Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.152
Filtrar
1.
Chem Biol Interact ; 402: 111184, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39103028

RESUMEN

Selenium supplements are beneficial to human health, however, concerns regarding the toxicity of inorganic selenium have stimulated research on safer organic compounds. The main objective of this study was to develop a novel glucosamine-selenium compound (Se-GlcN), clarify its structure, and subsequently investigate its oral toxicity and in vitro anti-hepatitis B virus (HBV) activity. Electron microscopy, infrared, ultraviolet spectroscopy, nuclear magnetic resonance and thermogravimetric analyses revealed a unique binding mode of Se-GlcN, with the introduction of the Se-O bond at the C6 position, resulting in the formation of two carboxyl groups. In acute toxicity studies, the median lethal dose (LD50) of Se-GlcN in ICR mice was 92.31 mg/kg body weight (BW), with a 95 % confidence interval of 81.88-104.07 mg/kg BW. A 30-day subchronic toxicity study showed that 46.16 mg/kg BW Se-GlcN caused livers and kidneys damage in mice, whereas doses of 9.23 mg/kg BW and lower were safe for the livers and kidneys. In vitro studies, Se-GlcN at 1.25 µg/mL exhibited good anti-HBV activity, significantly reducing HBsAg, HBeAg, 3.5 kb HBV RNA and total HBV RNA by 45 %, 54 %, 84 %, 87 %, respectively. In conclusion, the Se-GlcN synthesized in this study provides potential possibilities and theoretical references for its use as an organic selenium supplement.


Asunto(s)
Antivirales , Glucosamina , Virus de la Hepatitis B , Ratones Endogámicos ICR , Animales , Virus de la Hepatitis B/efectos de los fármacos , Glucosamina/química , Glucosamina/farmacología , Ratones , Antivirales/farmacología , Antivirales/síntesis química , Antivirales/química , Antivirales/toxicidad , Administración Oral , Masculino , Selenio/química , Selenio/farmacología , Hígado/efectos de los fármacos , Hígado/patología , Humanos , Femenino , Riñón/efectos de los fármacos , Riñón/patología , Células Hep G2 , Antígenos de Superficie de la Hepatitis B/metabolismo
2.
Toxicol Appl Pharmacol ; 490: 117030, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38981531

RESUMEN

Antiretroviral therapy have significantly improved the treatment of viral infections and reduced the associated mortality and morbidity rates. However, highly effective antiretroviral therapy (HAART) may lead to an increased risk of cardiovascular diseases, which could be related to endothelial toxicity. Here, seven antiviral drugs (remdesivir, PF-00835231, ritonavir, lopinavir, efavirenz, zidovudine and abacavir) were characterized against aortic (HAEC) and pulmonary (hLMVEC) endothelial cells, using high-content microscopy. The colourimetric study (MTS test) revealed similar toxicity profiles of all antiviral drugs tested in the concentration range of 1 nM-50 µM in aortic and pulmonary endothelial cells. Conversely, the drugs' effects on morphological parameters were more pronounced in HAECs as compared with hLMVECs. Based on the antiviral drugs' effects on the cytoplasmic and nuclei architecture (analyzed by multiple pre-defined parameters including SER texture and STAR morphology), the studied compounds were classified into five distinct morphological subgroups, each linked to a specific cellular response profile. In relation to morphological subgroup classification, antiviral drugs induced a loss of mitochondrial membrane potential, elevated ROS, changed lipid droplets/lysosomal content, decreased von Willebrand factor expression and micronuclei formation or dysregulated cellular autophagy. In conclusion, based on specific changes in endothelial cytoplasm, nuclei and subcellular morphology, the distinct endothelial response was identified for remdesivir, ritonavir, lopinavir, efavirenz, zidovudine and abacavir treatments. The effects detected in aortic endothelial cells were not detected in pulmonary endothelial cells. Taken together, high-content microscopy has proven to be a robust and informative method for endothelial drug profiling that may prove useful in predicting the organ-specific endothelial toxicity of various drugs.


Asunto(s)
Antivirales , Aorta , Células Endoteliales , Pulmón , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Antivirales/toxicidad , Antivirales/farmacología , Aorta/efectos de los fármacos , Aorta/patología , Pulmón/efectos de los fármacos , Pulmón/patología , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Microscopía/métodos , Células Cultivadas , Especies Reactivas de Oxígeno/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos
3.
Cardiovasc Toxicol ; 24(7): 656-666, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38851664

RESUMEN

Antiviral therapies for treatment of COVID-19 may be associated with significant proarrhythmic potential. In the present study, the potential cardiotoxic side effects of these therapies were evaluated using a Langendorff model of the isolated rabbit heart. 51 hearts of female rabbits were retrogradely perfused, employing a Langendorff-setup. Eight catheters were placed endo- and epicardially to perform an electrophysiology study, thus obtaining cycle length-dependent action potential duration at 90% of repolarization (APD90), QT intervals and dispersion of repolarization. After generating baseline data, the hearts were assigned to four groups: In group 1 (HXC), hearts were treated with 1 µM hydroxychloroquine. Thereafter, 3 µM hydroxychloroquine were infused additionally. Group 2 (HXC + AZI) was perfused with 3 µM hydroxychloroquine followed by 150 µM azithromycin. In group 3 (LOP) the hearts were perfused with 3 µM lopinavir followed by 5 µM and 10 µM lopinavir. Group 4 (REM) was perfused with 1 µM remdesivir followed by 5 µM and 10 µM remdesivir. Hydroxychloroquine- and azithromycin-based therapies have a significant proarrhythmic potential mediated by action potential prolongation and an increase in dispersion. Lopinavir and remdesivir showed overall significantly less pronounced changes in electrophysiology. In accordance with the reported bradycardic events under remdesivir, it significantly reduced the rate of the ventricular escape rhythm.


Asunto(s)
Potenciales de Acción , Antivirales , Preparación de Corazón Aislado , Animales , Conejos , Femenino , Antivirales/farmacología , Antivirales/toxicidad , Potenciales de Acción/efectos de los fármacos , Tratamiento Farmacológico de COVID-19 , Hidroxicloroquina/toxicidad , Hidroxicloroquina/farmacología , Arritmias Cardíacas/inducido químicamente , Arritmias Cardíacas/fisiopatología , Cardiotoxicidad , Alanina/análogos & derivados , Alanina/farmacología , Frecuencia Cardíaca/efectos de los fármacos , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/toxicidad , Adenosina Monofosfato/farmacología , Corazón/efectos de los fármacos
4.
Ecotoxicol Environ Saf ; 278: 116437, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38718728

RESUMEN

This study explores the eco-geno-toxic impact of Acyclovir (ACV), a widely used antiviral drug, on various freshwater organisms, given its increasing detection in surface waters. The research focused on non-target organisms, including the green alga Raphidocelis subcapitata, the rotifer Brachionus calyciflorus, the cladoceran crustacean Ceriodaphnia dubia, and the benthic ostracod Heterocypris incongruens, exposed to ACV to assess both acute and chronic toxicity. The results indicate that while acute toxicity occurs at environmentally not-relevant concentrations, a significant chronic toxicity for C. dubia (EC50 = 0.03 µg/L, NOEC = 0.02·10-2 µg/L), highlighted substantial environmental concern. Furthermore, DNA strand breaks and reactive oxygen species detected in C. dubia indicate significant increase at concentrations exceeding 200 µg/L. Regarding environmental risk, the authors identified chronic exposures to acyclovir causing inhibitory effects on reproduction in B. calyciflorus at hundreds of µg/L and hundredths of µg/L for C. dubia as environmentally relevant environmental concentrations. The study concludes by quantifying the toxic and genotoxic risks of ACV showing a chronic risk quotient higher than the critical value of 1and a genotoxic risk quotient reaching this threshold, highlighting the urgent need for a broader risk assessment of ACV for its significant implications for aquatic ecosystems.


Asunto(s)
Aciclovir , Antivirales , Agua Dulce , Rotíferos , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/toxicidad , Antivirales/toxicidad , Aciclovir/toxicidad , Rotíferos/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Cladóceros/efectos de los fármacos , Organismos Acuáticos/efectos de los fármacos , Pruebas de Toxicidad Aguda , Daño del ADN , Reproducción/efectos de los fármacos , Pruebas de Toxicidad Crónica , Mutágenos/toxicidad , Chlorophyta/efectos de los fármacos
5.
J Hazard Mater ; 473: 134678, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38781856

RESUMEN

Increasing antivirals in surface water caused by their excessive consumption pose serious threats to aquatic organisms. Our recent research found that the input of antiviral drug arbidol to algal bloom water can induce acute toxicity to the growth and metabolism of Microcystis aeruginosa, resulting in growth inhibition, as well as decrease in chlorophyll and ATP contents. However, the toxic mechanisms involved remained obscure, which were further investigated through transcriptomic analysis in this study. The results indicated that 885-1248 genes in algae were differentially expressed after exposure to 0.01-10.0 mg/L of arbidol, with the majority being down-regulated. Analysis of commonly down-regulated genes found that the cellular response to oxidative stress and damaged DNA bonding were affected, implying that the stress defense system and DNA repair function of algae might be damaged. The down-regulation of genes in porphyrin metabolism, photosynthesis, carbon fixation, glycolysis, tricarboxylic acid cycle, and oxidative phosphorylation might inhibit chlorophyll synthesis, photosynthesis, and ATP supply, thereby hindering the growth and metabolism of algae. Moreover, the down-regulation of genes related to nucleotide metabolism and DNA replication might influence the reproduction of algae. These findings provided effective strategies to elucidate toxic mechanisms of contaminants on algae in algal bloom water.


Asunto(s)
Antivirales , Indoles , Microalgas , Microcystis , Transcriptoma , Contaminantes Químicos del Agua , Indoles/toxicidad , Antivirales/toxicidad , Antivirales/farmacología , Transcriptoma/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Microalgas/efectos de los fármacos , Microalgas/genética , Microalgas/metabolismo , Microalgas/crecimiento & desarrollo , Microcystis/efectos de los fármacos , Microcystis/genética , Microcystis/metabolismo , Microcystis/crecimiento & desarrollo , Eutrofización/efectos de los fármacos , Clorofila/metabolismo
6.
J Hazard Mater ; 472: 134462, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38718506

RESUMEN

The antiviral drugs favipiravir and oseltamivir are widely used to treat viral infections, including coronavirus 2019 (COVID-19), and their levels are expected to increase in the aquatic environment. In this study, the potential toxic and teratogenic effects of these drugs were evaluated using the frog embryo teratogenesis assay Xenopus (FETAX). In addition, glutathione S-transferase (GST), glutathione reductase (GR), catalase, carboxylesterase (CaE), and acetylcholinesterase (AChE) enzyme activities and malondialdehyde levels were measured as biochemical markers in embryos and tadpoles for comparative assessment of the sublethal effects of the test compounds. Prior to embryo exposure, drug concentrations in the exposure medium were measured with high-performance liquid chromatography. The 96-h median lethal concentration (LC50) was 137.9 and 32.3 mg/L for favipiravir and oseltamivir, respectively. The teratogenic index for favipiravir was 4.67. Both favipiravir and oseltamivir inhibited GR, CaE, and AChE activities in embryos, while favipiravir increased the GST and CaE activities in tadpoles. In conclusion, favipiravir, for which teratogenicity data are available in mammalian test organisms and human teratogenicity is controversial, inhibited Xenopus laevis embryo development and was teratogenic. In addition, sublethal concentrations of both drugs altered the biochemical responses in embryos and tadpoles, with differences between the developmental stages.


Asunto(s)
Amidas , Antivirales , Embrión no Mamífero , Desarrollo Embrionario , Oseltamivir , Xenopus laevis , Animales , Antivirales/toxicidad , Oseltamivir/toxicidad , Desarrollo Embrionario/efectos de los fármacos , Amidas/toxicidad , Embrión no Mamífero/efectos de los fármacos , Pirazinas/toxicidad , COVID-19 , Tratamiento Farmacológico de COVID-19 , SARS-CoV-2/efectos de los fármacos , Larva/efectos de los fármacos , Teratógenos/toxicidad , Carboxilesterasa/metabolismo
7.
Chemosphere ; 353: 141580, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38430943

RESUMEN

Information on biotransformation of antivirals in the side-stream partial nitritation (PN) process was limited. In this study, a side-stream PN sludge was adopted to investigate favipiravir biotransformation under controlled ammonium and pH levels. Results showed that free nitrous acid (FNA) was an important factor that inhibited ammonia oxidation and the cometabolic biodegradation of favipiravir induced by ammonia oxidizing bacteria (AOB). The removal efficiency of favipiravir reached 12.6% and 35.0% within 6 days at the average FNA concentrations of 0.07 and 0.02 mg-N L-1, respectively. AOB-induced cometabolism was the sole contributing mechanism to favipiravir removal, excluding AOB-induced metabolism and heterotrophic bacteria-induced biodegradation. The growth of Escherichia coli was inhibited by favipiravir, while the AOB-induced cometabolism facilitated the alleviation of the antimicrobial activities with the formed transformation products. The biotransformation pathways were proposed based on the roughly identified structures of transformation products, which mainly involved hydroxylation, nitration, dehydrogenation and covalent bond breaking under enzymatic conditions. The findings would provide insights on enriching AOB abundance and enhancing AOB-induced cometabolism under FNA stress when targeting higher removal of antivirals during the side-stream wastewater treatment processes.


Asunto(s)
Amidas , Compuestos de Amonio , Pirazinas , Aguas del Alcantarillado , Amoníaco/toxicidad , Amoníaco/metabolismo , Ríos , Oxidación-Reducción , Ácido Nitroso , Biotransformación , Antivirales/toxicidad , Reactores Biológicos , Nitritos
8.
J Hazard Mater ; 466: 133609, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38310846

RESUMEN

The environmental risks resulting from the increasing antivirals in water are largely unknown, especially in eutrophic lakes, where the complex interactions between algae and drugs would alter hazards. Herein, the environmental risks of the antiviral drug arbidol towards the growth and metabolism of Microcystis aeruginosa were comprehensively investigated, as well as its biotransformation mechanism by algae. The results indicated that arbidol was toxic to Microcystis aeruginosa within 48 h, which decreased the cell density, chlorophyll-a, and ATP content. The activation of oxidative stress increased the levels of reactive oxygen species, which caused lipid peroxidation and membrane damage. Additionally, the synthesis and release of microcystins were promoted by arbidol. Fortunately, arbidol can be effectively removed by Microcystis aeruginosa mainly through biodegradation (50.5% at 48 h for 1.0 mg/L arbidol), whereas the roles of bioadsorption and bioaccumulation were limited. The biodegradation of arbidol was dominated by algal intracellular P450 enzymes via loss of thiophenol and oxidation, and a higher arbidol concentration facilitated the degradation rate. Interestingly, the toxicity of arbidol was reduced after algal biodegradation, and most of the degradation products exhibited lower toxicity than arbidol. This study revealed the environmental risks and transformation behavior of arbidol in algal bloom waters.


Asunto(s)
Indoles , Lagos , Microcystis , Sulfuros , Clorofila A , Antivirales/toxicidad , Microcistinas/toxicidad , Microcistinas/metabolismo
9.
J Hazard Mater ; 467: 133478, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38359766

RESUMEN

Residual antiviral drugs in wastewater may increase the risk of generating transformation products (TPs) during wastewater treatment. Therefore, chlorination behavior and toxicity evolution are essential to understand the secondary ecological risk associated with their TPs. Herein, chlorination kinetics, transformation pathways, and secondary risks of ribavirin (RBV), one of the most commonly used broad-spectrum antivirals, were investigated. The pH-dependent second-order rate constants k increased from 0.18 M-1·s-1 (pH 5.8) to 1.53 M-1·s-1 (pH 8.0) due to neutral RBV and ClO- as dominant species. 12 TPs were identified using high-resolution mass spectrometry in a nontargeted approach, of which 6 TPs were reported for the first time, and their chlorination pathways were elucidated. The luminescence inhibition rate of Vibrio fischeri exposed to chlorinated RBV solution was positively correlated with initial free active chlorine, probably due to the accumulation of toxic TPs. Quantitative structure-activity relationship prediction identified 7 TPs with elevated toxicity, concentrating on developmental toxicity and bioconcentration factors, which explained the increased toxicity of chlorinated RBV. Overall, this study highlights the urgent need to minimize the discharge of toxic chlorinated TPs into aquatic environments and contributes to environmental risk control in future pandemics and regions with high consumption of antivirals.


Asunto(s)
Halogenación , Ribavirina , Ribavirina/toxicidad , Halógenos , Aliivibrio fischeri , Antivirales/toxicidad
10.
Cutan Ocul Toxicol ; 43(2): 105-112, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38174703

RESUMEN

Purpose: Favipiravir (FAV) used against COVID-19 is an antiviral drug that causes adverse reactions, such as hyperuricaemia, liver damage, and hematopoetic toxicity. The aim of the study was to investigate the systemic and ocular side-effects of FAV in rats, for the first time.Materials and methods: A total of 18 albino male Wistar rats were used in the study. The rats were divided into 3 groups as the healthy group (HG), the group given 50 mg/kg/day favipiravir (FAV50), and the group given 200 mg/kg/d favipiravir (FAV200). These doses were given to the experimental groups for one week. At the end of the experiment histopathological examinations were performed on the conjunctiva and sclera of the eye. In addition, malondialdehyde (MDA), total glutathione (tGSH), superoxide dismutase (SOD), interleukin-1ß (IL-1ß), and tumor necrosis factor alpha (TNF-α) levels were measured in blood samples taken from rats. Results: Compared to HG, the MDA (1.37 ± 0.61 vs. 4.82 ± 1.40 µmol/mL), IL-1ß (2.52 ± 1.14 vs. 6.67 ± 1.99 pg/mL), and TNF-α levels (3.28 ± 1.42 vs. 8.53 ± 3.06 pg/mL) of the FAV200 group were higher. The levels of tGSH (7.58 ± 1.98 vs. 2.50 ± 0.98 nmol/mL) and SOD (13.63 ± 3.43 vs. 3.81 ± 1.43 U/mL) the FAV200 group were lower than the HG (p < 0.05, for all). The degree of damage to the cornea and sclera of the FAV200 group was quite high according to HG (p < 0.001). Conclusions: FAV can cause damage to rat conjunctiva and sclera by increasing oxidant stress and inflammation at high dose.


Asunto(s)
Amidas , Antivirales , Pirazinas , Ratas Wistar , Animales , Masculino , Pirazinas/toxicidad , Pirazinas/administración & dosificación , Amidas/toxicidad , Ratas , Antivirales/toxicidad , Glutatión/metabolismo , Malondialdehído/metabolismo , Superóxido Dismutasa/metabolismo , Ojo/efectos de los fármacos , Ojo/patología , Estrés Oxidativo/efectos de los fármacos , Factor de Necrosis Tumoral alfa/sangre , Interleucina-1beta/sangre , Conjuntiva/patología , Conjuntiva/efectos de los fármacos
11.
Virus Res ; 341: 199322, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38228190

RESUMEN

The emergence of highly infectious pathogens with their potential for triggering global pandemics necessitate the development of effective treatment strategies, including broad-spectrum antiviral therapies to safeguard human health. This study investigates the antiviral activity of emetine, dehydroemetine (DHE), and congeneric compounds against SARS-CoV-2 and HCoV-OC43, and evaluates their impact on the host cell. Concurrently, we assess the potential cardiotoxicity of these ipecac alkaloids. Significantly, our data reveal that emetine and the (-)-R,S isomer of 2,3-dehydroemetine (designated in this paper as DHE4) reduce viral growth at nanomolar concentrations (i.e., IC50 ∼ 50-100 nM), paralleling those required for inhibition of protein synthesis, while calcium channel blocking activity occurs at elevated concentrations (i.e., IC50 ∼ 40-60 µM). Our findings suggest that the antiviral mechanisms primarily involve disruption of host cell protein synthesis and is demonstrably stereoisomer specific. The prospect of a therapeutic window in which emetine or DHE4 inhibit viral propagation without cardiotoxicity renders these alkaloids viable candidates in strategies worthy of clinical investigation.


Asunto(s)
Alcaloides , Emetina , Emetina/análogos & derivados , Humanos , Emetina/farmacología , Ipeca/farmacología , Cardiotoxicidad , Antivirales/toxicidad
12.
Food Chem Toxicol ; 182: 114170, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37949206

RESUMEN

Few studies on royal jelly's (RJ) antiviral activities and toxicity have been conducted. Here, we investigated the antioxidant properties of RJ that was fractionated into soluble fraction (SF), non-soluble fraction (NSF), water-soluble protein fraction (crude protein fraction, CPF), PF30, PF40, PF50, and PF60. The PFs were identified by SDS-PAGE, and phenolic constituents of SF were detected by HPLC. The qualitative anti-HCV, immunomodulatory, and predicted impact of the studied fractions on ERK2/MAPK14 (activated by HCV) were investigated. The influences of RJ fractions on HIV CD4, reverse-transcriptase, and integrase were examined. The acute toxicity of RJ, SF, NSF, and CPF-PF50 (all CPF except PF50) was tested. Results showed that RJ had potent antioxidant efficiency, and its SF contains functional phenolic compounds. PF30, PF40, and PF50 only showed anti-HCV potency, and PF50 had an immunomodulatory effect against HCV and predicted inhibitory influence on ERK2/MAPK14. RJ-PFs, particularly PF60, showed the most effective anti-HIV ingredients. A single ip injection of RJ fractions at different concentrations revealed that SF was the safest one. Whereas NSF was the most toxic at 700-5000 mg/kg b.w., its toxicity was reversed spontaneously after seven days. Thus, this study provides valuable information about the antiviral activities and toxicity of RJ constituents.


Asunto(s)
Hepatitis C , Proteína Quinasa 14 Activada por Mitógenos , Ratas , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Ácidos Grasos/farmacología , Antivirales/toxicidad
13.
Nucleic Acids Res ; 51(22): 12031-12042, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37953355

RESUMEN

Molnupiravir (EIDD-2801) is an antiviral that received approval for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection. Treatment of bacteria or cell lines with the active form of molnupiravir, ß-d-N4-hydroxycytidine (NHC, or EIDD-1931), induces mutations in DNA. Yet these results contrast in vivo genotoxicity studies conducted during registration of the drug. Using a CRISPR screen, we found that inactivating the pyrimidine salvage pathway component uridine-cytidine kinase 2 (Uck2) renders cells more tolerant of NHC. Short-term exposure to NHC increased the mutation rate in a mouse myeloid cell line, with most mutations being T:A to C:G transitions. Inactivating Uck2 impaired the mutagenic activity of NHC, whereas over-expression of Uck2 enhanced mutagenesis. UCK2 is upregulated in many cancers and cell lines. Our results suggest differences in ribonucleoside metabolism contribute to the variable mutagenicity of NHC observed in cancer cell lines and primary tissues.


Asunto(s)
Citidina , Mutágenos , Uridina Quinasa , Animales , Ratones , Antivirales/toxicidad , Citidina/análogos & derivados , Citidina/farmacología , Mutagénesis , Mutágenos/farmacología , ARN Viral , Uridina Quinasa/genética , Uridina Quinasa/metabolismo
14.
Reprod Toxicol ; 121: 108475, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37748715

RESUMEN

Molnupiravir is a nucleoside analog antiviral that is authorized for use in the treatment of COVID-19. For its therapeutic action, molnupiravir is converted after ingestion to the active metabolite N4-hydroxycytidine, which is incorporated into the viral genome to cause lethal mutagenesis. Molnupiravir is not recommended for use during pregnancy, because preclinical animal studies suggest that it is hazardous to developing embryos. However, the mechanisms underlying the embryotoxicity of molnupiravir are currently unknown. To gain mechanistic insights into its embryotoxic action, the effects of molnupiravir and N4-hydroxycytidine were examined on the in vitro development of mouse preimplantation embryos. Molnupiravir did not prevent blastocyst formation even at concentrations that were much higher than the therapeutic plasma levels. By contrast, N4-hyroxycytidine exhibited potent toxicity, as it interfered with blastocyst formation and caused extensive cell death at concentrations below the therapeutic plasma levels. The adverse effects of N4-hydroxycytidine were dependent on the timing of exposure, such that treatment after the 8-cell stage, but not before it, caused embryotoxicity. Transcriptomic analysis of N4-hydroxycytidine-exposed embryos, together with the examination of eIF-2a protein phosphorylation level, suggested that N4-hydroxycytidine induced the integrated stress response. The adverse effects of N4-hydroxycytidine were significantly alleviated by the co-treatment with S-(4-nitrobenzyl)-6-thioinosine, suggesting that the embryotoxic potential of N4-hydroxycytidine requires the activity of nucleoside transporters. These findings show that the active metabolite of molnupiravir impairs preimplantation development at clinically relevant concentrations, providing mechanistic foundation for further studies on the embryotoxic potential of molnupiravir and other related nucleoside antivirals.


Asunto(s)
COVID-19 , Nucleósidos , Embarazo , Femenino , Ratones , Animales , Nucleósidos/metabolismo , Nucleósidos/farmacología , Blastocisto , Hidroxilaminas/metabolismo , Hidroxilaminas/farmacología , Antivirales/toxicidad
15.
Biomed Pharmacother ; 165: 115056, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37406507

RESUMEN

Herpes simplex viruses type-1 (HSV-1) and type-2 (HSV-2) are ubiquitous human pathogens causing serious pathologies in the ocular, orofacial and anogenital regions. While current treatments such as nucleoside analogs are effective in most cases, the emergence of drug resistance necessitates the development of newer antivirals with different mechanisms of action. In this regard, BX795, a small molecule inhibitor has shown significant benefit in the treatment of herpesvirus infections previously when dosed topically. However, the efficacy of BX795's systemic dosage remains to be tested. In this study, we evaluated acute and short-term toxicity of orally administered BX795 at a concentration of 400 and 100 mg/kg respectively in mice. This was followed by an evaluation of pharmacokinetics and tissue distribution of BX795 on intravenous and oral administration. Based on these studies, we performed an in vivo antiviral study using murine models of ocular HSV-1 and genital HSV-2 infection. Our results indicate that orally administered BX795 is very well tolerated, had oral bioavailability of 56%, and reached ocular and genital tissues within the first 15 min of dosing. Our studies indicate that BX795 administered orally can significantly reduce herpesvirus replication in the ocular and genital tissue.


Asunto(s)
Herpes Genital , Infecciones por Herpesviridae , Herpesvirus Humano 1 , Humanos , Animales , Ratones , Antivirales/toxicidad , Antivirales/uso terapéutico , Herpes Genital/tratamiento farmacológico
16.
Drug Chem Toxicol ; 46(3): 546-556, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35450509

RESUMEN

Favipiravir is a selective RNA polymerase inhibitor and a broad-spectrum antiviral drug, an important agent used in viral infections, including Ebola, Lassa, and COVID-19. This study aims to evaluate the potential toxicological effects of favipiravir administration on rats' liver and kidney tissues. Favipiravir was applied for five and ten days in the present study. During this period, it was aimed to determine possible toxic effects on the liver and kidney. For this purpose, the impact of favipiravir on liver and kidney tissues were examined using histopathologic and biochemical methods. The present study showed that favipiravir administration led to an elevation in the liver and kidney serum enzymes and oxidative and histopathologic damages. Favipiravir administration caused apoptotic cell death (Caspase-3 and Bcl-2), inflammation (NF-κB and IL-6), and a decrease in renal reabsorption (AQP2) levels. In the evaluation of the findings obtained in this study, it was determined that the favipiravir or metabolites caused liver and kidney damages.


Asunto(s)
Amidas , Antivirales , Riñón , Hígado , Pirazinas , Animales , Ratas , Antivirales/farmacología , Antivirales/toxicidad , Acuaporina 2 , Riñón/efectos de los fármacos , Riñón/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Amidas/farmacología , Amidas/toxicidad , Pirazinas/farmacología , Pirazinas/toxicidad
17.
J Biomol Struct Dyn ; 41(9): 4106-4123, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-35467486

RESUMEN

Coronavirus disease 2019 (COVID-19) caused appalling conditions over the globe, which is currently faced by the entire human population. One of the primary reasons behind the uncontrollable situation is the lack of specific therapeutics. In such conditions, drug repurposing of available drugs (viz. Chloroquine, Lopinavir, etc.) has been proposed, but various clinical and preclinical investigations indicated the toxicity and adverse side effects of these drugs. This study explores the inhibition potency of phytochemicals from Tinospora cordifolia (Giloy) against SARS CoV-2 drugable targets (spike glycoprotein and Mpro proteins) using molecular docking and MD simulation studies. ADMET, virtual screening, MD simulation, postsimulation analysis (RMSD, RMSF, Rg, SASA, PCA, FES) and MM-PBSA calculations were carried out to predict the inhibition efficacy of the phytochemicals against SARS CoV-2 targets. Tinospora compounds showed better binding affinity than the corresponding reference. Their binding affinity ranges from -9.63 to -5.68 kcal/mole with spike protein and -10.27 to -7.25 kcal/mole with main protease. Further 100 ns exhaustive simulation studies and MM-PBSA calculations supported favorable and stable binding of them. This work identifies Nine Tinospora compounds as potential inhibitors. Among those, 7-desacetoxy-6,7-dehydrogedunin was found to inhibit both spike (7NEG) and Mpro (7MGS and 6LU7) proteins, and Columbin was found to inhibit selected spike targets (7NEG and 7NX7). In all the analyses, these compounds performed well and confirms the stable binding. Hence the identified compounds, advocated as potential inhibitors can be taken for further in vitro and in vivo experimental validation to determine their anti-SARS-CoV-2 potential.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Antivirales , Simulación por Computador , Proteasas 3C de Coronavirus , Proteínas Mutantes , Fitoquímicos , Inhibidores de Proteasas , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Tinospora , Humanos , Proteasas 3C de Coronavirus/antagonistas & inhibidores , COVID-19/virología , Tratamiento Farmacológico de COVID-19 , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Proteínas Mutantes/antagonistas & inhibidores , Proteínas Mutantes/genética , Fitoquímicos/farmacología , Inhibidores de Proteasas/farmacología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Glicoproteína de la Espiga del Coronavirus/genética , Tinospora/química , Antivirales/efectos adversos , Antivirales/toxicidad , Sustitución de Aminoácidos
18.
Ecotoxicol Environ Saf ; 248: 114331, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36435002

RESUMEN

Azoxystrobin (AZ) is one of the most widely used strobilurin fungicides in the world, and its residue has seriously endangered aquatic ecological security. Our previous data showed that AZ exposure may reduce the resistance of fish to rhabdovirus infection in aquatic environment. Here, we further reported a potential long-term adverse effect of AZ exposure on the antiviral and immunosuppressive recovery in fish, and observed that mitochondrial dynamic balance was disturbed by AZ in which excessive mitochondrial fission occurred in response to decreased ATP levels. When a recovery operation was performed in AZ-exposed cells and fish, infectivity of our model virus, spring viraemia of carp virus (SVCV), was significantly decreased in vitro (using the epithelioma papulosum cyprini [EPC] fish cell line) and in vivo (using zebrafish) in a time-dependent manner. Also, the expression of eight innate antiviral immune genes (IFNs, ISG15, MX1, RIG-I, IRF3, Nrf2 and HO-1) showed a similar change to SVCV replication between the longer exposure period and the expression recovery. Additionally, AZ facilitated horizontal transmission of SVCV in a static cohabitation challenge model, predicting the increase of the potential for the viral outbreak. Therefore, our data suggest that long-term effect of AZ on irreparable impairment in fish made AZ residue potentially greater for ecological risks.


Asunto(s)
Rhabdoviridae , Pez Cebra , Animales , Estrobilurinas , Antivirales/toxicidad
19.
Sci Total Environ ; 850: 157851, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-35934038

RESUMEN

The rapid spread of coronavirus disease 2019 has increased the consumption of some antiviral drugs, wherein these are discharged into wastewater, posing risks to the ecosystem and human health. Therefore, efforts are being made for the development of advanced oxidation processes (AOPs) to remediate water containing these pharmaceuticals. Here, the toxicity evolution of the antiviral drug ribavirin (RBV) was systematically investigated during its degradation via the UV/TiO2/H2O2 advanced oxidation process. Under optimal conditions, RBV was almost completely eliminated within 20 min, although the mineralization rate was inadequate. Zebrafish embryo testing revealed that the ecotoxicity of the treated RBV solutions increased at some stages and decreased as the reaction time increased, which may be attributed to the formation and decomposition of various transformation products (TPs). Liquid chromatography-mass spectrometry analysis along with density functional theory calculations helped identify possible toxicity increase-causing TPs, and quantitative structure activity relationship prediction revealed that most TPs exhibit higher toxicity than the parent compound. The findings of this study suggest that, in addition to the removal rate of organics, the potential ecotoxicity of treated effluents should also be considered when AOPs are applied in wastewater treatment.


Asunto(s)
COVID-19 , Contaminantes Químicos del Agua , Purificación del Agua , Animales , Antivirales/análisis , Antivirales/toxicidad , Ecosistema , Humanos , Peróxido de Hidrógeno/química , Oxidación-Reducción , Preparaciones Farmacéuticas , Ribavirina/toxicidad , Rayos Ultravioleta , Aguas Residuales/química , Agua/análisis , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Pez Cebra
20.
Arch Toxicol ; 96(8): 2341-2360, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35579693

RESUMEN

Remdesivir is a prodrug of a nucleoside analog and the first antiviral therapeutic approved for coronavirus disease. Recent cardiac safety concerns and reports on remdesivir-related acute kidney injury call for a better characterization of remdesivir toxicity and understanding of the underlying mechanisms. Here, we performed an in vitro toxicity assessment of remdesivir around clinically relevant concentrations (Cmax 9 µM) using H9c2 rat cardiomyoblasts, neonatal mouse cardiomyocytes (NMCM), rat NRK-52E and human RPTEC/TERT1 cells as cell models for the assessment of cardiotoxicity or nephrotoxicity, respectively. Due to the known potential of nucleoside analogs for the induction of mitochondrial toxicity, we assessed mitochondrial function in response to remdesivir treatment, early proteomic changes in NMCM and RPTEC/TERT1 cells and the contractile function of NMCM. Short-term treatments (24 h) of H9c2 and NRK-52E cells with remdesivir adversely affected cell viability by inhibition of proliferation as determined by significantly decreased 3H-thymidine uptake. Mitochondrial toxicity of remdesivir (1.6-3.1 µM) in cardiac cells was evident by a significant decrease in oxygen consumption, a collapse of mitochondrial membrane potential and an increase in lactate secretion after a 24-48-h treatment. This was supported by early proteomic changes of respiratory chain proteins and intermediate filaments that are typically involved in mitochondrial reorganization. Functionally, an impedance-based analysis showed that remdesivir (6.25 µM) affected the beat rate and contractility of NMCM. In conclusion, we identified adverse effects of remdesivir in cardiac and kidney cells at clinically relevant concentrations, suggesting a careful evaluation of therapeutic use in patients at risk for cardiovascular or kidney disease.


Asunto(s)
Antivirales , Proteómica , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Adenosina Monofosfato/uso terapéutico , Alanina/análogos & derivados , Animales , Antivirales/toxicidad , Proliferación Celular , Humanos , Riñón , Ratones , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...