Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.559
Filtrar
1.
Sci Rep ; 14(1): 10561, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719884

RESUMEN

This study focuses on understanding the structural and molecular changes in lipid membranes under the influence of six halogenated flavonoid derivatives differing in the number and position of substitution of chlorine and bromine atoms (D1-D6). Utilizing various analytical techniques, including fluorometric methods, dynamic light scattering (DLS), attenuated Fourier transform infrared spectroscopy (ATR- FTIR), and FT-Raman spectroscopy, the research aims to elucidate the mechanisms underlying the interaction of flavonoids with cell membranes. Additionally, the study includes in silico analyses to explore the physicochemical properties of these compounds and their potential pharmaceutical applications, along with toxicity studies to assess their effects on cancer, normal, and red blood cells. Our study showed the ability of halogenated derivatives to interact mostly with the outer part of the membrane, especially in the lipid heads region however, some of them were able to penetrate deeper into the membrane and affect the fluidity of hydrocarbon chains. The potential to reduce cancer cell viability, the lack of toxicity towards erythrocytes, and the favourable physicochemical and pharmacokinetic properties suggest these halogenated flavonoids potential candidates for exploring their potential for medical use.


Asunto(s)
Flavonoides , Lípidos de la Membrana , Flavonoides/química , Flavonoides/farmacología , Flavonoides/metabolismo , Humanos , Lípidos de la Membrana/metabolismo , Lípidos de la Membrana/química , Membrana Celular/metabolismo , Halogenación , Citotoxinas/química , Citotoxinas/farmacología , Citotoxinas/metabolismo , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Supervivencia Celular/efectos de los fármacos , Espectrometría Raman , Espectroscopía Infrarroja por Transformada de Fourier , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/metabolismo , Línea Celular Tumoral
2.
BMC Biotechnol ; 24(1): 27, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38725019

RESUMEN

Cyanobacteria represent a rich resource of a wide array of unique bioactive compounds that are proving to be potent sources of anticancer drugs. Selenium nanoparticles (SeNPs) have shown an increasing potential as major therapeutic platforms and led to the production of higher levels of ROS that can present desirable anticancer properties. Chitosan-SeNPs have also presented antitumor properties against hepatic cancer cell lines, especially the Cht-NP (Chitosan-NPs), promoting ROS generation and mitochondria dysfunction. It is proposed that magnetic fields can add new dimensions to nanoparticle applications. Hence, in this study, the biosynthesis of SeNPs using Alborzia kermanshahica and chitosan (CS) as stabilizers has been developed. The SeNPs synthesis was performed at different cyanobacterial cultivation conditions, including control (without magnetic field) and magnetic fields of 30 mT and 60 mT. The SeNPs were characterized by uv-visible spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), Dynamic light scattering (DLS), zeta potential, and TEM. In addition, the antibacterial activity, inhibition of bacterial growth, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC), as well as the antifungal activity and cytotoxicity of SeNPs, were performed. The results of uv-visible spectrometry, DLS, and zeta potential showed that 60 mT had the highest value regarding the adsorption, size, and stabilization in compared to the control. FTIR spectroscopy results showed consistent spectra, but the increased intensity of peaks indicates an increase in bond number after exposure to 30 mT and 60 mT. The results of the antibacterial activity and the inhibition zone diameter of synthesized nanoparticles showed that Staphylococcus aureus was more sensitive to nanoparticles produced under 60 mT. Se-NPs produced by Alborzia kermanshahica cultured under a 60 mT magnetic field exhibit potent antimicrobial and anticancer properties, making them a promising natural agent for use in the pharmaceutical and biomedical industries.


Asunto(s)
Quitosano , Campos Magnéticos , Selenio , Selenio/química , Selenio/farmacología , Quitosano/química , Quitosano/farmacología , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/biosíntesis , Pruebas de Sensibilidad Microbiana , Nanopartículas/química , Antineoplásicos/farmacología , Antineoplásicos/metabolismo , Antineoplásicos/química , Nanopartículas del Metal/química
3.
Arch Microbiol ; 206(6): 266, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38761213

RESUMEN

We succeeded in homogeneously expressing and purifying L-asparaginase from Latilactobacillus sakei LK-145 (Ls-Asn1) and its mutated enzymes C196S, C264S, C290S, C196S/C264S, C196S/C290S, C264S/C290S, and C196S/C264S/C290S-Ls-Asn1. Enzymological studies using purified enzymes revealed that all cysteine residues of Ls-Asn1 were found to affect the catalytic activity of Ls-Asn1 to varying degrees. The mutation of Cys196 did not affect the specific activity, but the mutation of Cys264, even a single mutation, significantly decreased the specific activity. Furthermore, C264S/C290S- and C196S/C264S/C290S-Ls-Asn1 almost completely lost their activity, suggesting that C290 cooperates with C264 to influence the catalytic activity of Ls-Asn1. The detailed enzymatic properties of three single-mutated enzymes (C196S, C264S, and C290S-Ls-Asn1) were investigated for comparison with Ls-Asn1. We found that only C196S-Ls-Asn1 has almost the same enzymatic properties as that of Ls-Asn1 except for its increased stability for thermal, pH, and the metals NaCl, KCl, CaCl2, and FeCl2. We measured the growth inhibitory effect of Ls-Asn1 and C196S-Ls-Asn1 on Jurkat cells, a human T-cell acute lymphoblastic leukemia cell line, using L-asparaginase from Escherichia coli K-12 as a reference. Only C196S-Ls-Asn1 effectively and selectively inhibited the growth of Jurkat T-cell leukemia, which suggested that it exhibited antileukemic activity. Furthermore, based on alignment, phylogenetic tree analysis, and structural modeling, we also proposed that Ls-Asn1 is a so-called "Type IIb" novel type of asparaginase that is distinct from previously reported type I or type II asparaginases. Based on the above results, Ls-Asn1 is expected to be useful as a new leukemia therapeutic agent.


Asunto(s)
Asparaginasa , Asparaginasa/genética , Asparaginasa/metabolismo , Asparaginasa/química , Asparaginasa/aislamiento & purificación , Asparaginasa/farmacología , Humanos , Bacillaceae/enzimología , Bacillaceae/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Concentración de Iones de Hidrógeno , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/metabolismo , Células Jurkat , Mutación , Secuencia de Aminoácidos , Cinética
4.
ACS Synth Biol ; 13(5): 1562-1571, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38679882

RESUMEN

Respirantins are 18-membered antimycin-type depsipeptides produced by Streptomyces sp. and Kitasatospora sp. These compounds have shown extraordinary anticancer activities against a panel of cancer cell lines with nanomolar levels of IC50 values. However, further investigation has been impeded by the low titers of the natural producers and the challenging chemical synthesis due to their structural complexity. The biosynthetic gene cluster (BGC) of respirantin was previously proposed based on a bioinformatic comparison of the four members of antimycin-type depsipeptides. In this study, we report the first successful reconstitution of respirantin in Streptomyces albus using a synthetic BGC. This heterologous system serves as an accessible platform for the production and diversification of respirantins. Through polyketide synthase pathway engineering, biocatalysis, and chemical derivatization, we generated nine respirantin compounds, including six new derivatives. Cytotoxicity screening against human MCF-7 and Hela cancer cell lines revealed a unique biphasic dose-response profile of respirantin. Furthermore, a structure-activity relationship study has elucidated the essential functional groups that contribute to its remarkable cytotoxicity. This work paves the way for respirantin-based anticancer drug discovery and development.


Asunto(s)
Antimicina A , Antineoplásicos , Depsipéptidos , Familia de Multigenes , Streptomyces , Humanos , Streptomyces/metabolismo , Streptomyces/genética , Depsipéptidos/farmacología , Depsipéptidos/química , Depsipéptidos/biosíntesis , Antineoplásicos/farmacología , Antineoplásicos/metabolismo , Antineoplásicos/química , Células HeLa , Antimicina A/análogos & derivados , Antimicina A/farmacología , Antimicina A/metabolismo , Células MCF-7 , Sintasas Poliquetidas/metabolismo , Sintasas Poliquetidas/genética , Vías Biosintéticas/genética , Relación Estructura-Actividad
5.
ACS Chem Biol ; 19(5): 1169-1179, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38624108

RESUMEN

Bufadienolides are a class of steroids with a distinctive α-pyrone ring at C17, mostly produced by toads and consisting of over 100 orthologues. They exhibit potent cardiotonic and antitumor activities and are active ingredients of the traditional Chinese medicine Chansu and Cinobufacini. Direct extraction from toads is costly, and chemical synthesis is difficult, limiting the accessibility of active bufadienolides with diverse modifications and trace content. In this work, based on the transcriptome and genome analyses, using a yeast-based screening platform, we obtained eight cytochrome P450 (CYP) enzymes from toads, which catalyze the hydroxylation of bufalin and resibufogenin at different sites. Moreover, a reported fungal CYP enzyme Sth10 was found functioning in the modification of bufalin and resibufogenin at multiple sites. A total of 15 bufadienolides were produced and structurally identified, of which six were first discovered. All of the compounds were effective in inhibiting the proliferation of tumor cells, especially 19-hydroxy-bufalin (2) and 1ß-hydroxy-bufalin (3), which were generated from bufalin hydroxylation catalyzed by CYP46A35. The catalytic efficiency of CYP46A35 was improved about six times and its substrate diversity was expanded to progesterone and testosterone, the common precursors for steroid drugs, achieving their efficient and site-specific hydroxylation. These findings elucidate the key modification process in the synthesis of bufadienolides by toads and provide an effective way for the synthesis of unavailable bufadienolides with site-specific modification and active potentials.


Asunto(s)
Bufanólidos , Sistema Enzimático del Citocromo P-450 , Bufanólidos/química , Bufanólidos/metabolismo , Bufanólidos/farmacología , Sistema Enzimático del Citocromo P-450/metabolismo , Animales , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/metabolismo , Hidroxilación , Línea Celular Tumoral , Bufonidae/metabolismo , Proliferación Celular/efectos de los fármacos
6.
Bioorg Chem ; 146: 107283, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38513324

RESUMEN

The breast cancer resistance protein (BCRP/ABCG2) transporter mediates the efflux of numerous antineoplastic drugs, playing a central role in multidrug resistance related to cancer. The absence of successful clinical trials using specific ABCG2 inhibitors reveals the urge to identify new compounds to attend this critical demand. In this work, a series of 13 magnolol derivatives was tested as ABCG2 inhibitors. Only two compounds, derivatives 10 and 11, showed partial and complete ABCG2 inhibitory effect, respectively. This inhibition was selective toward ABCG2, since none of the 13 compounds inhibited neither P-glycoprotein nor MRP1. Both inhibitors (10 and 11) were not transported by ABCG2 and demonstrated a low cytotoxic profile even at high concentrations (up to 100 µM). 11 emerged as the most promising compound of the series, considering the ratio between cytotoxicity (IG50) and ABCG2 inhibition potency (IC50), showing a therapeutic ratio (TR) higher than observed for 10 (10.5 versus 1.6, respectively). This derivative showed a substrate-independent and a mixed type of inhibition. The effect of compound 11 on the ABCG2 ATPase activity and thermostability revealed allosteric protein changes. This compound did not affect the expression levels of ABCG2 and increased the binding of the conformational-sensitive antibody 5D3. A docking study showed that 11 did not share the same binding site with ABCG2 substrate mitoxantrone. Finally, 11 could revert the chemoresistance to SN-38 mediated by ABCG2.


Asunto(s)
Antineoplásicos , Compuestos de Bifenilo , Neoplasias de la Mama , Lignanos , Humanos , Femenino , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Resistencia a Antineoplásicos , Proteínas de Neoplasias , Antineoplásicos/farmacología , Antineoplásicos/metabolismo
7.
Steroids ; 205: 109392, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38452910

RESUMEN

We report the biotransformation of progesterone 1 by whole cells of Brazilian marine-derived fungi. A preliminary screening with 12 fungi revealed that the strains Penicillium oxalicum CBMAI 1996, Mucor racemous CBMAI 847, Cladosporium sp. CBMAI 1237, Penicillium oxalicum CBMAI 1185 and Aspergillus sydowii CBMAI 935 were efficient in the biotransformation of progesterone 1 in the first days of the reaction, with conversion values ranging from 75 % to 99 %. The fungus P. oxalicum CBMAI 1185 was employed in the reactions in quintuplicate to purify and characterize the main biotransformation products of progesterone 1. The compounds testololactone 1a, 12ß-hydroxyandrostenedione 1b and 1ß-hydroxyandrostenedione 1c were isolated and characterized by NMR, MS, [α]D and MP. In addition, the chromatographic yield of compound 1a was determined by HPLC-PDA in the screening experiments. In this study, we show a biotransformation pathway of progesterone 1, suggesting the presence of several enzymes such as Baeyer-Villiger monooxygenases, dehydrogenases and cytochrome P450 monooxygenases in the fungus P. oxalicum CBMAI 1185. In summary, the results obtained in this study contribute to the synthetic area and have environmental importance, since the marine-derived fungi can be employed in the biodegradation of steroids present in wastewater and the environment. The cytotoxic results demonstrate that the biodegradation products were inactive against the cell lines, in contrast to progesterone.


Asunto(s)
Antineoplásicos , Penicillium , Antineoplásicos/metabolismo , Cladosporium/metabolismo , Hongos/metabolismo , Oxigenasas de Función Mixta/metabolismo , Penicillium/metabolismo , Progesterona/metabolismo
8.
Dalton Trans ; 53(14): 6410-6415, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38501501

RESUMEN

An asymmetric bi-nuclear copper(II) complex with both cytotoxic and immunogenic activity towards breast cancer stem cells (CSCs) is reported. The bi-nuclear copper(II) complex comprises of two copper(II) centres bound to flufenamic acid and 3,4,7,8-tetramethyl-1,10-phenanthroline. The bi-nuclear copper(II) complex exhibits sub-micromolar potency towards breast CSCs grown in monolayers and three-dimensional cultures. Remarkably, the bi-nuclear copper(II) complex is up to 25-fold more potent toward breast CSC mammospheres than salinomycin (a gold standard anti-breast CSC agent) and cisplatin (a clinically administered metallodrug). Mechanistic studies showed that the bi-nuclear copper(II) complex readily enters breast CSCs, elevates intracellular reactive oxygen species levels, induces apoptosis, and promotes damage-associated molecular pattern release. The latter triggers phagocytosis of breast CSCs by macrophages. As far as we are aware, this is the first report of a bi-nuclear copper(II) complex to induce engulfment of breast CSCs by immune cells.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Ácido Flufenámico/metabolismo , Cobre/metabolismo , Línea Celular Tumoral , Complejos de Coordinación/farmacología , Complejos de Coordinación/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/metabolismo , Células Madre Neoplásicas
9.
ACS Chem Biol ; 19(4): 875-885, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38483263

RESUMEN

It is well established that oxaliplatin, one of the three Pt(II) anticancer drugs approved worldwide, and phenanthriplatin, an important preclinical monofunctional Pt(II) anticancer drug, possess a different mode of action from that of cisplatin and carboplatin, namely, the induction of nucleolar stress. The exact mechanisms that lead to Pt-induced nucleolar stress are, however, still poorly understood. As such, studies aimed at better understanding the biological targets of both oxaliplatin and phenanthriplatin are urgently needed to expand our understanding of Pt-induced nucleolar stress and guide the future design of Pt chemotherapeutics. One approach that has seen great success in the past is the use of Pt-click complexes to study the biological targets of Pt drugs. Herein, we report the synthesis and characterization of the first examples of click-capable phenanthriplatin complexes. Furthermore, through monitoring the relocalization of nucleolar proteins, RNA transcription levels, and DNA damage repair biomarker γH2AX, and by investigating their in vitro cytotoxicity, we show that these complexes successfully mimic the cellular responses observed for phenanthriplatin treatment in the same experiments. The click-capable phenanthriplatin derivatives described here expand the existing library of Pt-click complexes. Significantly they are suitable for studying nucleolar stress mechanisms and further elucidating the biological targets of Pt complexes.


Asunto(s)
Antineoplásicos , Nucléolo Celular , Compuestos Organoplatinos , Fenantridinas , Antineoplásicos/farmacología , Antineoplásicos/metabolismo , Cisplatino/farmacología , Compuestos Organoplatinos/química , Compuestos Organoplatinos/farmacología , Oxaliplatino/farmacología , Fenantridinas/síntesis química , Fenantridinas/química , Fenantridinas/farmacología , Química Clic , Nucléolo Celular/efectos de los fármacos , Nucléolo Celular/metabolismo
10.
ACS Chem Biol ; 19(4): 973-980, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38514380

RESUMEN

In the field of natural product research, the rediscovery of already-known compounds is one of the significant issues hindering new drug development. Recently, an innovative approach called bioactivity-HiTES has been developed to overcome this limitation, and several new bioactive metabolites have been successfully characterized by this method. In this study, we applied bioactivity-HiTES to Corynebacterium matruchotii, the human oral bacterium, with 3120 clinical drugs as potential elicitors. As a result, we identified two cryptic metabolites, methylindole-3-acetate (MIAA) and indole-3-acetic acid (IAA), elicited by imidafenacin, a urinary antispasmodic drug approved by the Japanese Pharmaceuticals and Medical Devices Agency (PMDA). MIAA showed weak antibacterial activity against a pulmonary disease-causing Mycobacterium conceptionense with an IC50 value of 185.7 µM. Unexpectedly, we also found that C. matruchotii metabolized fludarabine phosphate, a USFDA-approved anticancer drug, to 2-fluoroadenine which displayed moderate antibacterial activity against both Bacillus subtilis and Escherichia coli, with IC50 values of 8.9 and 20.1 µM, respectively. Finally, acelarin, a prodrug of the anticancer drug gemcitabine, was found to exhibit unreported antibacterial activity against B. subtilis with an IC50 value of 33.6 µM through the bioactivity-HiTES method as well. These results indicate that bioactivity-HiTES can also be applied to discover biotransformed products in addition to finding cryptic metabolites in microbes.


Asunto(s)
Antineoplásicos , Corynebacterium , Humanos , Antibacterianos/farmacología , Antibacterianos/metabolismo , Antineoplásicos/metabolismo , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Corynebacterium/efectos de los fármacos , Corynebacterium/metabolismo
11.
Inorg Chem ; 63(11): 5235-5245, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38452249

RESUMEN

Cancer treatment has faced severe obstacles due to the smart biological system of cancer cells. Herein, we report a three-in-one agent Ir-CA via attenuation of cancer cell stemness with the down-regulated biomarker CD133 expression from the mitochondria-directed chemotherapy. Over 80% of Ir-CA could accumulate in mitochondria, result in severe mitochondrial dysfunctions, and subsequently initiate mitophagy and cell cycle arrest to kill cisplatin-resistant A549R cells. In vitro and in vivo antimetastatic experiments demonstrated that Ir-CA can effectively inhibit metastasis with down-regulated MMP-2/MMP-9. RNA seq analysis and Western blotting indicated that Ir-CA also suppresses the GSTP1 expression to decrease the intracellular Pt-GS adducts, resulting in the detoxification and resensitization to cisplatin of A549R cells. In vivo evaluation indicated that Ir-CA restrains the tumor growth and has minimal side effects and superior biocompatibility. This work not only provides the first three-in-one agent to attenuate cancer cell stemness and simultaneously realize anticancer, antimetastasis, and conquer metallodrug resistance but also demonstrates the effectiveness of the mitochondria-directed strategy in cancer treatment.


Asunto(s)
Antineoplásicos , Neoplasias , Cisplatino/farmacología , Línea Celular Tumoral , Ciclo Celular , Mitocondrias , Apoptosis , Antineoplásicos/farmacología , Antineoplásicos/metabolismo , Neoplasias/metabolismo
12.
Eur J Med Chem ; 268: 116295, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38437750

RESUMEN

This paper introduces a new ligand, 4,6-dichloro-5-(1H-imidazo [4,5-f]phenanthroline-2-yl)pyrimidin-2-amine (DPPA), and its corresponding new iridium(III) complexes: [Ir(ppy)2(DPPA)](PF6) (2a) (where ppy represents deprotonated 2-phenylpyridine), [Ir(bzq)2(DPPA)](PF6) (2b) (with bzq indicating deprotonated benzo[h]quinoline), and [Ir(piq)2(DPPA)](PF6) (2c) (piq denoting deprotonated 1-phenylisoquinoline). The cytotoxic effects of both DPPA and 2a, 2b, and 2c were evaluated against human lung carcinoma A549, melanoma B16, colorectal cancer HCT116, human hepatocellular carcinoma HepG2 cancer cell lines, as well as the non-cancerous LO2 cell line using the 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. While DPPA exhibited moderate anticancer activity toward A549, B16, HCT116 and HepG2 cells, complexes 2a, 2b, and 2c displayed remarkable efficacy against A549, B16, and HCT116 cells. The cell colonies and wound healing were investigated. Moreover, various aspects of the anticancer mechanisms were explored. The cell cycle analyses revealed that the complexes block cell proliferation of A549 cells during the S phase. Complex 2c induce an early apoptosis, while 2a and 2b cause a late apoptosis. The interaction of 2a, 2b and 2c with endoplasmic reticulum and mitochondria was identified, leading to elevated ROS and Ca2+ amounts. This resulted in a reduced mitochondrial membrane potential, mitochondrial permeability transition pore opening, and an increase of cytochrome c. Also, ferroptosis was investigated through measurements of intracellular glutathione (GSH), malondialdehyde (MDA), and recombinant glutathione peroxidase (GPX4) protein expression. The pyroptosis was explored via cell morphology, release of lactate dehydrogenase (LDH) and expression of pyroptosis-related proteins. RNA sequencing was applied to examine the signaling pathways. Western blot analyses illuminated that the complexes regulate the expression of Bcl-2 family proteins. Additionally, an in vivo antitumor study demonstrated that complex 2c exhibited a remarkable inhibitory rate of 58.58% in restraining tumor growth. In summary, the findings collectively suggest that the iridium(III) complexes induce cell death via ferroptosis, apoptosis by a ROS-mediated mitochondrial dysfunction pathway and GSDMD-mediated pyroptosis.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Ferroptosis , Humanos , Línea Celular Tumoral , Iridio/farmacología , Piroptosis , Especies Reactivas de Oxígeno/metabolismo , Complejos de Coordinación/farmacología , Complejos de Coordinación/metabolismo , Apoptosis , Proliferación Celular , Antineoplásicos/farmacología , Antineoplásicos/metabolismo , Mitocondrias
13.
Dalton Trans ; 53(13): 5993-6005, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38469684

RESUMEN

Recently, achieving selective cancer therapy with trifling side effects has been a great challenge in the eradication of cancer. Thus, to amplify the cytoselective approach of complexes, herein, we developed a series of Re(I)[2-aryl-1H-imidazo[4,5-f][1,10]phenanthroline] tricarbonyl chloride complexes and screened their potency against HeLa and MCF-7 cell lines together with the evaluation of their toxicity towards a normal kidney cell line (HEK-293). On meticulous investigation, complex [ReI(CO)3Cl(K2-N,N-(2c))] (3c) was found to be the most potent anticancer entity among other complexes. Complex 3c also showed competency to induce apoptosis in MCF-7 cells through G2/M phase cell-cycle arrest in association with the generation of ample reactive oxygen species (ROS), eventually leading to DNA intercalation and internucleosomal cleavage. The order of the cytotoxicity of these complexes depended on their lipophilic character and the electron-withdrawing halogen substitution at the para-position of the phenyl ring in the imidazophenanthroline ligand.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Neoplasias , Humanos , Fenantrolinas/farmacología , Cloruros , Células HEK293 , Antineoplásicos/farmacología , Antineoplásicos/metabolismo , ADN/metabolismo , Daño del ADN , Complejos de Coordinación/farmacología , Complejos de Coordinación/metabolismo , Apoptosis , Línea Celular Tumoral , Neoplasias/tratamiento farmacológico
14.
Clin Transl Med ; 14(2): e1567, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38362620

RESUMEN

Tumour cell dormancy is critical for metastasis and resistance to chemoradiotherapy. Polyploid giant cancer cells (PGCCs) with giant or multiple nuclei and high DNA content have the properties of cancer stem cell and single PGCCs can individually generate tumours in immunodeficient mice. PGCCs represent a dormant form of cancer cells that survive harsh tumour conditions and contribute to tumour recurrence. Hypoxic mimics, chemotherapeutics, radiation and cytotoxic traditional Chinese medicines can induce PGCCs formation through endoreduplication and/or cell fusion. After incubation, dormant PGCCs can recover from the treatment and produce daughter cells with strong proliferative, migratory and invasive abilities via asymmetric cell division. Additionally, PGCCs can resist hypoxia or chemical stress and have a distinct protein signature that involves chromatin remodelling and cell cycle regulation. Dormant PGCCs form the cellular basis for therapeutic resistance, metastatic cascade and disease recurrence. This review summarises regulatory mechanisms governing dormant cancer cells entry and exit of dormancy, which may be used by PGCCs, and potential therapeutic strategies for targeting PGCCs.


Asunto(s)
Antineoplásicos , Neoplasias , Animales , Ratones , Línea Celular Tumoral , Células Gigantes/metabolismo , Células Gigantes/patología , Antineoplásicos/metabolismo , Poliploidía , Neoplasias/patología
15.
Chem Biodivers ; 21(4): e202400235, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38412304

RESUMEN

Over the last decades, soft corals have been proven a rich source of biologically active compounds, featuring a wide range of chemical structures. Herein, we investigated the chemistry of an alcyonarian of the genus Lemnalia (Neptheidae), specimens of which were collected from the coral reefs near Al Lith, on the south-west coast of Saudi Arabia. A series of chromatographic separations led to the isolation of 31 sesquiterpenes, featuring mainly the nardosinane and neolemnane carbon skeletons, among which three (13, 14 and 28) are new natural products. The metabolites isolated in sufficient amounts were evaluated in vitro in human tumor and non-cancerous cell lines for a number of biological activities, including their cytotoxic, anti-inflammatory, anti-angiogenic, and neuroprotective activities, as well as for their effect on androgen receptor (AR)-regulated transcription. Among the tested metabolites, compound 12 showed comparable neuroprotective activity to the positive control N-acetylcysteine, albeit at a 10-fold lower concentration.


Asunto(s)
Antozoos , Antineoplásicos , Sesquiterpenos , Animales , Humanos , Arabia Saudita , Océano Índico , Sesquiterpenos/química , Antozoos/química , Antineoplásicos/farmacología , Antineoplásicos/metabolismo
16.
Chem Biodivers ; 21(4): e202301865, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38415909

RESUMEN

In this study, phytochemical and biological activity studies supported by docking were carried out on a species of the genus Glaucium, a repository of isoquinoline alkaloids. The GC-MS (Gas Chromatography-Mass Spectrometry) method is used to characterize the isoquinoline alkaloids of Glaucium flavum Crantz. (Papaveraceae). G. flavum was collected from seven different regions of Türkiye (Antalya, Urla-Izmir, Mordogan-Izmir, Mugla, Assos-Canakkale, Karabiga-Canakkale, Giresun) and totally 17 compounds were detected by GC-MS. Glaucine was found to be the major constituent in the sample collected from Mugla, whereas isocorydine was recorded to be the principal alkaloid in other samples. Further fractionation studies on G. flavum collected from Antalya province in Southwestern Türkiye, yielded five major alkaloids (isocorydine 1, dihydrosanguinarine 2, glaucine 3, dehydroglaucine 4, protopine 5) which were characterized by spectroscopic methods. Anticholinesterase activities of the extracts and isolated alkaloids were also tested by in vitro Ellman method. The isolated compounds were also analyzed by a molecular docking technique to determine the binding orientations in the gorge of the active site of acetylcholinesterase (AChE) and a homology model of butyrylcholinesterase (BuChE). This is the first comparative investigation of the phytochemical composition and biodiversity of Glaucium flavum species growing in Türkiye.


Asunto(s)
Alcaloides , Antineoplásicos , Papaveraceae , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/metabolismo , Butirilcolinesterasa/metabolismo , Simulación del Acoplamiento Molecular , Acetilcolinesterasa/metabolismo , Alcaloides/química , Isoquinolinas/farmacología , Isoquinolinas/metabolismo , Antineoplásicos/metabolismo , Papaveraceae/química , Papaveraceae/metabolismo , Fitoquímicos/metabolismo , Extractos Vegetales/química
17.
ACS Nano ; 18(9): 6748-6765, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38393984

RESUMEN

Extracellular vesicles (EVs) are natural lipid nanoparticles secreted by most types of cells. In malignant cancer, EVs derived from cancer cells contribute to its progression and metastasis by facilitating tumor growth and invasion, interfering with anticancer immunity, and establishing premetastasis niches in distant organs. In recent years, multiple strategies targeting cancer-derived EVs have been proposed to improve cancer patient outcomes, including inhibiting EV generation, disrupting EVs during trafficking, and blocking EV uptake by recipient cells. Developments in EV engineering also show promising results in harnessing cancer-derived EVs as anticancer agents. Here, we summarize the current understanding of the origin and functions of cancer-derived EVs and review the recent progress in anticancer therapy targeting these EVs.


Asunto(s)
Antineoplásicos , Vesículas Extracelulares , Neoplasias , Humanos , Neoplasias/patología , Vesículas Extracelulares/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/metabolismo , Transporte Biológico
18.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38338967

RESUMEN

Recently, the diarylpentanoid BP-M345 (5) has been identified as a potent in vitro growth inhibitor of cancer cells, with a GI50 value between 0.17 and 0.45 µM, showing low toxicity in non-tumor cells. BP-M345 (5) promotes mitotic arrest by interfering with mitotic spindle assembly, leading to apoptotic cell death. Following on from our previous work, we designed and synthesized a library of BP-M345 (5) analogs and evaluated the cell growth inhibitory activity of three human cancer cell lines within this library in order to perform structure-activity relationship (SAR) studies and to obtain compounds with improved antimitotic effects. Four compounds (7, 9, 13, and 16) were active, and the growth inhibition effects of compounds 7, 13, and 16 were associated with a pronounced arrest in mitosis. These compounds exhibited a similar or even higher mitotic index than BP-M345 (5), with compound 13 displaying the highest antimitotic activity, associated with the interference with mitotic spindle dynamics, inducing spindle collapse and, consequently, prolonged mitotic arrest, culminating in massive cancer cell death by apoptosis.


Asunto(s)
Antimitóticos , Antineoplásicos , Neoplasias , Humanos , Antimitóticos/farmacología , Mitosis , Proliferación Celular , Ciclo Celular , Huso Acromático/metabolismo , Neoplasias/metabolismo , Apoptosis , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/metabolismo
19.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38396940

RESUMEN

Organometallic drug development is still in its early stage, but recent studies show that organometallics having iron as the central atom have the possibility of becoming good drug candidates because iron is an important micro-nutrient, and it is compatible with many biological systems, including the human body. Being an eco-friendly Lewis acid, iron can accept the lone pair of electrons from imino(sp2)-nitrogen, and the resultant iron-imine complexes with iron as a central atom have the possibility of interacting with several proteins and enzymes in humans. Iron-imine complexes have demonstrated significant potential with anticancer, bactericidal, fungicidal, and other medicinal activities in recent years. This article systematically discusses major synthetic methods and pharmacological potentials of iron-imine complexes having in vitro activity to significant clinical performance from 2016 to date. In a nutshell, this manuscript offers a simplistic view of iron complexes in medicinal inorganic chemistry: for instance, iron is presented as an "eco-friendly non-toxic" metal (as opposed to platinum) that will lead to non-toxic pharmaceuticals. The abundant literature on iron chelators shows that many iron complexes, particularly if redox-active in cells, can be quite cytotoxic, which can be beneficial for future targeted therapies. While we made every effort to include all the related papers, any omission is purely unintentional.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Humanos , Iminas , Hierro , Quelantes del Hierro , Oxidación-Reducción , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/metabolismo , Complejos de Coordinación/farmacología , Ligandos
20.
Mar Drugs ; 22(2)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38393029

RESUMEN

Five new diisoprenyl cyclohexene-type meroterpenoids, aspergienynes J-N (1-5), along with three known analogues (6-8), were obtained from the mangrove endophytic fungal strain Aspergillus sp. GXNU-Y85. The chemical structures, including their absolute configurations, were established via spectroscopic data and comparison of experimental and calculated ECD spectra. Cytotoxicity assay results indicated that compound 8 had strong cytotoxicity against HeLa cancer cells, and its IC50 value was 11.8 µM. In addition, flow cytometry analysis revealed that the cytotoxicity of 8 was due to the induction of G1 cell cycle arrest and apoptosis in HeLa cells.


Asunto(s)
Antineoplásicos , Aspergillus , Humanos , Estructura Molecular , Células HeLa , Aspergillus/química , Análisis Espectral , Antineoplásicos/farmacología , Antineoplásicos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA