. graminearum T1 revealed the ability of P13 to produce antifungal components (PCA, HCN, Pvd, and Hcs), strategically upregulate PCA and HCN biosynthesis during logarithmic growth phase, and enhance the TCA cycle during stationary growth phase. These findings improved our understanding of the biocontrol mechanisms of P13 and its potential application against pathogenic fungi.


Asunto(s)
Fusarium , Fenazinas , Enfermedades de las Plantas , Pseudomonas , Fusarium/fisiología , Fusarium/crecimiento & desarrollo , Pseudomonas/fisiología , Pseudomonas/metabolismo , Pseudomonas/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Fenazinas/metabolismo , Sideróforos/metabolismo , Cianuro de Hidrógeno/metabolismo , Antibiosis , Antifúngicos/farmacología , Antifúngicos/metabolismo , Control Biológico de Vectores , Agentes de Control Biológico , Metabolómica , Microbiología del Suelo , Multiómica
9.
Curr Microbiol ; 81(7): 182, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769214

RESUMEN

Fusarium proliferatum is the main pathogen that causes Panax notoginseng root rot. The shortcomings of strong volatility and poor water solubility of Illicium verum essential oil (EO) limit its utilization. In this study, we prepared traditional emulsion (BDT) and nanoemulsion (Bneo) of I. verum EO by ultrasonic method with Tween-80 and absolute ethanol as solvents. The chemical components of EO, BDT, and Bneo were identified by gas chromatography-mass spectrometry (GC-MS) and the antifungal activity and mechanism were compared. The results show that Bneo has good stability and its particle size is 34.86 nm. The contents of (-) -anethole and estragole in Bneo were significantly higher than those in BDT. The antifungal activity against F. proliferatum was 5.8-fold higher than BDT. In the presence of I. verum EO, the occurrence of P. notoginseng root rot was significantly reduced. By combining transcriptome and metabolomics analysis, I. verum EO was found to be involved in the mutual transformation of pentose and glucuronic acid, galactose metabolism, streptomycin biosynthesis, carbon metabolism, and other metabolic pathways of F. proliferatum, and it interfered with the normal growth of F. proliferatum to exert antifungal effects. This study provide a theoretical basis for expanding the practical application of Bneo.


Asunto(s)
Antifúngicos , Emulsiones , Fusarium , Illicium , Metabolómica , Aceites Volátiles , Aceites Volátiles/farmacología , Aceites Volátiles/química , Fusarium/efectos de los fármacos , Fusarium/genética , Fusarium/metabolismo , Illicium/química , Antifúngicos/farmacología , Antifúngicos/metabolismo , Antifúngicos/química , Emulsiones/química , Transcriptoma , Cromatografía de Gases y Espectrometría de Masas , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Perfilación de la Expresión Génica
10.
Curr Microbiol ; 81(7): 184, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771325

RESUMEN

Agriculture and livestock management practices known as organic farming rely more on internal processes than external inputs. Natural environments depend heavily on diversity, and organic farming incorporates both the stated purpose of fostering diversity as well as the use of diversity as a management tool. A more complete understanding of agriculture in terms of agro-ecology has begun to be questioned by the traditional reductionist approach to the study of agriculture. Therefore it is necessary to be aware more about the significance of microbes in processes including soil growth, plant nourishment, and the eradication of plant disease, pest, and weeds. In this study, fluorescent Pseudomonas strain (EFP56) and Trichoderma harzianum were studied for antifungal and antibacterial activity against four common root rot fungi and four common laboratory bacteria in vitro experiments. Furthermore, soil-borne disease surveillance and nutritional quality of Lagenaria siceraria, fluorescent Pseudomonas strain (EFP56) and Trichoderma harzianum were combined with neem cake and cotton cake to check their efficacy. Through the application of organic soil amendments in combination with biocontrol agents improved the quality of vegetables and their nutritional value by raising their polyphenol, carbohydrate, and protein content as well as enhancing antioxidant scavenging status. The experiments were conducted in pots and in fields to confirm their efficacy rate. The final outcomes also revealed greater induction of defense system, disease lessening and enriched fruit quality. Consortium of neem cake and cotton cake with bio-stimulants can regulate biotic as well as abiotic stress.


Asunto(s)
Endófitos , Pseudomonas , Microbiología del Suelo , Endófitos/fisiología , Pseudomonas/fisiología , Cucurbitaceae/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Hypocreales/fisiología , Hongos/fisiología , Hongos/efectos de los fármacos , Bacterias/clasificación , Bacterias/efectos de los fármacos , Agentes de Control Biológico , Raíces de Plantas/microbiología , Antifúngicos/farmacología , Antifúngicos/metabolismo
11.
Appl Environ Microbiol ; 90(6): e0066524, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38814060

RESUMEN

Ash dieback, caused by the fungal pathogen Hymenoscyphus fraxineus (Helotiales, Ascomycota), is threatening the existence of the European ash, Fraxineus excelsior. During our search for biological control agents for this devastating disease, endophytic fungi were isolated from healthy plant tissues and co-cultivated with H. fraxineus to assess their antagonistic potential. Among the strains screened, Penicillium cf. manginii DSM 104493 most strongly inhibited the pathogen. Initially, DSM 104493 showed promise in planta as a biocontrol agent. Inoculation of DSM 104493 into axenically cultured ash seedlings greatly decreased the development of disease symptoms in seedlings infected with H. fraxineus. The fungus was thus cultivated on a larger scale in order to obtain sufficient material to identify active metabolites that accounted for the antibiosis observed in dual culture. We isolated PF1140 (1) and identified it as the main active compound in the course of a bioassay-guided isolation strategy. Furthermore, its derivative 2, the mycotoxin citreoviridin (3), three tetramic acids of the vancouverone type (4-6), and penidiamide (7) were isolated by preparative chromatography. The structures were elucidated mainly by NMR spectroscopy and high-resolution mass spectrometry (HRMS), of which compounds 2 and 6 represent novel natural products. Of the compounds tested, not only PF1140 (1) strongly inhibited H. fraxineus in an agar diffusion assay but also showed phytotoxic effects in a leaf puncture assay. Unfortunately, both the latent virulent attributes of DSM 104493 observed subsequent to these experiments in planta and the production of mycotoxins exclude strain Penicillium cf. manginii DSM 104493 from further development as a safe biocontrol agent.IMPORTANCEEnvironmentally friendly measures are urgently needed to control the causative agent of ash dieback, Hymenoscyphus fraxineus. Herein, we show that the endophyte DSM 104493 exhibits protective effects in vitro and in planta. We traced the activity of DSM 104493 to the antifungal natural product PF1140, which unfortunately also showed phytotoxic effects. Our results have important implications for understanding plant-fungal interactions mediated by secondary metabolites, not only in the context of ash dieback but also generally in plant-microbial interactions.


Asunto(s)
Antifúngicos , Ascomicetos , Endófitos , Fraxinus , Enfermedades de las Plantas , Fraxinus/microbiología , Endófitos/metabolismo , Endófitos/aislamiento & purificación , Ascomicetos/efectos de los fármacos , Ascomicetos/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Antifúngicos/farmacología , Antifúngicos/metabolismo , Antibiosis , Metabolismo Secundario , Penicillium/metabolismo , Penicillium/efectos de los fármacos , Agentes de Control Biológico/farmacología , Agentes de Control Biológico/metabolismo
12.
J Agric Food Chem ; 72(23): 13164-13174, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38819965

RESUMEN

Obtaining a microorganism strain with a broad-spectrum resistance property and highly efficient antifungal activity is important to the biocontrol strategy. Herein, a marine Streptomyces sp. HNBCa1 demonstrated a broad-spectrum resistance to 17 tested crop pathogenic fungi and exhibited a high biocontrol efficiency against mango anthracnose and banana fusarium wilt. To uncover the critical bioactive secondary metabolites basis, genome assembly and annotation, metabolomic analysis, and a semipreparative HPLC-based activity-guide method were employed. Finally, geldanamycin and ectoine involved in codifferential secondary metabolites were also found to be related to biosynthetic gene clusters in the genome of HNBCa1. Reblastatin and geldanamycin were uncovered in response to broad-spectrum resistance to the 17 crop pathogenic fungi. Our results suggested that reblastatin and geldanamycin were critical to maintaining the broad-spectrum resistance property and highly efficient antifungal activity of HNBCa1, which could be further developed as a biological control agent to control crop fungal diseases.


Asunto(s)
Fusarium , Lactamas Macrocíclicas , Enfermedades de las Plantas , Metabolismo Secundario , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Streptomyces/química , Enfermedades de las Plantas/microbiología , Lactamas Macrocíclicas/farmacología , Lactamas Macrocíclicas/metabolismo , Lactamas Macrocíclicas/química , Fusarium/efectos de los fármacos , Benzoquinonas/farmacología , Benzoquinonas/metabolismo , Benzoquinonas/química , Hongos/genética , Antifúngicos/farmacología , Antifúngicos/metabolismo , Antifúngicos/química
13.
FEMS Yeast Res ; 242024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38760885

RESUMEN

Candida albicans is a human colonizer and also an opportunistic yeast occupying different niches that are mostly hypoxic. While hypoxia is the prevalent condition within the host, the machinery that integrates oxygen status to tune the fitness of fungal pathogens remains poorly characterized. Here, we uncovered that Snf5, a subunit of the chromatin remodeling complex SWI/SNF, is required to tolerate antifungal stress particularly under hypoxia. RNA-seq profiling of snf5 mutant exposed to amphotericin B and fluconazole under hypoxic conditions uncovered a signature that is reminiscent of copper (Cu) starvation. We found that under hypoxic and Cu-starved environments, Snf5 is critical for preserving Cu homeostasis and the transcriptional modulation of the Cu regulon. Furthermore, snf5 exhibits elevated levels of reactive oxygen species and an increased sensitivity to oxidative stress principally under hypoxia. Supplementing growth medium with Cu or increasing gene dosage of the Cu transporter CTR1 alleviated snf5 growth defect and attenuated reactive oxygen species levels in response to antifungal challenge. Genetic interaction analysis suggests that Snf5 and the bona fide Cu homeostasis regulator Mac1 function in separate pathways. Together, our data underlined a unique role of SWI/SNF complex as a potent regulator of Cu metabolism and antifungal stress under hypoxia.


Asunto(s)
Antifúngicos , Candida albicans , Cobre , Regulación Fúngica de la Expresión Génica , Estrés Oxidativo , Cobre/metabolismo , Candida albicans/efectos de los fármacos , Candida albicans/genética , Candida albicans/metabolismo , Candida albicans/fisiología , Antifúngicos/farmacología , Antifúngicos/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Especies Reactivas de Oxígeno/metabolismo , Fluconazol/farmacología , Anaerobiosis , Anfotericina B/farmacología
14.
Molecules ; 29(9)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38731651

RESUMEN

The main objective of this study was to investigate the metabolism of miconazole, an azole antifungal drug. Miconazole was subjected to incubation with human liver microsomes (HLM) to mimic phase I metabolism reactions for the first time. Employing a combination of an HLM assay and UHPLC-HRMS analysis enabled the identification of seven metabolites of miconazole, undescribed so far. Throughout the incubation with HLM, miconazole underwent biotransformation reactions including hydroxylation of the benzene ring and oxidation of the imidazole moiety, along with its subsequent degradation. Additionally, based on the obtained results, screen-printed electrodes (SPEs) were optimized to simulate the same biotransformation reactions, by the use of a simple, fast, and cheap electrochemical method. The potential toxicity of the identified metabolites was assessed using various in silico models.


Asunto(s)
Espectrometría de Masas , Miconazol , Microsomas Hepáticos , Miconazol/química , Miconazol/metabolismo , Humanos , Cromatografía Líquida de Alta Presión/métodos , Microsomas Hepáticos/metabolismo , Espectrometría de Masas/métodos , Técnicas Electroquímicas/métodos , Antifúngicos/química , Antifúngicos/metabolismo , Biotransformación
15.
J Appl Microbiol ; 135(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38794887

RESUMEN

AIMS: To develop antifungal lactic acid bacteria (LAB) and investigate their antifungal mechanisms against Aspergillus flavus in aflatoxin (AF) production. METHODS AND RESULTS: We isolated 179 LABs from cereal-based fermentation starters and investigated their antifungal mechanism against A. flavus through liquid chromatography-mass spectrometry and co-culture analysis techniques. Of the 179 isolates, antifungal activity was identified in Pediococcus pentosaceus, Lactobacillus crustorum, and Weissella paramesenteroides. These LABs reduced AF concentration by (i) inhibiting mycelial growth, (ii) binding AF to the cell wall, and (iii) producing antifungal compounds. Species-specific activities were also observed, with P. pentosaceus inhibiting AF production and W. paramesenteroides showing AF B1 binding activity. In addition, crucial extracellular metabolites for selecting antifungal LAB were involved in the 2',3'-cAMP-adenosine and nucleoside pathways. CONCLUSIONS: This study demonstrates that P. pentosaceus, L. crustorum, and W. paramesenteroides are key LAB strains with distinct antifungal mechanisms against A. flavus, suggesting their potential as biological agents to reduce AF in food materials.


Asunto(s)
Antifúngicos , Aspergillus flavus , Técnicas de Cocultivo , Lactobacillales , Metabolómica , Aspergillus flavus/metabolismo , Aspergillus flavus/crecimiento & desarrollo , Aspergillus flavus/efectos de los fármacos , Antifúngicos/farmacología , Antifúngicos/metabolismo , Lactobacillales/metabolismo , Lactobacillales/crecimiento & desarrollo , Fermentación , Aflatoxinas/biosíntesis , Grano Comestible/microbiología , Pediococcus pentosaceus/metabolismo , Antibiosis , Microbiología de Alimentos
16.
Microb Pathog ; 191: 106659, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38701959

RESUMEN

There is an increasing focus on genetically altering Paulownia trees to enhance their resistance against fungal infections, given their rapid growth and quality wood production. The aim of this research was to establish a technique for incorporating two antimicrobial thionin genes, namely thionin-60 (thio-60) and thionin-63 (thio-63), into Paulownia tomentosa and Paulownia hybrid 9501 through the utilization of chitosan nanoparticles. The outcomes revealed the successful gene transfer into Paulownia trees utilizing chitosan nanoparticles. The effectiveness of thionin proteins against plant pathogens Fusarium and Aspergillus was examined, with a specific focus on Fusarium equiseti due to limited available data. In non-transgenic Paulownia species, the leaf weight inhibition percentage varied from 25 to 36 %, whereas in transgenic species, it ranged from 22 to 7 %. In general, Paulownia species expressing thio-60 displayed increased resistance to F. equiseti, while those expressing thio-63 exhibited heightened resistance to A. niger infection. The thionin proteins displayed a strong affinity for the phospholipid bilayer of the fungal cell membrane, demonstrating their capability to disrupt its structure. The transgenic plants created through this technique showed increased resistance to fungal infections. Thionin-60 demonstrated superior antifungal properties in comparison to thio-63, being more effective at disturbing the fungal cell membrane. These findings indicate that thio-60 holds potential as a novel antifungal agent and presents a promising approach for enhancing the antimicrobial traits of genetically modified Paulownia trees.


Asunto(s)
Antifúngicos , Quitosano , Fusarium , Nanopartículas , Enfermedades de las Plantas , Plantas Modificadas Genéticamente , Tioninas , Quitosano/farmacología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/genética , Fusarium/efectos de los fármacos , Fusarium/genética , Plantas Modificadas Genéticamente/genética , Antifúngicos/farmacología , Antifúngicos/metabolismo , Tioninas/genética , Tioninas/metabolismo , Aspergillus/genética , Aspergillus/efectos de los fármacos , Resistencia a la Enfermedad/genética , Árboles/microbiología , Hojas de la Planta/microbiología , Hojas de la Planta/genética
17.
Food Microbiol ; 121: 104524, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38637086

RESUMEN

Aspergillus flavus colonization on agricultural products during preharvest and postharvest results in tremendous economic losses. Inspired by the synergistic antifungal effects of essential oils, the aims of this study were to explore the mechanism of combined cinnamaldehyde and nonanal (SCAN) against A. flavus and to evaluate the antifungal activity of SCAN loading into diatomite (DM). Shriveled mycelia were observed by scanning electron microscopy, especially in the SCAN treatment group. Calcofluor white staining, transmission electron microscopy, dichloro-dihydro-fluorescein diacetate staining and the inhibition of key enzymes in tricarboxylic acid cycle indicated that the antifungal mechanism of SCAN against A. flavus was related to the cell wall damage, reactive oxygen species accumulation and energy metabolism interruption. RNA sequencing revealed that some genes involved in antioxidation were upregulated, whereas genes responsible for cell wall biosynthesis, oxidative stress, cell cycle and spore development were significantly downregulated, supporting the occurrence of cellular apoptosis. In addition, compared with the control group, conidia production in 1.5 mg/mL DM/cinnamaldehyde, DM/nonanal and DM/SCAN groups were decreased by 27.16%, 48.22% and 76.66%, respectively, and the aflatoxin B1 (AFB1) contents decreased by 2.00%, 73.02% and 84.15%, respectively. These finding suggest that DM/SCAN complex has potential uses in food preservation.


Asunto(s)
Acroleína/análogos & derivados , Aldehídos , Antifúngicos , Aspergillus flavus , Antifúngicos/farmacología , Antifúngicos/metabolismo , Aflatoxina B1/metabolismo , Conservación de Alimentos
18.
BMC Microbiol ; 24(1): 128, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38641593

RESUMEN

BACKGROUND: Biofilm formation is viewed as a vital mechanism in C. glabrata pathogenesis. Although, it plays a significant role in virulence but transcriptomic architecture and metabolic pathways governing the biofilm growth mode of C. glabrata remain elusive. The present study intended to investigate the genes implicated in biofilm growth phase of C. glabrata through global transcriptomic approach. RESULTS: Functional analysis of Differentially expressed genes (DEGs) using gene ontology and pathways analysis revealed that upregulated genes are involved in the glyoxylate cycle, carbon-carbon lyase activity, pre-autophagosomal structure membrane and vacuolar parts whereas, down- regulated genes appear to be associated with glycolysis, ribonucleoside biosynthetic process, ribosomal and translation process in the biofilm growth condition. The RNA-Seq expression of eight selected DEGs (CgICL1, CgMLS1, CgPEP1, and CgNTH1, CgERG9, CgERG11, CgTEF3, and CgCOF1) was performed with quantitative real-time PCR (RT-qPCR). The gene expression profile of selected DEGs with RT-qPCR displayed a similar pattern of expression as observed in RNA-Seq. Phenotype screening of mutant strains generated for genes CgPCK1 and CgPEP1, showed that Cgpck1∆ failed to grow on alternative carbon substrate (Glycerol, Ethanol, Oleic acid) and similarly, Cgpep1∆ unable to grow on YPD medium supplemented with hydrogen peroxide. Our results suggest that in the absence of glucose, C. glabrata assimilate glycerol, oleic acid and generate acetyl coenzyme-A (acetyl-CoA) which is a central and connecting metabolite between catabolic and anabolic pathways (glyoxylate and gluconeogenesis) to produce glucose and fulfil energy requirements. CONCLUSIONS: The study was executed using various approaches (transcriptomics, functional genomics and gene deletion) and it revealed that metabolic plasticity of C. glabrata (NCCPF-100,037) in biofilm stage modulates its virulence and survival ability to counter the stress and may promote its transition from commensal to opportunistic pathogen. The observations deduced from the present study along with future work on characterization of the proteins involved in this intricate process may prove to be beneficial for designing novel antifungal strategies.


Asunto(s)
Candida glabrata , Ácido Oléico , Candida glabrata/genética , Candida glabrata/metabolismo , Ácido Oléico/metabolismo , Carbono/metabolismo , Glicerol , Antifúngicos/metabolismo , Estrés Oxidativo , Biopelículas , Glucosa/metabolismo , Glioxilatos/metabolismo
19.
Sci Rep ; 14(1): 8399, 2024 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600229

RESUMEN

Fungi belonging to the genus Neosartorya (teleomorph of Aspergillus spp.) are of great concern in the production and storage of berries and fruit-based products, mainly due to the production of thermoresistant ascospores that cause food spoilage and possible secretion of mycotoxins. We initially tested the antifungal effect of six natural extracts against 20 isolates of Neosartorya spp. using a traditional inhibition test on Petri dishes. Tested isolates did not respond uniformly, creating 5 groups of descending sensitivity. Ten isolates best representing of the established sensitivity clusters were chosen for further investigation using a Biolog™ MT2 microplate assay with the same 6 natural extracts. Additionally, to test for metabolic profile changes, we used a Biolog™ FF microplate assay after pre-incubation with marigold extract. All natural extracts had an inhibitory effect on Neosartorya spp. growth and impacted its metabolism. Lavender and tea tree oil extracts at a concentration of 1000 µg mL-1 presented the strongest antifungal effect during the inhibition test, however all extracts exhibited inhibitory properties at even the lowest dose (5 µg mL-1). The fungal stress response in the presence of marigold extract was characterized by a decrease of amino acids and carbohydrates consumption and an uptake of carboxylic acids on the FF microplates, where the 10 studied isolates also presented differences in their innate resilience, creating 3 distinctive sensitivity groups of high, average and low sensitivity. The results confirm that natural plant extracts and essential oils inhibit and alter the growth and metabolism of Neosartorya spp. suggesting a possible future use in sustainable agriculture as an alternative to chemical fungicides used in traditional crop protection.


Asunto(s)
Antifúngicos , Neosartorya , Antifúngicos/farmacología , Antifúngicos/metabolismo , Aspergillus/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/metabolismo , Metaboloma , Pruebas de Sensibilidad Microbiana
20.
Physiol Plant ; 176(3): e14313, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38666351

RESUMEN

Bipolaris setariae is known to cause brown stripe disease in sugarcane, resulting in significant yield losses. Silicon (Si) has the potential to enhance plant growth and biotic resistance. In this study, the impact of Si on brown stripe disease was investigated across susceptible and resistant sugarcane varieties, utilizing four Si concentrations (0, 15, 30, and 45 g per barrel of Na2SiO3·5H2O). Si significantly reduced the incidence of brown stripe disease (7.41-59.23%) and alleviated damage to sugarcane growth parameters, photosynthetic parameters, and photosynthetic pigments. Submicroscopic observations revealed that Si induced the accumulation of silicified cells in leaves, reduced spore accumulation, decreased stomatal size, and protected organelles from B. setariae damage. In addition, Si increased the activity of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase), reduced reactive oxygen species production (malondialdehyde and hydrogen peroxide) and modulated the expression of genes associated with hormone signalling (PR1, TGA, AOS, AOC, LOX, PYL8, and SnRK2), leading to the accumulation of abscisic acid and jasmonic acid and inhibiting SA synthesis. Si also activated the activity of metabolism-related enzymes (polyphenol oxidase and phenylalanine ammonia lyase) and the gene expression of PAL-dependent genes (PAL, C4H, and 4CL), regulating the accumulation of metabolites, such as chlorogenic acid and lignin. The antifungal test showed that chlorogenic acid (15ug µL-1) had a significant inhibitory effect on the growth of B. setariae. This study is the first to demonstrate the inhibitory effect of Si on B. setariae in sugarcane, highlighting Si as a promising and environmentally friendly strategy for managing brown stripe disease.


Asunto(s)
Enfermedades de las Plantas , Reguladores del Crecimiento de las Plantas , Especies Reactivas de Oxígeno , Saccharum , Silicio , Saccharum/efectos de los fármacos , Saccharum/metabolismo , Saccharum/microbiología , Saccharum/genética , Saccharum/crecimiento & desarrollo , Silicio/farmacología , Silicio/metabolismo , Enfermedades de las Plantas/microbiología , Especies Reactivas de Oxígeno/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Antifúngicos/farmacología , Antifúngicos/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/microbiología , Hojas de la Planta/genética , Ascomicetos/fisiología , Ascomicetos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Depuradores de Radicales Libres/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...