Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.584
Filtrar
1.
Medicina (Kaunas) ; 60(6)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38929481

RESUMEN

Background and Objectives: Gemcitabine has been used to treat various solid cancers, including, since 1997, metastatic pancreatic cancer. Here, we developed an HPLC-UV method to determine serum gemcitabine levels and use it in pharmacokinetic studies. Materials and Methods: The analysis was performed after a single protein precipitation step on a reversed-phase column, isocratically eluted with sodium phosphate buffer and methanol. For the pharmacokinetic study, NOD/SCID mice received a single dose of gemcitabine at 100 mg/kg by either subcutaneous (SC) or intraperitoneal (IP) administration. Blood samples were collected at 5, 15, and 30 min and 1, 2, 4, and 6 h after the administration of gemcitabine for further analysis. Results: The duration of the analysis was ~12.5 min. The calibration curve was linear (r2 = 0.999) over the range of 1-400 µM. The mean recovery of GEM was 96.53% and the limit of detection was 0.166 µΜ. T1/2, Tmax, Cmax, AUC0-t, and clearance were 64.49 min, 5.00 min, 264.88 µmol/L, 9351.95 µmol/L*min, and 0.0103(mg)/(µmol/L)/min, respectively, for the SC administration. The corresponding values for the IP administration were 59.34 min, 5.00 min, 300.73 µmol/L, 8981.35 µmol/L*min and 0.0108(mg)/(µmol/L)/min (not statistically different from the SC administration). Conclusions: A simple, valid, sensitive, and inexpensive method for the measurement of gemcitabine in serum has been developed. This method may be useful for monitoring gemcitabine levels in cancer patients as part of therapeutic drug monitoring.


Asunto(s)
Desoxicitidina , Gemcitabina , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacocinética , Desoxicitidina/sangre , Desoxicitidina/uso terapéutico , Cromatografía Líquida de Alta Presión/métodos , Animales , Ratones , Reproducibilidad de los Resultados , Ratones SCID , Antimetabolitos Antineoplásicos/farmacocinética , Antimetabolitos Antineoplásicos/sangre , Ratones Endogámicos NOD
2.
PLoS One ; 19(6): e0302663, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38833640

RESUMEN

BACKGROUND AND PURPOSE: Clinical studies showed that prolonged infusion of methotrexate (MTX) leads to more severe adverse reactions than short infusion of MTX at the same dose. We hypothesized that it is the saturation of folate polyglutamate synthetase (FPGS) at high MTX concentration that limits the intracellular synthesis rate of methotrexate polyglutamate (MTX-PG). Due to a similar accumulation rate, a longer infusion duration may increase the concentration of MTX-PG and, result in more serious adverse reactions. In this study, we validated this hypothesis. EXPERIMENTAL APPROACH: A549, BEL-7402 and MHCC97H cell lines were treated with MTX at gradient concentrations. Liquid chromatograph-mass spectrometer (UPLC-MS/MS) was used to quantify the intracellular concentration of MTX-PG and the abundance of FPGS and γ-glutamyl hydrolase (GGH). High quality data were used to fit the cell pharmacokinetic model. KEY RESULTS: Both cell growth inhibition rate and intracellular MTX-PG concentration showed a nonlinear relationship with MTX concentration. The parameter Vmax in the model, which represents the synthesis rate of MTX-PG, showed a strong correlation with the abundance of intracellular FPGS. CONCLUSION AND IMPLICATIONS: According to the model fitting results, it was confirmed that the abundance of FPGS is a decisive factor limiting the synthesis rate of MTX-PG. The proposed hypothesis was verified in this study. In addition, based on the intracellular metabolism, a reasonable explanation was provided for the correlation between the severity of adverse reactions of MTX and infusion time. This study provides a new strategy for the individualized treatment and prediction of efficacy/side effects of MTX.


Asunto(s)
Metotrexato , Péptido Sintasas , Ácido Poliglutámico , gamma-Glutamil Hidrolasa , Metotrexato/farmacocinética , Metotrexato/análogos & derivados , gamma-Glutamil Hidrolasa/metabolismo , Péptido Sintasas/metabolismo , Humanos , Línea Celular Tumoral , Ácido Poliglutámico/análogos & derivados , Espectrometría de Masas en Tándem , Proliferación Celular/efectos de los fármacos , Antimetabolitos Antineoplásicos/farmacocinética , Antimetabolitos Antineoplásicos/farmacología
3.
J Pharm Biomed Anal ; 247: 116268, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823222

RESUMEN

Methotrexate (MTX) is commonly prescribed as the initial treatment for gestational trophoblastic neoplasia (GTN), but MTX monotherapy may not be effective for high-risk GTN and choriocarcinoma. The cellular uptake of MTX is essential for its pharmacological activity. Thus, our study aimed to investigate the cellular pharmacokinetics and transport mechanisms of MTX in choriocarcinoma cells. For the quantification of MTX concentrations in cellular matrix, a liquid chromatography-tandem mass spectrometry method was created and confirmed initially. MTX accumulation in BeWo, JEG-3, and JAR cells was minimal. Additionally, the mRNA levels of folate receptor α (FRα) and breast cancer resistance protein (BCRP) were relatively high in the three choriocarcinoma cell lines, whereas proton-coupled folate transporter (PCFT), reduced folate carrier (RFC), and organic anion transporter (OAT) 4 were low. Furthermore, the expression of other transporters was either very low or undetectable. Notably, the application of inhibitors and small interfering RNAs (siRNAs) targeting FRα, RFC, and PCFT led to a notable decrease in the accumulation of MTX in BeWo cells. Conversely, the co-administration of multidrug resistance protein 1 (MDR1) and BCRP inhibitors increased MTX accumulation. In addition, inhibitors of OATs and organic-anion transporting polypeptides (OATPs) reduced MTX accumulation, while peptide transporter inhibitors had no effect. Results from siRNA knockdown experiments and transporter overexpression cell models indicated that MTX was not a substrate of nucleoside transporters. In conclusion, the results indicate that FRα and multiple transporters such as PCFT, RFC, OAT4, and OATPs are likely involved in the uptake of MTX, whereas MDR1 and BCRP are implicated in the efflux of MTX from choriocarcinoma cells. These results have implications for predicting transporter-mediated drug interactions and offer potential directions for further research on enhancing MTX sensitivity.


Asunto(s)
Coriocarcinoma , Metotrexato , Espectrometría de Masas en Tándem , Metotrexato/farmacología , Humanos , Coriocarcinoma/metabolismo , Coriocarcinoma/tratamiento farmacológico , Espectrometría de Masas en Tándem/métodos , Línea Celular Tumoral , Transporte Biológico , Cromatografía Liquida/métodos , Femenino , Proteínas de Neoplasias/metabolismo , Antimetabolitos Antineoplásicos/farmacología , Antimetabolitos Antineoplásicos/farmacocinética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Neoplasias Uterinas/tratamiento farmacológico , Neoplasias Uterinas/metabolismo , Embarazo , Receptor 1 de Folato/metabolismo , Receptor 1 de Folato/genética , ARN Interferente Pequeño , Proteína Portadora de Folato Reducido/metabolismo , Proteína Portadora de Folato Reducido/genética , Cromatografía Líquida con Espectrometría de Masas
4.
Sci Rep ; 14(1): 11431, 2024 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-38763930

RESUMEN

Our current study reports the successful synthesis of thiolated chitosan-based nanoparticles for targeted drug delivery of 5-Fluorouracil. This process was achieved through the ionic gelation technique, aiming to improve the efficacy of the chemotherapeutic moiety by modifying the surface of the nanoparticles (NPs) with a ligand. We coated these NPs with hyaluronic acid (HA) to actively target the CD44 receptor, which is frequently overexpressed in various solid malignancies, including breast cancer. XRD, FTIR, SEM, and TEM were used for the physicochemical analysis of the NPs. These 5-Fluorouracil (5-FU) loaded NPs were evaluated on MDA-MB-231 (a triple-negative breast cell line) and MCF-10A (normal epithelial breast cells) to determine their in vitro efficacy. The developed 5-FU-loaded NPs exhibited a particle size within a favorable range (< 300 nm). The positive zeta potential of these nanoparticles facilitated their uptake by negatively charged cancer cells. Moreover, they demonstrated robust stability and achieved high encapsulation efficiency. These nanoparticles exhibited significant cytotoxicity compared to the crude drug (p < 0.05) and displayed a promising release pattern consistent with the basic diffusion model. These traits improve the pharmacokinetic profile, efficacy, and ability to precisely target these nanoparticles, offering a potentially successful anticancer treatment for breast cancer. However, additional in vivo assessments of these formulations are obligatory to confirm these findings.


Asunto(s)
Quitosano , Fluorouracilo , Receptores de Hialuranos , Nanopartículas , Neoplasias de la Mama Triple Negativas , Fluorouracilo/administración & dosificación , Fluorouracilo/farmacología , Fluorouracilo/química , Quitosano/química , Humanos , Receptores de Hialuranos/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Nanopartículas/química , Línea Celular Tumoral , Femenino , Portadores de Fármacos/química , Ácido Hialurónico/química , Sistemas de Liberación de Medicamentos , Antimetabolitos Antineoplásicos/farmacología , Antimetabolitos Antineoplásicos/administración & dosificación , Antimetabolitos Antineoplásicos/farmacocinética , Antimetabolitos Antineoplásicos/química , Supervivencia Celular/efectos de los fármacos , Tamaño de la Partícula
5.
Eur J Pharm Biopharm ; 200: 114326, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38759897

RESUMEN

Glioblastoma (GBM) is a highly deadly brain tumor that does not respond satisfactorily to conventional treatment. The non-alkylating agent gemcitabine (GEM) has been proposed for treating GBM. It can overcome MGMT protein-mediated resistance, a major limitation of conventional therapy with the alkylating agent temozolomide (TMZ). However, GEM's high systemic toxicity and poor permeability across the blood-brain barrier (BBB) pose significant challenges for its delivery to the brain. Thus, mucoadhesive poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) coated with chitosan (CH), suitable for intranasal GEM delivery, were proposed in this work. A central composite design (CCD) was implemented for NPs optimization, and NPs with appropriate characteristics for intranasal administration were obtained. in vitro studies revealed that the NPs possess excellent mucoadhesive properties and the ability to selectively release GEM in the simulated tumor tissue environment. in vitro studies using two human GBM cell lines (U215 and T98G) revealed the NPs' ability to promote GEM's antiproliferative activity to sensitize cells to the effect of TMZ. The findings of this work demonstrate that the developed CH-GEM-NPs are suitable delivery systems for GEM, both as a single therapy and as a chemosensitizer to the GBM gold standard therapy.


Asunto(s)
Neoplasias Encefálicas , Quitosano , Desoxicitidina , Reposicionamiento de Medicamentos , Gemcitabina , Glioblastoma , Nanopartículas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Desoxicitidina/análogos & derivados , Desoxicitidina/administración & dosificación , Desoxicitidina/farmacología , Desoxicitidina/química , Humanos , Quitosano/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Nanopartículas/química , Línea Celular Tumoral , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Reposicionamiento de Medicamentos/métodos , Temozolomida/administración & dosificación , Temozolomida/farmacología , Temozolomida/farmacocinética , Administración Intranasal , Antimetabolitos Antineoplásicos/administración & dosificación , Antimetabolitos Antineoplásicos/farmacología , Antimetabolitos Antineoplásicos/química , Antimetabolitos Antineoplásicos/farmacocinética , Portadores de Fármacos/química , Barrera Hematoencefálica/metabolismo , Liberación de Fármacos
6.
Mol Pharm ; 21(6): 2699-2712, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38747900

RESUMEN

This study aims to encapsulate gemcitabine (GEM) using a phospholipid complex (PLC) in lipid nanoparticles (NPs) to achieve several desirable outcomes, including high drug loading, uniform particle size, improved therapeutic efficacy, and reduced toxicities. The successful preparation of GEM-loaded lipid NPs (GEM-NPs) was accomplished using the emulsification-solidification method, following optimization through Box-Behnken design. The size of the GEM-NP was 138.5 ± 6.7 nm, with a low polydispersity index of 0.282 ± 0.078, as measured by a zetasizer and confirmed by transmission electron and atomic force microscopy. GEM-NPs demonstrated sustained release behavior, surpassing the performance of the free GEM and phospholipid complex. Moreover, GEM-NPs exhibited enhanced cytotoxicity, apoptosis, and cell uptake in Panc-2 and Mia PaCa cells compared to the free GEM. The in vivo pharmacokinetics revealed approximately 4-fold higher bioavailability of GEM-NPs in comparison with free GEM. Additionally, the pharmacodynamic evaluation conducted in a DMBA-induced pancreatic cancer model, involving histological examination, serum IL-6 level estimation, and expression of cleaved caspase-3, showed the potential of GEM-NPs in the management of pancreatic cancer. Consequently, the lipid NP-based approach developed in our investigation demonstrates high stability and uniformity and holds promise for enhancing the therapeutic outcomes of GEM.


Asunto(s)
Desoxicitidina , Gemcitabina , Nanopartículas , Neoplasias Pancreáticas , Fosfolípidos , Desoxicitidina/análogos & derivados , Desoxicitidina/química , Desoxicitidina/farmacología , Desoxicitidina/farmacocinética , Desoxicitidina/administración & dosificación , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Nanopartículas/química , Animales , Humanos , Línea Celular Tumoral , Fosfolípidos/química , Ratones , Tamaño de la Partícula , Apoptosis/efectos de los fármacos , Portadores de Fármacos/química , Lípidos/química , Liberación de Fármacos , Masculino , Antimetabolitos Antineoplásicos/administración & dosificación , Antimetabolitos Antineoplásicos/farmacocinética , Antimetabolitos Antineoplásicos/química , Antimetabolitos Antineoplásicos/farmacología , Estabilidad de Medicamentos , Ratas , Liposomas
7.
Int J Nanomedicine ; 19: 3753-3772, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38686338

RESUMEN

Background: Gemcitabine (GEM) faces challenges of poor oral bioavailability and extensive first-pass metabolism. Currently, only injectable formulations are available for clinical use. Hence, there is an urgent demand for the development of advanced, efficacious, and user-friendly dosage forms to maintain its status as the primary treatment for pancreatic ductal adenocarcinoma (PDAC). Nanogels (NGs) offer a novel oral drug delivery system, ideal for hydrophilic compounds like GEM. This study aims to develop NGs tailored for GEM delivery, with the goal of enhancing cellular uptake and gastrointestinal permeability for improved administration in PDAC patients. Methods: We developed cross-linked NGs via photopolymerization of methacryloyl for drug delivery of GEM. We reveal characterization, cytotoxicity, and cellular uptake studies in Caco-2 and MIA PaCa-2 cells. In addition, studies of in vitro permeability and pharmacokinetics were carried out to evaluate the bioavailability of the drug. Results: Our results show NGs, formed via photopolymerization of methacryloyl, had a spherical shape with a size of 233.91±7.75 nm. Gemcitabine-loaded NGs (NGs-GEM) with 5% GelMA exhibited efficient drug loading (particle size: 244.07±19.52 nm). In vitro drug release from NGs-GEM was slower at pH 1.2 than pH 6.8. Cellular uptake studies indicated significantly enhanced uptake in both MIA PaCa-2 and Caco-2 cells. While there was no significant difference in GEM's AUC and Cmax between NGs-GEM and free-GEM groups, NGs-GEM showed markedly lower dFdU content (10.07 hr∙µg/mL) compared to oral free-GEM (19.04 hr∙µg/mL) after oral administration (p<0.01), highlighting NGs' efficacy in impeding rapid drug metabolism and enhancing retention. Conclusion: In summary, NGs enhance cellular uptake, inhibit rapid metabolic degradation of GEM, and prolong retention after oral administration. These findings suggest NGs-GEM as a promising candidate for clinical use in oral pancreatic cancer therapy.


Asunto(s)
Desoxicitidina , Gemcitabina , Neoplasias Pancreáticas , Desoxicitidina/análogos & derivados , Desoxicitidina/química , Desoxicitidina/farmacocinética , Desoxicitidina/farmacología , Desoxicitidina/administración & dosificación , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Células CACO-2 , Administración Oral , Animales , Línea Celular Tumoral , Nanogeles/química , Antimetabolitos Antineoplásicos/farmacocinética , Antimetabolitos Antineoplásicos/química , Antimetabolitos Antineoplásicos/administración & dosificación , Antimetabolitos Antineoplásicos/farmacología , Disponibilidad Biológica , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Tamaño de la Partícula , Carcinoma Ductal Pancreático/tratamiento farmacológico , Polimerizacion , Sistemas de Liberación de Medicamentos/métodos
8.
Med ; 5(7): 780-796.e10, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38663403

RESUMEN

BACKGROUND: Dosing of chemotherapies is often calculated according to the weight and/or height of the patient or equations derived from these, such as body surface area (BSA). Such calculations fail to capture intra- and interindividual pharmacokinetic variation, which can lead to order of magnitude variations in systemic chemotherapy levels and thus under- or overdosing of patients. METHODS: We designed and developed a closed-loop drug delivery system that can dynamically adjust its infusion rate to the patient to reach and maintain the drug's target concentration, regardless of a patient's pharmacokinetics (PK). FINDINGS: We demonstrate that closed-loop automated drug infusion regulator (CLAUDIA) can control the concentration of 5-fluorouracil (5-FU) in rabbits according to a range of concentration-time profiles (which could be useful in chronomodulated chemotherapy) and over a range of PK conditions that mimic the PK variability observed clinically. In one set of experiments, BSA-based dosing resulted in a concentration 7 times above the target range, while CLAUDIA keeps the concentration of 5-FU in or near the targeted range. Further, we demonstrate that CLAUDIA is cost effective compared to BSA-based dosing. CONCLUSIONS: We anticipate that CLAUDIA could be rapidly translated to the clinic to enable physicians to control the plasma concentration of chemotherapy in their patients. FUNDING: This work was supported by MIT's Karl van Tassel (1925) Career Development Professorship and Department of Mechanical Engineering and the Bridge Project, a partnership between the Koch Institute for Integrative Cancer Research at MIT and the Dana-Farber/Harvard Cancer Center.


Asunto(s)
Sistemas de Liberación de Medicamentos , Fluorouracilo , Medicina de Precisión , Fluorouracilo/farmacocinética , Fluorouracilo/administración & dosificación , Conejos , Animales , Sistemas de Liberación de Medicamentos/métodos , Medicina de Precisión/métodos , Humanos , Infusiones Intravenosas , Antimetabolitos Antineoplásicos/farmacocinética , Antimetabolitos Antineoplásicos/administración & dosificación
9.
Expert Opin Drug Metab Toxicol ; 20(4): 263-274, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38501267

RESUMEN

INTRODUCTION: High-dose methotrexate (HDMTX) therapy poses challenges in various neoplasms due to individualized pharmacokinetics and associated adverse effects. Our purpose is to identify early risk factors associated with HDMTX-induced toxicities, paving the way for personalized treatment. AREAS COVERED: A systematic review of PubMed and Cochrane databases was conducted for articles from inception to July 2023. Eligible studies included reviews, clinical trials, and real-world analyses. Irrelevant studies were excluded, and manual searches and citation reviews were performed. Factors such as MTX exposure, drug interactions, demographics, serum albumin, urine pH, serum calcium, and genetic polymorphisms affecting MTX transport (e.g. SLCO1B1), intracellular folate metabolism (MTHFR), cell development (ARID5B), metabolic pathways (UGT1A1, PNPLA3), as well as epigenetics were identified. EXPERT OPINION: This comprehensive review aids researchers and clinicians in early identification of HDMTX toxicity risk factors. By understanding the multifaceted risk factors associated with hematologic malignancies, personalized treatment approaches can be tailored to optimize therapeutic outcomes.


Asunto(s)
Antimetabolitos Antineoplásicos , Relación Dosis-Respuesta a Droga , Metotrexato , Humanos , Antimetabolitos Antineoplásicos/efectos adversos , Antimetabolitos Antineoplásicos/administración & dosificación , Antimetabolitos Antineoplásicos/farmacocinética , Interacciones Farmacológicas , Neoplasias Hematológicas/tratamiento farmacológico , Metotrexato/efectos adversos , Metotrexato/administración & dosificación , Polimorfismo Genético , Medicina de Precisión/métodos , Factores de Riesgo
10.
J Oncol Pharm Pract ; 30(4): 721-736, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38509812

RESUMEN

OBJECTIVE: To review the pharmacokinetic (PK)-pharmacodynamic (PD) profiles, disease setting, dosing, and safety of oral and parenteral hypomethylating agents (HMAs) for the treatment of myelodysplastic syndromes/neoplasms (MDS) and acute myeloid leukemia (AML), and to provide a multidisciplinary perspective on treatment selection and educational needs relating to HMA use. DATA SOURCES: Clinical and real-world data for parenteral decitabine and azacitidine and two oral HMAs: decitabine-cedazuridine (DEC-C) for MDS and azacitidine (CC-486) for AML maintenance therapy. DATA SUMMARY: Differences in the PK-PD profiles of oral and parenteral HMA formulations have implications for their potential toxicities and planned use. Oral DEC-C (decitabine 35 mg and cedazuridine 100 mg) has demonstrated equivalent systemic area under the concentration-time curve (AUC) exposure to a 5-day regimen of intravenous (IV) decitabine 20 mg/m2 and showed no significant difference in PD. The AUC equivalence of oral DEC-C and IV decitabine means that these regimens can be treated interchangeably (but must not be substituted within a cycle). Oral azacitidine has a distinct PK-PD profile versus IV or subcutaneous azacitidine, and the formulations are not bioequivalent or interchangeable owing to differences in plasma time-course kinetics and exposures. Clinical trials are ongoing to evaluate oral HMA combinations and novel oral HMAs, such as NTX-301 and ASTX030. CONCLUSIONS: Treatment with oral HMAs has the potential to improve quality of life, treatment adherence, and disease outcomes versus parenteral HMAs. Better education of multidisciplinary teams on the factors affecting HMA treatment selection may help to improve treatment outcomes in patients with MDS or AML.


Asunto(s)
Azacitidina , Decitabina , Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Humanos , Síndromes Mielodisplásicos/tratamiento farmacológico , Leucemia Mieloide Aguda/tratamiento farmacológico , Administración Oral , Azacitidina/farmacocinética , Azacitidina/administración & dosificación , Azacitidina/análogos & derivados , Azacitidina/uso terapéutico , Decitabina/farmacocinética , Decitabina/administración & dosificación , Antimetabolitos Antineoplásicos/farmacocinética , Antimetabolitos Antineoplásicos/administración & dosificación , Antimetabolitos Antineoplásicos/uso terapéutico , Uridina/farmacocinética , Uridina/análogos & derivados , Uridina/administración & dosificación , Uridina/uso terapéutico , Uridina/farmacología
11.
J Control Release ; 369: 376-393, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554772

RESUMEN

Despite their great versatility and ease of functionalization, most polymer-based nanocarriers intended for use in drug delivery often face serious limitations that can prevent their clinical translation, such as uncontrolled drug release and off-target toxicity, which mainly originate from the burst release phenomenon. In addition, residual solvents from the formulation process can induce toxicity, alter the physico-chemical and biological properties and can strongly impair further pharmaceutical development. To address these issues, we report polymer prodrug nanoparticles, which are prepared without organic solvents via an all-aqueous formulation process, and provide sustained drug release. This was achieved by the "drug-initiated" synthesis of well-defined copolymer prodrugs exhibiting a lower critical solution temperature (LCST) and based on the anticancer drug gemcitabine (Gem). After screening for different structural parameters, prodrugs based on amphiphilic diblock copolymers were formulated into stable nanoparticles by all-aqueous nanoprecipitation, with rather narrow particle size distribution and average diameters in the 50-80 nm range. They exhibited sustained Gem release in human serum and acetate buffer, rapid cellular uptake and significant cytotoxicity on A549 and Mia PaCa-2 cancer cells. We also demonstrated the versatility of this approach by formulating Gem-based polymer prodrug nanoparticles loaded with doxorubicin (Dox) for combination therapy. The dual-drug nanoparticles exhibited sustained release of Gem in human serum and acidic release of Dox under accelerated pathophysiological conditions. Importantly, they also induced a synergistic effect on triple-negative breast cancer line MDA-MB-231, which is a relevant cell line to this combination.


Asunto(s)
Desoxicitidina , Liberación de Fármacos , Gemcitabina , Nanopartículas , Polímeros , Profármacos , Temperatura , Profármacos/administración & dosificación , Profármacos/química , Humanos , Nanopartículas/química , Desoxicitidina/análogos & derivados , Desoxicitidina/administración & dosificación , Desoxicitidina/química , Desoxicitidina/farmacocinética , Polímeros/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Preparaciones de Acción Retardada , Portadores de Fármacos/química , Precipitación Química , Antimetabolitos Antineoplásicos/administración & dosificación , Antimetabolitos Antineoplásicos/química , Antimetabolitos Antineoplásicos/farmacocinética
12.
Eur J Clin Pharmacol ; 80(7): 965-982, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38498098

RESUMEN

BACKGROUND AND OBJECTIVES: Methotrexate is widely utilized in the chemotherapy of malignant tumors and autoimmune diseases in the pediatric population, but dosing can be challenging. Several population pharmacokinetic models were developed to characterize factors influencing variability and improve individualization of dosing regimens. However, significant covariates included varied across studies. The primary objective of this review was to summarize and discuss population pharmacokinetic models of methotrexate and covariates that influence pharmacokinetic variability in pediatric patients. METHODS: Systematic searches were conducted in the PubMed and EMBASE databases from inception to 7 July 2023. Reporting Quality was evaluated based on a checklist with 31 items. The characteristics of studies and information for model construction and validation were extracted, summarized, and discussed. RESULTS: Eighteen studies (four prospective studies and fourteen retrospective studies with sample sizes of 14 to 772 patients and 2.7 to 93.1 samples per patient) were included in this study. Two-compartment models were the commonly used structural models for methotrexate, and the clearance range of methotrexate ranged from 2.32 to 19.03 L/h (median: 6.86 L/h). Body size and renal function were found to significantly affect the clearance of methotrexate for pediatric patients. There were limited reports on the role of other covariates, such as gene polymorphisms and co-medications, in the pharmacokinetic parameters of methotrexate pediatric patients. Internal and external evaluations were used to assess the performance of the population pharmacokinetic models. CONCLUSION: A more rigorous external evaluation needs to be performed before routine clinical use to select the appropriate PopPK model. Further research is necessary to incorporate larger cohorts or pool analyses in specific susceptible pediatric populations to improve the understanding of predicted exposure profiles and covariate identification.


Asunto(s)
Antimetabolitos Antineoplásicos , Metotrexato , Modelos Biológicos , Metotrexato/farmacocinética , Metotrexato/administración & dosificación , Humanos , Niño , Antimetabolitos Antineoplásicos/farmacocinética , Antimetabolitos Antineoplásicos/administración & dosificación , Antimetabolitos Antineoplásicos/uso terapéutico , Antimetabolitos Antineoplásicos/sangre , Adolescente , Neoplasias/tratamiento farmacológico
13.
Clin Pharmacol Ther ; 115(6): 1282-1292, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38264789

RESUMEN

The discovery of circadian clock genes greatly amplified the study of diurnal variations impacting cancer therapy, transforming it into a rapidly growing field of research. Especially, use of chronomodulated treatment with 5-fluorouracil (5-FU) has gained significance. Studies indicate high interindividual variability (IIV) in diurnal variations in dihydropyrimidine dehydrogenase (DPD) activity - a key enzyme for 5-FU metabolism. However, the influence of individual DPD chronotypes on chronomodulated therapy remains unclear and warrants further investigation. To optimize precision dosing of chronomodulated 5-FU, this study aims to: (i) build physiologically-based pharmacokinetic (PBPK) models for 5-FU, uracil, and their metabolites, (ii) assess the impact of diurnal variation on DPD activity, (iii) estimate individual DPD chronotypes, and (iv) personalize chronomodulated 5-FU infusion rates based on a patient's DPD chronotype. Whole-body PBPK models were developed with PK-Sim(R) and MoBi(R). Sinusoidal functions were used to incorporate variations in enzyme activity and chronomodulated infusion rates as well as to estimate individual DPD chronotypes from DPYD mRNA expression or DPD enzymatic activity. Four whole-body PBPK models for 5-FU, uracil, and their metabolites were established utilizing data from 41 5-FU and 10 publicly available uracil studies. IIV in DPD chronotypes was assessed and personalized chronomodulated administrations were developed to achieve (i) comparable 5-FU peak plasma concentrations, (ii) comparable 5-FU exposure, and (iii) constant 5-FU plasma levels via "noise cancellation" chronomodulated infusion. The developed PBPK models capture the extent of diurnal variations in DPD activity and can help investigate individualized chronomodulated 5-FU therapy through testing alternative personalized dosing strategies.


Asunto(s)
Antimetabolitos Antineoplásicos , Ritmo Circadiano , Dihidrouracilo Deshidrogenasa (NADP) , Fluorouracilo , Modelos Biológicos , Neoplasias , Medicina de Precisión , Fluorouracilo/farmacocinética , Fluorouracilo/administración & dosificación , Humanos , Dihidrouracilo Deshidrogenasa (NADP)/metabolismo , Dihidrouracilo Deshidrogenasa (NADP)/genética , Antimetabolitos Antineoplásicos/farmacocinética , Antimetabolitos Antineoplásicos/administración & dosificación , Medicina de Precisión/métodos , Neoplasias/tratamiento farmacológico , Ritmo Circadiano/fisiología , Cronoterapia de Medicamentos , Masculino , Femenino , Simulación por Computador , Persona de Mediana Edad , Uracilo/farmacocinética , Uracilo/administración & dosificación , Uracilo/análogos & derivados
14.
Clin Transl Sci ; 16(11): 2130-2143, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37503924

RESUMEN

The MTXPK.org webtool was launched in December 2019 and was developed to facilitate model-informed supportive care and optimal use of glucarpidase following the administration of high-dose methotrexate (HDMTX). One limitation identified during the original development of the MTXPK.org tool was the perceived generalizability because the modeled population comprised solely of Nordic pediatric patients receiving 24-h infusions for the treatment of acute lymphoblastic leukemia. The goal of our study is to describe the pharmacokinetics of HDMTX from a diverse patient population (e.g., races, ethnicity, indications for methotrexate, and variable infusion durations) and identify meaningful factors that account for methotrexate variability and improve the model's performance. To do this, retrospectively analyzed pharmacokinetic and toxicity data from pediatric and adolescent young adult patients who were receiving HDMTX (>0.5 g/m2 ) for the treatment of a cancer diagnosis from three pediatric medical centers. We performed population pharmacokinetic modeling referencing the original MTXPK.org NONMEM model (includes body surface area and serum creatinine as covariates) on 1668 patients, 7506 administrations of HDMTX, and 30,250 concentrations. Our results support the parameterizations of short infusion duration (<8 h) and the presence of Down syndrome on methotrexate clearance, the parameterization of severe hypoalbuminemia (<2.5 g/dL) on the intercompartmental clearance (Q2 and Q3), and the parameterization of pleural effusion on the volume of distribution (V1 and V2). These novel parameterizations will increase the generalizability of the MTXPK.org model once they are added to the webtool.


Asunto(s)
Metotrexato , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adolescente , Adulto Joven , Niño , Humanos , Antimetabolitos Antineoplásicos/farmacocinética , Estudios Retrospectivos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico
15.
J Biol Rhythms ; 38(2): 171-184, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36762608

RESUMEN

The circadian timing system controls absorption, distribution, metabolism, and elimination processes of drug pharmacokinetics over a 24-h period. Exposure of target tissues to the active form of the drug and cytotoxicity display variations depending on the chronopharmacokinetics. For anticancer drugs with narrow therapeutic ranges and dose-limiting side effects, it is particularly important to know the temporal changes in pharmacokinetics. A previous study indicated that pharmacokinetic profile of capecitabine was different depending on dosing time in rat. However, it is not known how such difference is attributed with respect to diurnal rhythm. Therefore, in this study, we evaluated capecitabine-metabolizing enzymes in a diurnal rhythm-dependent manner. To this end, C57BL/6J male mice were orally treated with 500 mg/kg capecitabine at ZT1, ZT7, ZT13, or ZT19. We then determined pharmacokinetics of capecitabine and its metabolites, 5'-deoxy-5-fluorocytidine (5'DFCR), 5'-deoxy-5-fluorouridine (5'DFUR), 5-fluorouracil (5-FU), in plasma and liver. Results revealed that plasma Cmax and AUC0-6h (area under the plasma concentration-time curve from 0 to 6 h) values of capecitabine, 5'DFUR, and 5-FU were higher during the rest phase (ZT1 and ZT7) than the activity phase (ZT13 and ZT19) (p < 0.05). Similarly, Cmax and AUC0-6h values of 5'DFUR and 5-FU in liver were higher during the rest phase than activity phase (p < 0.05), while there was no significant difference in liver concentrations of capecitabine and 5'DFCR. We determined the level of the enzymes responsible for the conversion of capecitabine and its metabolites at each ZT. Results indicated the levels of carboxylesterase 1 and 2, cytidine deaminase, uridine phosphorylase 2, and dihydropyrimidine dehydrogenase (p < 0.05) are being rhythmically regulated and, in turn, attributed different pharmacokinetics profiles of capecitabine and its metabolism. This study highlights the importance of capecitabine administration time to increase the efficacy with minimum adverse effects.


Asunto(s)
Antimetabolitos Antineoplásicos , Ritmo Circadiano , Masculino , Ratones , Ratas , Animales , Capecitabina/farmacocinética , Antimetabolitos Antineoplásicos/farmacocinética , Antimetabolitos Antineoplásicos/uso terapéutico , Ratones Endogámicos C57BL , Fluorouracilo/metabolismo , Fluorouracilo/uso terapéutico
16.
Xenobiotica ; 52(3): 265-273, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35446233

RESUMEN

This study aimed to identify physiological and pharmacogenomic covariates and develop a population pharmacokinetic model of high-dose methotrexate (HD-MTX) in Chinese paediatric patients with acute lymphoblastic leukaemia (ALL) and malignant lymphoma.A total of 731 MTX courses and 1658 MTX plasm concentrations from 205 paediatric patients with ALL and malignant lymphoma were analysing using a non-linear mixed-effects model technique. 47 SNPs in 16 MTX-related genes were genotyped and screened as covariates. A PPK model was established to determine the influence of covariates, such as body surface area (BSA), age, laboratory test value, and SNPs on the pharmacokinetic process of HD-MTX.Two-compartmental model with allometric scaling using BSA could nicely characterise the in vivo behaviour of HD-MTX. After accounting for body size, rs17004785 and rs4148416 were the covariates that influence MTX clearance (CL). The PPK model obtained was: CL = 9.33 * (BSA/1.73)0.75 * e0.13*rs17004785 * e0.39*rs4148416 * eηCL, Vc = 24.98 * (BSA/1.73) * eηvc, Q = 0.18 * (BSA/1.73)0.75 * eηQ and Vp = 4.70 * (BSA/1.73) * eηvp.The established model combined with the Bayesian approach could estimate individual pharmacokinetic parameters and optimise personalised HD-MTX therapy for paediatric patients with ALL and malignant lymphoma.


Asunto(s)
Linfoma , Leucemia-Linfoma Linfoblástico de Células Precursoras , Antimetabolitos Antineoplásicos/farmacocinética , Antimetabolitos Antineoplásicos/uso terapéutico , Teorema de Bayes , Niño , Humanos , Linfoma/tratamiento farmacológico , Linfoma/genética , Metotrexato/farmacocinética , Metotrexato/uso terapéutico , Polimorfismo de Nucleótido Simple , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
17.
Clin Transl Sci ; 15(1): 105-117, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34378331

RESUMEN

High-dose methotrexate (HDMTX) pharmacokinetics (PKs), including the best estimated glomerular filtration rate (eGFR) equation that reflects methotrexate (MTX) clearance, requires investigation. This prospective, observational, single-center study evaluated adult patients with lymphoma treated with HDMTX. Samples were collected at predefined time points up to 96 h postinfusion. MTX and 7-hydroxy-MTX PKs were estimated by standard noncompartmental analysis. Linear regression determined which serum creatinine- or cystatin C-based eGFR equation best predicted MTX clearance. The 80 included patients had a median (interquartile range [IQR]) age of 68.6 years (IQR 59.2-75.6), 54 (67.5%) were men, and 74 (92.5%) were White. The median (IQR) dose of MTX was 7.6 (IQR 4.8-11.3) grams. Median clearance was similar across three dosing levels at 4.5-5.6 L/h and was consistent with linear PKs. Liver function, weight, age, sex, concomitant chemotherapy, and number of previous MTX doses did not impact clearance. MTX area under the curve (AUC) values varied over a fourfold range and appeared to increase in proportion to the dose. The eGFRcys (ml/min) equation most closely correlated with MTX clearance in both the entire cohort and after excluding outlier MTX clearance values (r = 0.31 and 0.51, respectively). HDMTX as a 4-h infusion displays high interpatient pharmacokinetic variability. Population PK modeling to optimize MTX AUC attainment requires further evaluation. The cystatin C-based eGFR equation most closely estimated MTX clearance and should be investigated for dosing and monitoring in adults requiring MTX as part of lymphoma management.


Asunto(s)
Antimetabolitos Antineoplásicos/administración & dosificación , Antimetabolitos Antineoplásicos/farmacocinética , Pruebas de Función Renal/métodos , Linfoma/tratamiento farmacológico , Metotrexato/administración & dosificación , Metotrexato/farmacocinética , Anciano , Femenino , Tasa de Filtración Glomerular , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos
18.
Eur J Drug Metab Pharmacokinet ; 47(1): 127-134, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34637107

RESUMEN

BACKGROUND AND OBJECTIVE: High-dose methotrexate (HD-MTX) is the mainstream therapy of current acute lymphoblastic leukemia (ALL) regimens, but frequent intra- and interindividual differences in the clinical response to HD-MTX lead to chemotherapeutic interruption or discontinuation. The exact mechanism of transport across the cell membrane and the disposition of active methotrexate metabolites-methotrexate polyglutamates (MTXPGs)-are not well described in the literature. The aim of this study was to gain more insight into the plasma distribution of methotrexate and MTXPGs in pediatric patients with ALL and to clarify the obscure pathways of MTXPGs. METHODS: We prospectively measured the concentrations of MTXPG1-7 in plasma samples from three male pediatric patients treated with HD-MTX and leucovorin rescue according to the IC-BFM 2009 protocol using liquid chromatography-mass spectrometry (LC-MS). Blood samples were obtained at 24, 36, 42, and 48 h after the start of HD-MTX treatment. RESULTS: Noticeable plasma concentrations of MTXPGs with a 2.2-fold interpatient variability were detected. The highest interindividual variability in total plasma MTXPG concentration was observed at 36 h, and ranged from 13.78 to 30.82 µmol/L. Among all patients, the predominant polyglutamate types in relation to the total plasma MTXPG concentration at each time point were MTXPG3 (16.71-30.02%) and MTXPG5 (26.23-38.60%), while MTXPG7 was the least abundant MTXPG (3.22-5.02%). CONCLUSION: The presence of MTXPGs in plasma of patients with ALL could be related to the action of ABC efflux transporters on blood cells and hepatocytes resulting from the administration of high doses of methotrexate. This study may not draw definitive conclusions, but it does reduce uncertainty about the dynamics of methotrexate and its active metabolites, which may be of vital importance for achieving a clinical response.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacocinética , Metotrexato/farmacocinética , Ácido Poliglutámico/farmacocinética , Antimetabolitos Antineoplásicos/administración & dosificación , Antimetabolitos Antineoplásicos/sangre , Niño , Cromatografía Liquida , Humanos , Masculino , Metotrexato/administración & dosificación , Metotrexato/sangre , Plasma/metabolismo , Ácido Poliglutámico/administración & dosificación , Ácido Poliglutámico/sangre , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Estudios Prospectivos
19.
Clin Pharmacol Ther ; 111(2): 455-460, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34656072

RESUMEN

Retrospective data suggest that gastric acid reduction by proton pump inhibitors (PPIs) impairs the dissolution and subsequent absorption of capecitabine, and thus potentially reduces the capecitabine exposure. Therefore, we examined prospectively the effect of esomeprazole on the pharmacokinetics of capecitabine. In this randomized crossover study, patients with cancer were assigned to 2 sequence groups, each consisting of 3 phases: capecitabine with esomeprazole administration 3 hours before (phase A), capecitabine alone (phase B), and capecitabine concomitant with cola and esomeprazole co-administration 3 hours before (phase C). The primary end point was the relative difference (RD) in exposure to capecitabine assessed by the area under the plasma concentration-time curve from zero to infinity (AUC0-inf ) and analyzed by a linear mixed effect model. Twenty-two evaluable patients were included in the analysis. After esomeprazole, there was a 18.9% increase in AUC0-inf of capecitabine (95% confidence interval (CI) -10.0% to 57.0%, P = 0.36). In addition, capecitabine half-life was significantly longer after esomeprazole (median 0.63 hours vs. 0.46 hours, P = 0.005). Concomitant cola did not completely reverse the effects observed after esomeprazole (RD 3.3% (95% CI -16.3 to 27.4%, P = 1.00). Capecitabine exposure is not negatively influenced by esomeprazole cotreatment. Therefore, altered capecitabine pharmacokinetics do not explain the assumed worse clinical outcome of PPI-cotreated patients with cancer.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacocinética , Capecitabina/farmacocinética , Esomeprazol/administración & dosificación , Neoplasias/tratamiento farmacológico , Inhibidores de la Bomba de Protones/administración & dosificación , Antimetabolitos Antineoplásicos/administración & dosificación , Antimetabolitos Antineoplásicos/sangre , Disponibilidad Biológica , Capecitabina/administración & dosificación , Capecitabina/sangre , Bebidas Gaseosas , Estudios Cruzados , Interacciones Farmacológicas , Monitoreo de Drogas , Esomeprazol/efectos adversos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neoplasias/sangre , Neoplasias/diagnóstico , Países Bajos , Estudios Prospectivos , Inhibidores de la Bomba de Protones/efectos adversos , Resultado del Tratamiento
20.
Curr Issues Mol Biol ; 43(3): 2189-2198, 2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34940127

RESUMEN

Gemcitabine is a nucleoside analog effective against several solid tumors. Standard treatment consists of an intravenous infusion over 30 min. This is an invasive, uncomfortable and often painful method, involving recurring visits to the hospital and costs associated with medical staff and equipment. Gemcitabine's activity is significantly limited by numerous factors, including metabolic inactivation, rapid systemic clearance of gemcitabine and transporter deficiency-associated resistance. As such, there have been research efforts to improve gemcitabine-based therapy efficacy, as well as strategies to enhance its oral bioavailability. In this work, gemcitabine in vitro and clinical data were analyzed and in silico tools were used to study the pharmacokinetics of gemcitabine after oral administration following different regimens. Several physiologically based pharmacokinetic (PBPK) models were developed using simulation software GastroPlus™, predicting the PK parameters and plasma concentration-time profiles. The integrative biomedical data analyses presented here are promising, with some regimens of oral administration reaching higher AUC in comparison to the traditional IV infusion, supporting this route of administration as a viable alternative to IV infusions. This study further contributes to personalized health care based on potential new formulations for oral administration of gemcitabine, as well nanotechnology-based drug delivery systems.


Asunto(s)
Antimetabolitos Antineoplásicos/administración & dosificación , Antimetabolitos Antineoplásicos/farmacocinética , Desoxicitidina/análogos & derivados , Modelos Biológicos , Administración Oral , Área Bajo la Curva , Transporte Biológico , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Células Cultivadas , Cromatografía Líquida de Alta Presión , Desoxicitidina/administración & dosificación , Desoxicitidina/farmacocinética , Humanos , Permeabilidad , Distribución Tisular , Gemcitabina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...