Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.031
Filtrar
2.
BMC Endocr Disord ; 24(1): 109, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38982395

RESUMEN

BACKGROUND: This study aimed to explore the impact of Diacerein (DIC) on endocrine and cardio-metabolic changes in polycystic ovarian syndrome (PCOS) mouse model. METHODS: A total of 18 adult female mice (Parkes strain), aged 4-5 weeks, were randomly assigned to three groups, each comprising 6 animals, as follows: Group I (control), received normal diet and normal saline as vehicle for 51 days; Group II received Letrozole (LET; 6 mg/kg bw) for 21 days to induce PCOS; Group III received LET, followed by daily oral gavage administration of DIC (35 mg/kg bw) for 30 days. RESULTS: This study indicates that treatment with LET resulted in PCOS with characteristics such as polycystic ovaries, elevated testosterone, weight gain, visceral adiposity, high levels of insulin as well as fasting blood glucose in addition to insulin resistance, improper handling of ovarian lipids, atherogenic dyslipidemia, impaired Na + /K + -ATPase activity and serum, cardiac, and ovarian oxidative stress. Serum/ovarian adiponectin levels were lowered in LET-treated mice. In mice treated with LET, we also discovered a reduction in cardiac and serum paraoxonase 1 (PON1). Interestingly, DIC restored ovarian andcardio-metabolic abnormalities in LET-induced PCOS mice. DIC prevented the endocrine and cardio-metabolic changes brought on by letrozole-induced PCOS in mice. CONCLUSION: The ameliorative effects of DIC on letrozole-induced PCOS with concurrent oxidative stress, abdominal fat deposition, cardiac and ovarian substrate mishandling, glucometabolic dysfunction, and adiponectin/PON1 activation support the idea that DIC perhaps, restore compromised endocrine and cardio-metabolic regulators in PCOS.


Asunto(s)
Antraquinonas , Arildialquilfosfatasa , Modelos Animales de Enfermedad , Resistencia a la Insulina , Síndrome del Ovario Poliquístico , Animales , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Síndrome del Ovario Poliquístico/inducido químicamente , Síndrome del Ovario Poliquístico/metabolismo , Femenino , Ratones , Antraquinonas/farmacología , Antraquinonas/uso terapéutico , Arildialquilfosfatasa/metabolismo , Letrozol , Receptores de Adiponectina/metabolismo , Estrés Oxidativo/efectos de los fármacos , Adiponectina/metabolismo
3.
Braz J Biol ; 84: e282099, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38985070

RESUMEN

The present study explored the potential of leaf litter as a source of fungi able to produce ligninolytic enzymes for the biodegradation of anthraquinone dyes. Within the colonies isolated from the leaf litter, only three colonies of two species Trametes were selected based on the detection of oxidation and decolorization halos in Petri dishes with PDA (potato-dextrose-agar) + Guaicol and PDA + RBBR (Remazol Brilliant Blue R). The identification of the colonies was done through sequencing of the ITS region. The enzymatic activity of Lac (lacase), MnP (manganês peroxidase) and LiP (lignina peroxidase) was analyzed by spectrophotometry during fermentation in PD+RBBR imedium. Isolates A1SSI01 and A1SSI02 were identified as Trametes flavida, while A5SS01 was identified as Trametes sp. Laccase showed the highest enzymatic activity, reaching 452.13 IU.L-1 (A1SSI01, 0.05% RBBR) after 96h. Isolate A1SSI02 reached the highest percentage of decolorization, achieving 89.28% in seven days. The results imply that these Trametes isolates can be highly effective in waste treatment systems containing toxic anthraquinone dyes. Keywords: laccase, peroxidases, basidiomycete, litter and biodecolorization.


Asunto(s)
Biodegradación Ambiental , Lacasa , Peroxidasas , Hojas de la Planta , Trametes , Hojas de la Planta/química , Hojas de la Planta/microbiología , Trametes/enzimología , Peroxidasas/metabolismo , Lacasa/metabolismo , Bosques , Antraquinonas/metabolismo , Colorantes , Lignina/metabolismo , Brasil
4.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39000176

RESUMEN

Lichens are symbiotic organisms that effectively survive in harsh environments, including arid regions. Maintaining viability with an almost complete loss of water and the rapid restoration of metabolism during rehydration distinguishes lichens from most eukaryotic organisms. The lichen Xanthoria parietina is known to have high stress tolerance, possessing diverse defense mechanisms, including the presence of the bright-orange pigment parietin. While several studies have demonstrated the photoprotective and antioxidant properties of this anthraquinone, the role of parietin in the tolerance of lichens to desiccation is not clear yet. Thalli, which are exposed to solar radiation and become bright orange, may require enhanced desiccation tolerance. Here, we showed differences in the anatomy of naturally pale and bright-orange thalli of X. parietina and visualized parietin crystals on the surface of the upper cortex. Parietin was extracted from bright-orange thalli by acetone rinsing and quantified using HPLC. Although acetone rinsing did not affect PSII activity, thalli without parietin had higher levels of lipid peroxidation and a lower membrane stability index in response to desiccation. Furthermore, highly pigmented thalli possess thicker cell walls and, according to thermogravimetric analysis, higher water-holding capacities than pale thalli. Thus, parietin may play a role in desiccation tolerance by stabilizing mycobiont membranes, providing an antioxidative defense, and changing the morphology of the upper cortex of X. parietina.


Asunto(s)
Desecación , Líquenes , Líquenes/metabolismo , Emodina/análogos & derivados , Emodina/metabolismo , Antraquinonas/metabolismo , Antraquinonas/química
5.
J Nanobiotechnology ; 22(1): 374, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926723

RESUMEN

BACKGROUND: Hypoxia-activated prodrugs present new opportunities for safe and effective tumor drug resistance therapy due to their high selectivity for hypoxic cells. However, the uneven distribution of oxygen in solid tumor and insufficient hypoxia in the tumor microenvironment greatly limit its therapeutic efficacy. RESULTS: In this paper, a novel AQ4N-Mn(II)@PDA coordination nanoplatform was designed and functionalized with GMBP1 to target drug-resistant tumor cells. Its excellent photothermal conversion efficiency could achieve local high-temperature photothermal therapy in tumors, which could not only effectively exacerbate tumor hypoxia and thus improve the efficacy of hypoxia-activated chemotherapy of AQ4N but also significantly accelerate Mn2+-mediated Fenton-like activity to enhance chemodynamic therapy. Moreover, real-time monitoring of blood oxygen saturation through photoacoustic imaging could reflect the hypoxic status of tumors during treatment. Furthermore, synergistic treatment effectively inhibited tumor growth and improved the survival rate of mice bearing orthotopic drug-resistant tumors. CONCLUSIONS: This study not only provided a new idea for PTT combined with hypoxia-activated chemotherapy and CDT for drug-resistant tumors but also explored a vital theory for real-time monitoring of hypoxia during treatment.


Asunto(s)
Resistencia a Antineoplásicos , Terapia Fototérmica , Animales , Ratones , Resistencia a Antineoplásicos/efectos de los fármacos , Línea Celular Tumoral , Humanos , Terapia Fototérmica/métodos , Ratones Endogámicos BALB C , Nanopartículas/química , Antineoplásicos/farmacología , Antineoplásicos/química , Microambiente Tumoral/efectos de los fármacos , Ratones Desnudos , Profármacos/farmacología , Profármacos/química , Hipoxia Tumoral/efectos de los fármacos , Manganeso/química , Femenino , Neoplasias/tratamiento farmacológico , Antraquinonas
6.
Mar Drugs ; 22(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38921570

RESUMEN

A new dimeric C-glycoside polyketide chrysomycin F (1), along with four new monomeric compounds, chrysomycins G (2), H (3), I (4), J (5), as well as three known analogues, chrysomycins A (6), B (7), and C (8), were isolated and characterised from a strain of Streptomyces sp. obtained from a sediment sample collected from the South China Sea. Their structures were determined by detailed spectroscopic analysis. Chrysomycin F contains two diastereomers, whose structures were further elucidated by a biomimetic [2 + 2] photodimerisation of chrysomycin A. Chrysomycins B and C showed potent anti-tuberculosis activity against both wild-type Mycobacterium tuberculosis and a number of clinically isolated MDR M. tuberculosis strains.


Asunto(s)
Antituberculosos , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis , Policétidos , Streptomyces , Streptomyces/química , Streptomyces/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Antituberculosos/farmacología , Antituberculosos/química , Antituberculosos/aislamiento & purificación , Policétidos/farmacología , Policétidos/química , Policétidos/aislamiento & purificación , Glicósidos/química , Glicósidos/farmacología , Glicósidos/aislamiento & purificación , China , Estructura Molecular , Antraquinonas/farmacología , Antraquinonas/química , Antraquinonas/aislamiento & purificación
7.
BMC Genomics ; 25(1): 555, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831295

RESUMEN

BACKGROUND: The search for new bioactive natural compounds with anticancer activity is still of great importance. Even though their potential for diagnostics and treatment of cancer has already been proved, the availability is still limited. Hypericin, a naphthodianthrone isolated essentially from plant source Hypericum perforatum L. along with other related anthraquinones and bisanthraquinones belongs to this group of compounds. Although it has been proven that hypericin is synthesized by the polyketide pathway in plants, none of the candidate genes coding for key enzymes has been experimentally validated yet. Despite the rare occurrence of anthraquinones in plants, their presence in microorganisms, including endophytic fungi, is quite common. Unlike plants, several biosynthetic genes grouped into clusters (BGCs) in fungal endophytes have already been characterized. RESULTS: The aim of this work was to predict, identify and characterize the anthraquinone BGCs in de novo assembled and functionally annotated genomes of selected endophytic fungal isolates (Fusarium oxysporum, Plectosphaerella cucumerina, Scedosporium apiospermum, Diaporthe eres, Canariomyces subthermophilus) obtained from different tissues of Hypericum spp. The number of predicted type I polyketide synthase (PKS) BGCs in the studied genomes varied. The non-reducing type I PKS lacking thioesterase domain and adjacent discrete gene encoding protein with product release function were identified only in the genomes of C. subthermophilus and D. eres. A candidate bisanthraquinone BGC was predicted in C. subthermophilus genome and comprised genes coding the enzymes that catalyze formation of the basic anthraquinone skeleton (PKS, metallo-beta-lactamase, decarboxylase, anthrone oxygenase), putative dimerization enzyme (cytochrome P450 monooxygenase), other tailoring enzymes (oxidoreductase, dehydrogenase/reductase), and non-catalytic proteins (fungal transcription factor, transporter protein). CONCLUSIONS: The results provide an insight into genetic background of anthraquinone biosynthesis in Hypericum-borne endophytes. The predicted bisanthraquinone gene cluster represents a basis for functional validation of the candidate biosynthetic genes in a simple eukaryotic system as a prospective biotechnological alternative for production of hypericin and related bioactive anthraquinones.


Asunto(s)
Antraquinonas , Endófitos , Hypericum , Familia de Multigenes , Policétidos , Hypericum/microbiología , Hypericum/genética , Hypericum/metabolismo , Policétidos/metabolismo , Endófitos/genética , Endófitos/metabolismo , Antraquinonas/metabolismo , Hongos/genética , Genoma Fúngico , Simulación por Computador , Sintasas Poliquetidas/genética , Perileno/análogos & derivados , Perileno/metabolismo , Antracenos/metabolismo , Genómica , Filogenia
8.
Planta Med ; 90(7-08): 588-594, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38843798

RESUMEN

Antimicrobial photodynamic therapy (aPDT) is an evolving treatment strategy against human pathogenic microbes such as the Candida species, including the emerging pathogen C. auris. Using a modified EUCAST protocol, the light-enhanced antifungal activity of the natural compound parietin was explored. The photoactivity was evaluated against three separate strains of five yeasts, and its molecular mode of action was analysed via several techniques, i.e., cellular uptake, reactive electrophilic species (RES), and singlet oxygen yield. Under experimental conditions (λ = 428 nm, H = 30 J/cm2, PI = 30 min), microbial growth was inhibited by more than 90% at parietin concentrations as low as c = 0.156 mg/L (0.55 µM) for C. tropicalis and Cryptococcus neoformans, c = 0.313 mg/L (1.10 µM) for C. auris, c = 0.625 mg/L (2.20 µM) for C. glabrata, and c = 1.250 mg/L (4.40 µM) for C. albicans. Mode-of-action analysis demonstrated fungicidal activity. Parietin targets the cell membrane and induces cell death via ROS-mediated lipid peroxidation after light irradiation. In summary, parietin exhibits light-enhanced fungicidal activity against all Candida species tested (including C. auris) and Cryptococcus neoformans, covering three of the four critical threats on the WHO's most recent fungal priority list.


Asunto(s)
Antifúngicos , Cryptococcus neoformans , Pruebas de Sensibilidad Microbiana , Antifúngicos/farmacología , Cryptococcus neoformans/efectos de los fármacos , Cryptococcus neoformans/efectos de la radiación , Candida auris/efectos de los fármacos , Luz , Candida/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Fotoquimioterapia/métodos , Antraquinonas/farmacología , Fármacos Fotosensibilizantes/farmacología
9.
Plant Cell Rep ; 43(6): 160, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38825616

RESUMEN

KEY MESSAGE: LeBAHD56 is preferentially expressed in tissues where shikonin and its derivatives are biosynthesized, and it confers shikonin acylation in vivo. Two WRKY transcriptional factors might regulate LeBAHD56's expression. Shikonin and its derivatives, found in the roots of Lithospermum erythrorhizon, have extensive application in the field of medicine, cosmetics, and other industries. Prior research has demonstrated that LeBAHD1(LeSAT1) is responsible for the biochemical process of shikonin acylation both in vitro and in vivo. However, with the exception of its documented in vitro biochemical function, there is no in vivo genetic evidence supporting the acylation function of the highly homologous gene of LeSAT1, LeBAHD56(LeSAT2), apart from its reported role. Here, we validated the critical acylation function of LeBAHD56 for shikonin using overexpression (OE) and CRISPR/Cas9-based knockout (KO) strategies. The results showed that the OE lines had a significantly higher ratio of acetylshikonin, isobutyrylshikonin or isovalerylshikonin to shikonin than the control. In contrast, the KO lines had a significantly lower ratio of acetylshikonin, isobutyrylshikonin or isovalerylshikonin to shikonin than controls. As for its detailed expression patterns, we found that LeBAHD56 is preferentially expressed in roots and callus cells, which are the biosynthesis sites for shikonin and its derivatives. In addition, we anticipated that a wide range of putative transcription factors might control its transcription and verified the direct binding of two crucial WRKY members to the LeBAHD56 promoter's W-box. Our results not only confirmed the in vivo function of LeBAHD56 in shikonin acylation, but also shed light on its transcriptional regulation.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Lithospermum , Naftoquinonas , Proteínas de Plantas , Plantas Modificadas Genéticamente , Naftoquinonas/metabolismo , Lithospermum/genética , Lithospermum/metabolismo , Acilación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Sistemas CRISPR-Cas , Antraquinonas
10.
J Hazard Mater ; 475: 134906, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38889455

RESUMEN

The alternating current (AC)-driven bioelectrochemical process, in-situ coupling cathodic reduction and anodic oxidation in a single electrode, offers a promising way for the mineralization of refractory aromatic pollutants (RAPs). Frequency modulation is vital for aligning reduction and oxidation phases in AC-driven bioelectrodes, potentially enhancing their capability to mineralize RAPs. Herein, a frequency-modulated AC-driven bioelectrode was developed to enhance RAP mineralization, exemplified by the degradation of Alizarin Yellow R (AYR). Optimal performance was achieved at a frequency of 1.67 mHz, resulting in the highest efficiency for AYR decolorization and subsequent mineralization of intermediates. Performance declined at both higher (3.33 and 8.30 mHz) and lower (0.83 mHz) frequencies. The bioelectrode exhibited superior electron utilization, bidirectional electron transfer, and redox bifunctionality, effectively aligning reduction and oxidation processes to enhance AYR mineralization. The 1.67 mHz frequency facilitated the assembly of a collaborative microbiome dedicated to AYR bio-mineralization, characterized by an increased abundance of functional consortia proficient in azo dye reduction (e.g., Stenotrophomonas and Shinella), aromatic intermediates oxidation (e.g., Sphingopyxis and Sphingomonas), and electron transfer (e.g., Geobacter and Pseudomonas). This study reveals the role of frequency modulation in AC-driven bioelectrodes for enhanced RAP mineralization, offering a novel and sustainable approach for treating RAP-bearing wastewater.


Asunto(s)
Electrodos , Oxidación-Reducción , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/química , Biodegradación Ambiental , Compuestos Azo/química , Colorantes/química , Técnicas Electroquímicas , Antraquinonas/química
11.
Int J Biol Macromol ; 273(Pt 1): 132995, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38862056

RESUMEN

Creating new adsorbents is crucial for removing contaminants from water due to increased industrialization, which has worsened water pollution in recent years. In this study, a magnetic biocomposite, Zirconium (Zr)-doped chitosan (CS)-coated iron oxide nanoparticles (Fe3O4-NPs)-peanut husk (PH)-based activated carbon (AC) (Zr-CS/Fe3O4-NPs@PH-AC), was synthesized for efficient removal of alizarin red (AR) and congo red (CR) dyes, alongside antibacterial applications. Characterization via scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis revealed micropores and mesopores development due to chemical activation of PH biomaterial and Fe3O4-NPs addition. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) identified functional groups and structural properties. Vibrating sample magnetometry (VSM) analyzed magnetic properties. Optimal conditions for AR/CR removal were determined, including Zr-CS/Fe3O4-NPs@PH-AC dose, dye dose, contact time, and temperature, achieving maximum removal percentages. Experimentally determined maximum adsorption capacities for AR and CR were 374.3 and 154.1 mg·g-1, respectively. Cytotoxicity studies affirmed the eco-friendly and non-toxic nature of the adsorbent by exhibiting the reduction in the cell viability from 100 % to 88.68 % from the 0 to 200 µg·L-1 respectively. Additionally, the biocomposite exhibited significant antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) due to magnetic NPs. The material in this study shows extreme compatibility for numerous applications.


Asunto(s)
Antibacterianos , Carbón Orgánico , Quitosano , Rojo Congo , Aguas Residuales , Contaminantes Químicos del Agua , Circonio , Quitosano/química , Circonio/química , Rojo Congo/química , Antibacterianos/farmacología , Antibacterianos/química , Adsorción , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Carbón Orgánico/química , Purificación del Agua/métodos , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Antraquinonas
12.
J Ethnopharmacol ; 333: 118475, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-38908496

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The pathophysiological mechanism of thromboinflammation involves the intricate interplay between the inflammatory responses and coagulation cascades. Rhubarb is frequently used in traditional Chinese medicine to treat thromboinflammatory diseases. The scorched rhubarb (prepared by stir-baking the dried raw rhubarb till it partly turns to charcoal) is believed to possess enhanced blood-cooling and stasis-removing functions compared to the raw rhubarb, thereby augmenting the therapeutic effects on thromboinflammation. AIM OF THE STUDY: This study aimed to explore the chemical and pharmacological foundations of the scorch processing of rhubarb in order to ensure and enhance the efficacy and safety of the scorched rhubarb for treating thromboinflammatory diseases. MATERIALS AND METHODS: The dried raw rhubarb pieces were subjected to stir-baking at 180 °C for 10∼80 min to obtain the rhubarbs with varying degrees of scorching. Typical ingredients present in rhubarb pieces and extracts were determined by high-performance liquid chromatography. The therapeutic effects of the raw and scorched rhubarb on thromboinflammation were evaluated using a rat model. Proteomics analysis was employed to screen potential biological pathways associated with thromboinflammation treatment by the raw and scorched rhubarb, which were further verified using a cell model. RESULTS: Morphological properties indicated that the rhubarb baked at 180 °C for 50 min in this research showed the optimal degree of scorching. Compared to the raw rhubarb, the properly scorched rhubarb exhibited lower levels of anthraquinone glucosides, higher levels of anthraquinone aglycones, superior anti-thromboinflammatory effects, and no purgative side effects. Proteomics analysis revealed that the complement and coagulation cascades pathway played a significant role in mediating the therapeutic effects of the raw and scorched rhubarb on thromboinflammation. Furthermore, it was found that anthraquinone aglycones were more effective than their glucoside counterparts in restoring the impaired vascular endothelial cells as well as regulating the complement and coagulation cascades pathway. CONCLUSIONS: Proper scorch processing may augment the therapeutic effects of rhubarb on thromboinflammation via relieving inflammation and oxidative stress, repairing vascular endothelial cells, restoring coagulation cascades and blood rheology, and regulating some other biological processes. This may be partly caused by the scorch-induced thermolysis of anthraquinone glucosides into their aglycone counterparts that seemed to perform better in regulating the complement and coagulation cascades pathway.


Asunto(s)
Antraquinonas , Coagulación Sanguínea , Glucósidos , Ratas Sprague-Dawley , Rheum , Animales , Rheum/química , Antraquinonas/farmacología , Coagulación Sanguínea/efectos de los fármacos , Masculino , Glucósidos/farmacología , Glucósidos/química , Ratas , Inflamación/tratamiento farmacológico , Trombosis/tratamiento farmacológico , Antiinflamatorios/farmacología , Proteínas del Sistema Complemento/metabolismo , Modelos Animales de Enfermedad , Extractos Vegetales/farmacología , Extractos Vegetales/química
13.
Life Sci ; 351: 122862, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38917872

RESUMEN

The primary and initial manifestations of hypertension encompass arterial hypoelasticity and histiocyte senescence. Oxidative stress plays a pivotal role in the progression of senescence. Elevated intracellular oxidative stress levels will directly induce cell damage, disrupt normal physiological signal transduction, which can cause mitochondrial dysfunction to accelerate the process of senescence. Alizarin, an anthraquinone active ingredient isolated from Rubia cordifolia L., has a variety of pharmacological effects, including antioxidant, anti-inflammatory and anti-platelet. Nevertheless, its potential in lowering blood pressure (BP) and mitigating hypertension-induced vascular senescence remains uncertain. In this study, we used spontaneously hypertensive rats (SHR) and human umbilical vein endothelial cells (HUVECs) to establish a model of vascular senescence in hypertension. Our aim was to elucidate the mechanisms underpinning the vascular protective effects of Alizarin. By assessing systolic blood pressure (SBP) and diastolic blood pressure (DBP), H&E staining, SA-ß-Gal staining, vascular function, oxidative stress levels, calcium ion concentration and mitochondrial membrane potential, we found that Alizarin not only restored SBP and increased endothelium-dependent relaxation (EDR) in SHR, but also inhibited oxidative stress-induced mitochondrial damage and significantly delayed the vascular senescence effect in hypertension, and the mechanism may be related to the activation of VEGFR2/eNOS signaling pathway.


Asunto(s)
Antraquinonas , Antihipertensivos , Senescencia Celular , Células Endoteliales de la Vena Umbilical Humana , Hipertensión , Mitocondrias , Óxido Nítrico Sintasa de Tipo III , Estrés Oxidativo , Ratas Endogámicas SHR , Transducción de Señal , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Estrés Oxidativo/efectos de los fármacos , Animales , Humanos , Ratas , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Antraquinonas/farmacología , Senescencia Celular/efectos de los fármacos , Antihipertensivos/farmacología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Hipertensión/metabolismo , Hipertensión/tratamiento farmacológico , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Transducción de Señal/efectos de los fármacos , Masculino , Presión Sanguínea/efectos de los fármacos , Ratas Endogámicas WKY
14.
Acta Chim Slov ; 71(2): 197-203, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38919108

RESUMEN

Association behavior between quinizarin (1,4-dihydroxyanthraquinone), an analogue of the chromophore of anthracycline anticancer drugs and sodium dodecyl sulfate (SDS) micelles in the presence of glucose, NaCl and urea additives was studied using absorption spectroscopy and conductometric techniques. The spectral results indicate an increase of binding constant and partition coefficient values in the presence of glucose and NaCl whereas the addition of urea leads to a decrease of binding strength and quinizarin partitioning into SDS micelles. Thus, the rise of NaCl and glucose concentrations is favorable for the quinizarin distribution into SDS micelles. From electrical conductivity measurements it was found that the critical micelle concentration (CMC) of SDS/quinizarin system decreases by adding NaCl and glucose whereas urea has not influence on the micelization process at the concentrations used in the present study. Since biologically compounds like glucose, NaCl and urea are found in the human body, the attained outcomes can be important in finding of effective drug delivery systems.


Asunto(s)
Antraquinonas , Glucosa , Micelas , Cloruro de Sodio , Dodecil Sulfato de Sodio , Urea , Antraquinonas/química , Cloruro de Sodio/química , Glucosa/química , Dodecil Sulfato de Sodio/química , Urea/química
15.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38928176

RESUMEN

Chemotherapy resistance in cancer is an essential factor leading to high mortality rates. Tumor multidrug resistance arises as a result of the autophagy process. Our previous study found that compound 1-nitro-2 acyl anthraquinone-leucine (C2) exhibited excellent anti-colorectal cancer (CRC) activity involving autophagy and apoptosis-related proteins, whereas its underlying mechanism remains unclear. A notable aspect of this study is how C2 overcomes the multidrug susceptibility of HCT116/L-OHP, a colon cancer cell line that is resistant to both in vitro and in vivo oxaliplatin (trans-/-diaminocyclohexane oxalatoplatinum; L-OHP). In a xenograft tumor mouse model, we discovered that the mixture of C2 and L-OHP reversed the resistance of HCT116/L-OHP cells to L-OHP and inhibited tumor growth; furthermore, C2 down-regulated the gene expression levels of P-gp and BCRP and decreased P-gp's drug efflux activity. It is important to note that while C2 re-sensitized the HCT116/L-OHP cells to L-OHP for apoptosis, it also triggered a protective autophagic pathway. The expression levels of cleaved caspase-3 and Beclin 1 steadily rose. Expression of PI3K, phosphorylated AKT, and mTOR were decreased, while p53 increased. We demonstrated that the anthraquinone derivative C2 acts as an L-OHP sensitizer and reverses resistance to L-OHP in HCT116/L-OHP cells. It suggests that C2 can induce autophagy in HCT116/L-OHP cells by mediating p53 and the PI3K/AKT/mTOR signaling pathway.


Asunto(s)
Antraquinonas , Autofagia , Oxaliplatino , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Humanos , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Oxaliplatino/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Autofagia/efectos de los fármacos , Antraquinonas/farmacología , Transducción de Señal/efectos de los fármacos , Ratones , Células HCT116 , Apoptosis/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Antineoplásicos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Ratones Desnudos , Línea Celular Tumoral
16.
Drug Des Devel Ther ; 18: 2367-2379, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38911033

RESUMEN

Background: Anthraquinone drugs are widely used in the treatment of tumors. However, multidrug resistance and severe cardiac toxicity limit its use, which have led to the discovery of new analogues. In this paper, 4-Deoxy-ε-pyrromycinone (4-Deo), belonging to anthraquinone compounds, was first been studied with the anti-tumor effects and the safety in vitro and in vivo as a new anti-tumor drug or lead compound. Methods: The quantitative analysis of 4-Deo was established by UV methodology. The anti-cancer effect of 4-Deo in vitro was evaluated by cytotoxicity experiments of H22, HepG2 and Caco2, and the anti-cancer mechanism was explored by cell apoptosis and cycle. The tumor-bearing mouse model was established by subcutaneous inoculation of H22 cells to evaluate the anti-tumor effect of 4-Deo in vivo. The safety of 4-Deo was verified by the in vitro safety experiments of healthy cells and the in vivo safety experiments of H22 tumor-bearing mice. Tumor tissue sections were labeled with CRT, HMGB1, IL-6 and CD115 to explore the preliminary anti-cancer mechanism by immunohistochemistry. Results: In vitro experiments demonstrated that 4-Deo could inhibit the growth of H22 by inducing cell necrosis and blocking cells in S phase, and 4-Deo has less damage to healthy cells. In vivo experiments showed that 4-Deo increased the positive area of CRT and HMGB1, which may inhibit tumor growth by triggering immunogenic cell death (ICD). In addition, 4-Deo reduced the positive area of CSF1R, and the anti-tumor effect may be achieved by blocking the transformation of tumor-associated macrophages (TAMs) to M2 phenotype. Conclusion: In summary, this paper demonstrated the promise of 4-Deo for cancer treatment in vitro and in vivo. This paper lays the foundation for the study of 4-Deo, which is beneficial for the further development anti-tumor drugs based on the lead compound of 4-Deo.


Asunto(s)
Antineoplásicos , Apoptosis , Proliferación Celular , Animales , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Ratones , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Antraquinonas/farmacología , Antraquinonas/química , Antraquinonas/síntesis química , Relación Dosis-Respuesta a Droga , Estructura Molecular , Relación Estructura-Actividad , Ratones Endogámicos BALB C
17.
Environ Geochem Health ; 46(7): 233, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849572

RESUMEN

Dyes, considered as toxic and persistent pollutants, must be removed from organic wastes prior to their composting and application in sustainable agriculture. Azo dyes, capable of altering the physicochemical properties of soil, are difficult to expel by conventional wastewater treatments. C.I. Acid Black 1 (AB 1), a sulfonated azo dye, inhibits nitrification and ammonification in the soil, lessens the nitrogen use efficacy in crop production and passes substantially unaltered through an activated sludge process. The retention of C.I. Acid Black 1 by raw and expanded perlite was investigated in order to examine the potential effectiveness of this aluminosilicate material toward organic waste cleanup. Dye adsorption proved spontaneous and endothermic in nature, increasing with temperature for both perlites. Expanded perlite having a more open structure exhibited a better performance compared to the raw material. Several of the most widely recognized two-parameter theoretical models, i.e., Langmuir, Freundlich, Temkin, Brunauer-Emmett-Teller (BET), Harkins-Jura, Halsey, Henderson, and Smith, were applied to reveal physicochemical features characterizing the adsorption. The Langmuir, Freundlich, Temkin, BET, Henderson, and Smith equations best fitted experimental data indicating that the adsorption of anionic dye on perlites is controlled by their surface, i.e., non-uniformity in structure and charge. This heterogeneity of surface is considered responsible for promoting specific dye adsorption areas creating dye "islands" with local dye supersaturations.


Asunto(s)
Óxido de Aluminio , Colorantes , Dióxido de Silicio , Óxido de Aluminio/química , Adsorción , Dióxido de Silicio/química , Colorantes/química , Naftalenosulfonatos/química , Administración de Residuos/métodos , Compuestos Azo/química , Antraquinonas
18.
Food Res Int ; 189: 114547, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38876606

RESUMEN

Phenolic compounds represent natural compounds endowed with diverse biological functionalities. However, their inherent limitations, characterized by poor water solubility and low oral bioavailability, limit their broader applications. Encapsulation delivery systems are emerging as a remedy, able to ameliorate these limitations by enhancing the stability and solubility of phenolic compounds. In this study, a novel, customized pH-driven approach was developed by determining the optimal deprotonation and protonation points of three different types of polyphenols: ferulic acid, resveratrol, and rhein. The polyphenols were successfully encapsulated in a casein carrier. The solubility, stability, LogD, and LogS curves of the three polyphenols at different pH values were analyzed to identify the optimal deprotonation points for ferulic acid (pH 9), resveratrol (pH 11), and rhein (pH 10). Based on these findings, three different nanoparticles were prepared. The encapsulation efficiencies of the three phenolic compounds were 95.86%, 94.62%, and 94.18%, respectively, and the casein nanoparticles remained stable at room temperature for seven days. FTIR spectroscopy, fluorescence spectroscopy, and molecular docking study substantiated the encapsulation of phenolic compounds within the hydrophobic core of casein-based complexes, facilitated by hydrogen bonding interactions and hydrophobic interactions. Furthermore, the analysis of antioxidant activity elucidated that casein nanoparticles heightened both the water solubility and antioxidant efficacy of the phenolic compounds. This customized encapsulation technique, by establishing a transitional pH value, resolves the challenges of chemical instability and facile degradation of polyphenols under alkaline conditions in the application process of pH-driven methods. It presents novel insights for the application of polyphenols in the domains of food and biomedical fields.


Asunto(s)
Caseínas , Ácidos Cumáricos , Simulación del Acoplamiento Molecular , Polifenoles , Solubilidad , Caseínas/química , Concentración de Iones de Hidrógeno , Polifenoles/química , Ácidos Cumáricos/química , Resveratrol/química , Antraquinonas/química , Nanopartículas/química , Composición de Medicamentos , Espectroscopía Infrarroja por Transformada de Fourier , Interacciones Hidrofóbicas e Hidrofílicas , Antioxidantes/química
19.
Mar Drugs ; 22(5)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38786587

RESUMEN

Marine symbiotic and epiphyte microorganisms are sources of bioactive or structurally novel natural products. Metabolic blockade-based genome mining has been proven to be an effective strategy to accelerate the discovery of natural products from both terrestrial and marine microorganisms. Here, the metabolic blockade-based genome mining strategy was applied to the discovery of other metabolites in a sea anemone-associated Streptomyces sp. S1502. We constructed a mutant Streptomyces sp. S1502/Δstp1 that switched to producing the atypical angucyclines WS-5995 A-E, among which WS-5995 E is a new compound. A biosynthetic gene cluster (wsm) of the angucyclines was identified through gene knock-out and heterologous expression studies. The biosynthetic pathways of WS-5995 A-E were proposed, the roles of some tailoring and regulatory genes were investigated, and the biological activities of WS-5995 A-E were evaluated. WS-5995 A has significant anti-Eimeria tenell activity with an IC50 value of 2.21 µM. The production of antibacterial streptopyrroles and anticoccidial WS-5995 A-E may play a protective role in the mutual relationship between Streptomyces sp. S1502 and its host.


Asunto(s)
Familia de Multigenes , Anémonas de Mar , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Animales , Antibacterianos/farmacología , Vías Biosintéticas/genética , Genoma Bacteriano , Productos Biológicos/farmacología , Antraquinonas/farmacología , Anguciciclinas y Anguciclinonas
20.
Front Biosci (Landmark Ed) ; 29(5): 168, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38812303

RESUMEN

The review focuses on the recent knowledge on natural anthraquinones (AQs) of plant origin and their potential for application in an exclusive medicinal curative and palliative method named photodynamic therapy (PDT). Green approach to PDT is associated with photosensitizers (PS) from plants or other natural sources and excitation light in visible spectrum. The investigations of plants are of high research interests due to their unique health supportive properties as herbs and the high percentage availability to obtain compounds with medical value. Up-to-date many naturally occurring compounds with therapeutic properties are known and are still under investigations. Some natural quinones have already been evaluated and clinically approved as anti-tumor agents. Recent scientific interests are beyond their common medical applications but also in directions to their photo-properties as natural PSs. The study presents a systematic searches on the latest knowledge on AQ derivatives that are isolated from the higher plants as photosensitizers for PDT applications. The natural quinones have been recognized with functions of natural dyes since the ancient times. Lately, AQs have been explored due to their biological activity including the photosensitive properties useful for PDT especially towards medical problems with no other alternatives. The existing literature' overview suggests that natural AQs possess characteristics of valuable PSs for PDT. This method is based on an application of a photoactive compound and light arrangement in oxygen media, such that the harmful general cytotoxicity could be avoided. Moreover, the common anticancer and antimicrobial drug resistance has been evaluated with very low occurrence after PDT. Natural AQs have been focused the scientific efforts to further developments because of the high range of natural sources, desirable biocompatibility, low toxicity, minimal side effects and low accident of drug resistance, together with their good photosensitivity and therapeutic capacity. Among the known AQs, only hypericin has been studied in anticancer clinical PDT. Currently, the natural PSs are under intensive research for the future PDT applications for diseases without alternative effective treatments.


Asunto(s)
Antraquinonas , Fotoquimioterapia , Fármacos Fotosensibilizantes , Antraquinonas/farmacología , Antraquinonas/uso terapéutico , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/química , Humanos , Plantas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...