Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.193
Filtrar
1.
Cells ; 13(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38727309

RESUMEN

The activation of endothelial cells is crucial for immune defense mechanisms but also plays a role in the development of atherosclerosis. We have previously shown that inflammatory stimulation of endothelial cells on top of elevated lipoprotein/cholesterol levels accelerates atherogenesis. The aim of the current study was to investigate how chronic endothelial inflammation changes the aortic transcriptome of mice at normal lipoprotein levels and to compare this to the inflammatory response of isolated endothelial cells in vitro. We applied a mouse model expressing constitutive active IκB kinase 2 (caIKK2)-the key activator of the inflammatory NF-κB pathway-specifically in arterial endothelial cells and analyzed transcriptomic changes in whole aortas, followed by pathway and network analyses. We found an upregulation of cell death and mitochondrial beta-oxidation pathways with a predicted increase in endothelial apoptosis and necrosis and a simultaneous reduction in protein synthesis genes. The highest upregulated gene was ACE2, the SARS-CoV-2 receptor, which is also an important regulator of blood pressure. Analysis of isolated human arterial and venous endothelial cells supported these findings and also revealed a reduction in DNA replication, as well as repair mechanisms, in line with the notion that chronic inflammation contributes to endothelial dysfunction.


Asunto(s)
Colesterol , Células Endoteliales , Inflamación , Animales , Humanos , Células Endoteliales/metabolismo , Ratones , Inflamación/patología , Inflamación/metabolismo , Colesterol/metabolismo , Lipoproteínas/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Arterias/metabolismo , Arterias/patología , Transcriptoma/genética , Aorta/metabolismo , Aorta/patología , Ratones Endogámicos C57BL , Aterosclerosis/metabolismo , Aterosclerosis/patología , Quinasa I-kappa B/metabolismo , Masculino , FN-kappa B/metabolismo
2.
Atherosclerosis ; 392: 117519, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38581737

RESUMEN

BACKGROUND AND AIMS: Atherosclerosis is the primary underlying cause of myocardial infarction and stroke, which are the major causes of death globally. Heparanase (Hpse) is a pro-inflammatory extracellular matrix degrading enzyme that has been implicated in atherogenesis. However, to date the precise roles of Hpse in atherosclerosis and its mechanisms of action are not well defined. This study aims to provide new insights into the contribution of Hpse in different stages of atherosclerosis in vivo. METHODS: We generated Hpse gene-deficient mice on the atherosclerosis-prone apolipoprotein E gene knockout (ApoE-/-) background to investigate the impact of Hpse gene deficiency on the initiation and progression of atherosclerosis after 6 and 14 weeks high-fat diet feeding, respectively. Atherosclerotic lesion development, blood serum profiles, lesion composition and aortic immune cell populations were evaluated. RESULTS: Hpse-deficient mice exhibited significantly reduced atherosclerotic lesion burden in the aortic sinus and aorta at both time-points, independent of changes in plasma cholesterol levels. A significant reduction in the necrotic core size and an increase in smooth muscle cell content were also observed in advanced atherosclerotic plaques of Hpse-deficient mice. Additionally, Hpse deficiency reduced circulating and aortic levels of VCAM-1 at the initiation and progression stages of disease and circulating MCP-1 levels in the initiation but not progression stage. Moreover, the aortic levels of total leukocytes and dendritic cells in Hpse-deficient ApoE-/- mice were significantly decreased compared to control ApoE-/-mice at both disease stages. CONCLUSIONS: This study identifies Hpse as a key pro-inflammatory enzyme driving the initiation and progression of atherosclerosis and highlighting the potential of Hpse inhibitors as novel anti-inflammatory treatments for cardiovascular disease.


Asunto(s)
Aorta , Aterosclerosis , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Glucuronidasa , Ratones Noqueados para ApoE , Placa Aterosclerótica , Animales , Aterosclerosis/genética , Aterosclerosis/patología , Aterosclerosis/enzimología , Aterosclerosis/metabolismo , Glucuronidasa/deficiencia , Glucuronidasa/genética , Glucuronidasa/metabolismo , Aorta/patología , Aorta/metabolismo , Aorta/enzimología , Enfermedades de la Aorta/patología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/enzimología , Enfermedades de la Aorta/metabolismo , Dieta Alta en Grasa , Apolipoproteínas E/genética , Apolipoproteínas E/deficiencia , Ratones Endogámicos C57BL , Masculino , Molécula 1 de Adhesión Celular Vascular/metabolismo , Ratones , Ratones Noqueados , Seno Aórtico/patología , Necrosis
3.
Theranostics ; 14(6): 2427-2441, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646649

RESUMEN

Background: MER proto-oncogene tyrosine kinase (MerTK) is a key receptor for efferocytosis, a process for the clearance of apoptotic cells. MerTK is mainly expressed in macrophages and immature dendritic cells. There are very limited reports focused on MerTK biology in aortic endothelial cells (ECs). It remains unclear for the role of blood flow patterns in regulating MerTK-mediated efferocytosis in aortic ECs. This study was designed to investigate whether endothelial MerTK and EC efferocytosis respond to blood flow patterns during atherosclerosis. Methods: Big data analytics, RNA-seq and proteomics combined with our in vitro and in vivo studies were applied to reveal the potential molecular mechanisms. Partial carotid artery ligation combined with AAV-PCSK9 and high fat diet were used to set up acute atherosclerosis in 4 weeks. Results: Our data showed that MerTK is sensitive to blood flow patterns and is inhibited by disturbed flow and oscillatory shear stress in primary human aortic ECs (HAECs). The RNA-seq data in HAECs incubated with apoptotic cells showed that d-flow promotes pro-inflammatory pathway and senescence pathway. Our in vivo data of proteomics and immunostaining showed that, compared with WT group, MerTK-/- aggravates atherosclerosis in d-flow areas through upregulation of endothelial dysfunction markers (e.g. IL-1ß, NF-κB, TLR4, MAPK signaling, vWF, VCAM-1 and p22phox) and mitochondrial dysfunction. Interestingly, MerTK-/-induces obvious abnormal endothelial thickening accompanied with decreased endothelial efferocytosis, promoting the development of atherosclerosis. Conclusions: Our data suggests that blood flow patterns play an important role in regulating MerTK-mediated efferocytosis in aortic ECs, revealing a new promising therapeutic strategy with EC efferocytosis restoration to against atherosclerosis.


Asunto(s)
Aorta , Aterosclerosis , Células Endoteliales , Fagocitosis , Tirosina Quinasa c-Mer , Tirosina Quinasa c-Mer/metabolismo , Tirosina Quinasa c-Mer/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Aterosclerosis/fisiopatología , Humanos , Células Endoteliales/metabolismo , Animales , Aorta/metabolismo , Aorta/patología , Ratones , Apoptosis , Proto-Oncogenes Mas , Masculino , Ratones Endogámicos C57BL , Dieta Alta en Grasa , Células Cultivadas , Eferocitosis
4.
Cardiovasc Diabetol ; 23(1): 138, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664801

RESUMEN

BACKGROUND: Neutral cholesterol ester hydrolase 1 (NCEH1) plays a critical role in the regulation of cholesterol ester metabolism. Deficiency of NCHE1 accelerated atherosclerotic lesion formation in mice. Nonetheless, the role of NCEH1 in endothelial dysfunction associated with diabetes has not been explored. The present study sought to investigate whether NCEH1 improved endothelial function in diabetes, and the underlying mechanisms were explored. METHODS: The expression and activity of NCEH1 were determined in obese mice with high-fat diet (HFD) feeding, high glucose (HG)-induced mouse aortae or primary endothelial cells (ECs). Endothelium-dependent relaxation (EDR) in aortae response to acetylcholine (Ach) was measured. RESULTS: Results showed that the expression and activity of NCEH1 were lower in HFD-induced mouse aortae, HG-exposed mouse aortae ex vivo, and HG-incubated primary ECs. HG exposure reduced EDR in mouse aortae, which was exaggerated by endothelial-specific deficiency of NCEH1, whereas NCEH1 overexpression restored the impaired EDR. Similar results were observed in HFD mice. Mechanically, NCEH1 ameliorated the disrupted EDR by dissociating endothelial nitric oxide synthase (eNOS) from caveolin-1 (Cav-1), leading to eNOS activation and nitric oxide (NO) release. Moreover, interaction of NCEH1 with the E3 ubiquitin-protein ligase ZNRF1 led to the degradation of Cav-1 through the ubiquitination pathway. Silencing Cav-1 and upregulating ZNRF1 were sufficient to improve EDR of diabetic aortas, while overexpression of Cav-1 and downregulation of ZNRF1 abolished the effects of NCEH1 on endothelial function in diabetes. Thus, NCEH1 preserves endothelial function through increasing NO bioavailability secondary to the disruption of the Cav-1/eNOS complex in the endothelium of diabetic mice, depending on ZNRF1-induced ubiquitination of Cav-1. CONCLUSIONS: NCEH1 may be a promising candidate for the prevention and treatment of vascular complications of diabetes.


Asunto(s)
Caveolina 1 , Dieta Alta en Grasa , Células Endoteliales , Endotelio Vascular , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa de Tipo III , Vasodilatación , Animales , Masculino , Ratones , Aorta/enzimología , Aorta/fisiopatología , Aorta/metabolismo , Aorta/efectos de los fármacos , Aorta/patología , Caveolina 1/metabolismo , Caveolina 1/deficiencia , Caveolina 1/genética , Células Cultivadas , Diabetes Mellitus Experimental/enzimología , Diabetes Mellitus Experimental/fisiopatología , Células Endoteliales/enzimología , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Endotelio Vascular/fisiopatología , Endotelio Vascular/metabolismo , Endotelio Vascular/enzimología , Endotelio Vascular/efectos de los fármacos , Ratones Noqueados , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Obesidad/enzimología , Obesidad/fisiopatología , Obesidad/metabolismo , Transducción de Señal , Esterol Esterasa/metabolismo , Esterol Esterasa/genética , Ubiquitinación , Vasodilatación/efectos de los fármacos
5.
Nutrients ; 16(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38674863

RESUMEN

Copper (Cu), being an essential mineral, plays a crucial role in maintaining physiological homeostasis across multiple bodily systems, notably the cardiovascular system. However, an increased Cu level in the body may cause blood vessel dysfunction and oxidative stress, which is unfavorable for the cardiovascular system. Middle-aged (7-8 months old) male Wistar rats (n/group = 12) received a diet supplemented with 6.45 mg Cu/kg (100% of the recommended daily dietary quantity of copper) for 8 weeks (Group A). The experimental group received 12.9 mg Cu/kg of diet (200%-Group B). An ex vivo study revealed that supplementation with 200% Cu decreased the contraction of isolated aortic rings to noradrenaline (0.7-fold) through FP receptor modulation. Vasodilation to sodium nitroprusside (1.10-fold) and acetylcholine (1.13-fold) was potentiated due to the increased net effect of prostacyclin derived from cyclooxygenase-1. Nitric oxide (NO, 2.08-fold), superoxide anion (O2•-, 1.5-fold), and hydrogen peroxide (H2O2, 2.33-fold) measured in the aortic rings increased. Blood serum antioxidant status (TAS, 1.6-fold), Cu (1.2-fold), Zn (1.1-fold), and the Cu/Zn ratio (1.4-fold) increased. An increase in Cu (1.12-fold) and the Cu/Zn ratio (1.09-fold) was also seen in the rats' livers. Meanwhile, cyclooxygenase-1 (0.7-fold), cyclooxygenase-2 (0.4-fold) and glyceraldehyde 3-phosphate dehydrogenase (0.5-fold) decreased. Moreover, a negative correlation between Cu and Zn was found (r = -0.80) in rat serum. Supplementation with 200% Cu did not modify the isolated heart functioning. No significant difference was found in the body weight, fat/lean body ratio, and organ weight for either the heart or liver, spleen, kidney, and brain. Neither Fe nor Se, the Cu/Se ratio, the Se/Zn ratio (in serum and liver), heme oxygenase-1 (HO-1), endothelial nitric oxide synthase (eNOS), or intercellular adhesion molecule-1 (iCAM-1) (in serum) were modified. Supplementation with 200% of Cu potentiated pro-oxidant status and modified vascular contractility in middle-aged rats.


Asunto(s)
Cobre , Estrés Oxidativo , Ratas Wistar , Animales , Masculino , Cobre/sangre , Estrés Oxidativo/efectos de los fármacos , Ratas , Vasoconstricción/efectos de los fármacos , Antioxidantes/farmacología , Vasodilatación/efectos de los fármacos , Suplementos Dietéticos , Aorta/efectos de los fármacos , Aorta/metabolismo
6.
Nutrients ; 16(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38674885

RESUMEN

The cellular and molecular mechanisms of atherosclerosis are still unclear. Type 2 innate lymphocytes (ILC2) exhibit anti-inflammatory properties and protect against atherosclerosis. This study aimed to elucidate the pathogenesis of atherosclerosis development using atherosclerosis model mice (ApoE KO mice) and mice deficient in IL-33 receptor ST2 (ApoEST2 DKO mice). Sixteen-week-old male ApoE KO and ApoEST2 DKO mice were subjected to an 8-week regimen of a high-fat, high-sucrose diet. Atherosclerotic foci were assessed histologically at the aortic valve ring. Chronic inflammation was assessed using flow cytometry and real-time polymerase chain reaction. In addition, saturated fatty acids (palmitic acid) and IL-33 were administered to human aortic endothelial cells (HAECs) to assess fatty acid metabolism. ApoEST2 DKO mice with attenuated ILC2 had significantly worse atherosclerosis than ApoE KO mice. The levels of saturated fatty acids, including palmitic acid, were significantly elevated in the arteries and serum of ApoEST2 DKO mice. Furthermore, on treating HAECs with saturated fatty acids with or without IL-33, the Oil Red O staining area significantly decreased in the IL-33-treated group compared to that in the non-treated group. IL-33 potentially prevented the accumulation of saturated fatty acids within atherosclerotic foci.


Asunto(s)
Aterosclerosis , Ácidos Grasos , Interleucina-33 , Ratones Noqueados , Animales , Interleucina-33/metabolismo , Interleucina-33/genética , Aterosclerosis/metabolismo , Masculino , Ratones , Ácidos Grasos/metabolismo , Humanos , Modelos Animales de Enfermedad , Ácido Palmítico/farmacología , Apolipoproteínas E/genética , Apolipoproteínas E/deficiencia , Dieta Alta en Grasa , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Proteína 1 Similar al Receptor de Interleucina-1/genética , Células Endoteliales/metabolismo , Ratones Noqueados para ApoE , Linfocitos/metabolismo , Ratones Endogámicos C57BL , Aorta/metabolismo , Aorta/patología , Inmunidad Innata
7.
J Physiol ; 602(9): 1939-1951, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38606903

RESUMEN

Recombinant human proteoglycan 4 (rhPRG4) is a macromolecular mucin-like glycoprotein that is classically studied as a lubricant within eyes and joints. Given that endogenously produced PRG4 is present within atherosclerotic lesions and genetic PRG4 deficiency increases atherosclerosis susceptibility in mice, in the current study we investigated the anti-atherogenic potential of chronic rhPRG4 treatment. Female low-density lipoprotein receptor knockout mice were fed an atherogenic Western-type diet for 6 weeks and injected three times per week intraperitoneally with 0.5 mg rhPRG4 or PBS as control. Treatment with rhPRG4 was associated with a small decrease in plasma-free cholesterol levels, without a change in cholesteryl ester levels. A marked increase in the number of peritoneal foam cells was detected in response to the peritoneal rhPRG4 administration, which could be attributed to elevated peritoneal leukocyte MSR1 expression levels. However, rhPRG4-treated mice exhibited significantly smaller aortic root lesions of 278 ± 21 × 103 µm2 compared with 339 ± 15 × 103 µm2 in the aortic root of control mice. The overall decreased atherosclerosis susceptibility coincided with a shift in the monocyte and macrophage polarization states towards the patrolling and anti-inflammatory M2-like phenotypes, respectively. Furthermore, rhPRG4 treatment significantly reduced macrophage gene expression levels as well as plasma protein levels of the pro-inflammatory/pro-atherogenic cytokine TNF-alpha. In conclusion, we have shown that peritoneal administration and subsequent systemic exposure to rhPRG4 beneficially impacts the inflammatory state and reduces atherosclerosis susceptibility in mice. Our findings highlight that PRG4 is not only a lubricant but also acts as an anti-inflammatory agent. KEY POINTS: Endogenously produced proteoglycan 4 is found in atherosclerotic lesions and its genetic deficiency in mice is associated with enhanced atherosclerosis susceptibility. In this study we investigated the anti-atherogenic potential of chronic treatment with recombinant human PRG4 in hypercholesterolaemic female low-density lipoprotein receptor knockout mice. We show that recombinant human PRG4 stimulates macrophage foam cell formation, but also dampens the pro-inflammatory state of monocyte/macrophages, eventually leading to a significant reduction in plasma TNF-alpha levels and a lowered atherosclerosis susceptibility. Our findings highlight that peritoneal recombinant human PRG4 treatment can execute effects both locally and systemically and suggest that it will be of interest to study whether rhPRG4 treatment is also able to inhibit the progression and/or induce regression of previously established atherosclerotic lesions.


Asunto(s)
Aterosclerosis , Inflamación , Ratones Noqueados , Proteoglicanos , Receptores de LDL , Proteínas Recombinantes , Animales , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Aterosclerosis/metabolismo , Femenino , Proteoglicanos/farmacología , Proteoglicanos/metabolismo , Proteoglicanos/genética , Receptores de LDL/genética , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/administración & dosificación , Ratones , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Ratones Endogámicos C57BL , Aorta/metabolismo , Aorta/efectos de los fármacos , Aorta/patología , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Células Espumosas/metabolismo , Células Espumosas/efectos de los fármacos
8.
Biochem Biophys Res Commun ; 712-713: 149961, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38648679

RESUMEN

Blood pressure is a crucial physiological parameter and its abnormalities can cause a variety of health problems. We have previously reported that mice with systemic deletion of nardilysin (NRDC), an M16 family metalloprotease, exhibit hypotension. In this study, we aimed to clarify the role of NRDC in vascular smooth muscle cell (VSMC) by generating VSMC-specific Nrdc knockout (VSMC-KO) mice. Our findings reveal that VSMC-KO mice also exhibit hypotension. Aortas isolated from VSMC-KO mice exhibited a weakened contractile response to phenylephrine, accompanied by reduced phosphorylation of myosin light chain 2 and decreased rhoA expression. VSMC isolated from VSMC-KO aortas showed a reduced increase in intracellular Ca2+ concentration induced by α-stimulants. These findings suggest that NRDC in VSMC regulates vascular contraction and blood pressure by modulating Ca2+ dynamics.


Asunto(s)
Presión Sanguínea , Calcio , Metaloendopeptidasas , Ratones Noqueados , Músculo Liso Vascular , Miocitos del Músculo Liso , Animales , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citología , Músculo Liso Vascular/efectos de los fármacos , Calcio/metabolismo , Ratones , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Metaloendopeptidasas/metabolismo , Metaloendopeptidasas/genética , Masculino , Ratones Endogámicos C57BL , Hipotensión/metabolismo , Células Cultivadas , Aorta/metabolismo , Aorta/citología , Vasoconstricción/efectos de los fármacos , Señalización del Calcio
9.
BMC Cardiovasc Disord ; 24(1): 180, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532364

RESUMEN

BACKGROUND: Acute type A aortic dissection (AAAD) is a devastating disease. Human aortic smooth muscle cells (HASMCs) exhibit decreased proliferation and increased apoptosis, and integrin α5ß1 and FAK are important proangiogenic factors involved in regulating angiogenesis. The aim of this study was to investigate the role of integrin α5ß1 and FAK in patients with AAAD and the potential underlying mechanisms. METHODS: Aortic tissue samples were obtained from 8 patients with AAAD and 4 organ donors at Zhongshan Hospital of Fudan University. The level of apoptosis in the aortic tissues was assessed by immunohistochemical (IHC) staining and terminal-deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) assays. The expression of integrin α5ß1 and FAK was determined. Integrin α5ß1 was found to be significantly expressed in HASMCs, and its interaction with FAK was assessed via coimmunoprecipitation (Co-IP) analysis. Proliferation and apoptosis were assessed by Cell Counting Kit-8 (CCK-8) assays and flow cytometry after integrin α5ß1 deficiency. RESULTS: The levels of integrin α5ß1 and FAK were both significantly decreased in patients with AAAD. Downregulating the expression of integrin α5ß1-FAK strongly increased apoptosis and decreased proliferation in HASMCs, indicating that integrin α5ß1-FAK might play an important role in the development of AAAD. CONCLUSIONS: Downregulation of integrin α5ß1-FAK is associated with increased apoptosis and decreased proliferation in aortic smooth muscle cells and may be a potential therapeutic strategy for AAAD.


Asunto(s)
Disección Aórtica , Integrina alfa5beta1 , Humanos , Aorta/metabolismo , Apoptosis , Integrina alfa5beta1/metabolismo , Miocitos del Músculo Liso/metabolismo
10.
Sci Rep ; 14(1): 6959, 2024 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521811

RESUMEN

Abdominal aortic aneurysm (AAA) is a deadly, permanent ballooning of the aortic artery. Pharmacological and genetic studies have pointed to multiple proteins, including microsomal prostaglandin E2 synthase-1 (mPGES-1), as potentially promising targets. However, it remains unknown whether administration of an mPGES-1 inhibitor can effectively attenuate AAA progression in animal models. There are still no FDA-approved pharmacological treatments for AAA. Current research stresses the importance of both anti-inflammatory drug targets and rigor of translatability. Notably, mPGES-1 is an inducible enzyme responsible for overproduction of prostaglandin E2 (PGE2)-a well-known principal pro-inflammatory prostanoid. Here we demonstrate for the first time that a highly selective mPGES-1 inhibitor (UK4b) can completely block further growth of AAA in the ApoE-/- angiotensin (Ang)II mouse model. Our findings show promise for the use of a mPGES-1 inhibitor like UK4b as interventional treatment of AAA and its potential translation into the clinical setting.


Asunto(s)
Aneurisma de la Aorta Abdominal , Animales , Ratones , Angiotensina II , Aorta/metabolismo , Aneurisma de la Aorta Abdominal/tratamiento farmacológico , Aneurisma de la Aorta Abdominal/metabolismo , Dinoprostona/uso terapéutico , Modelos Animales de Enfermedad , Prostaglandina-E Sintasas/genética , Prostaglandinas
11.
Eur J Pharmacol ; 970: 176475, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38438061

RESUMEN

Sodium valproate (VPA), a histone deacetylase (HDAC) inhibitor, could be a promising candidate to treat acute myocardial infarction (AMI). In this study, AMI was induced in New Zealand White rabbits by occluding the left circumflex coronary artery for 1 h, followed by reperfusion. The animals were distributed into three experimental groups: the sham-operated group (SHAM), the AMI group and the AMI + VPA group (AMI treated with VPA 500 mg/kg/day). After 5 weeks, abdominal aorta was removed and used for isometric recording of tension in organ baths or protein expression by Western blot, and plasma for the determination of nitrate/nitrite (NOx) levels by colorimetric assay. Our results indicated that AMI induced a reduction of the endothelium-dependent response to acetylcholine without modifying the endothelium-independent response to sodium nitroprusside, leading to endothelial dysfunction. VPA treatment reversed AMI-induced endothelial dysfunction and even increased NO sensitivity in vascular smooth muscle. This response was consistent with an antioxidant effect of VPA, as it was able to reverse the superoxide dismutase 1 (SOD 1) down-regulation induced by AMI. Our experiments also ruled out that the VPA mechanism was related to eNOS, iNOS, sGC and arginase expression or changes in NOx plasma levels. Therefore, we conclude that VPA improves vasodilation by increasing NO bioavailability, likely due to its antioxidant effect. Since endothelial dysfunction was closely related to AMI, VPA treatment could increase aortic blood flow, making it a potential agent in reperfusion therapy that can prevent the vascular damage.


Asunto(s)
Infarto del Miocardio , Ácido Valproico , Conejos , Animales , Ácido Valproico/farmacología , Ácido Valproico/uso terapéutico , Antioxidantes , Infarto del Miocardio/metabolismo , Aorta/metabolismo , Endotelio/metabolismo , Endotelio Vascular/metabolismo
12.
Biomed Pharmacother ; 174: 116466, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552439

RESUMEN

Here, by using in vitro and ex vivo approaches, we elucidate the impairment of the hydrogen sulfide (H2S) pathway in vascular complications associated with metabolic syndrome (MetS). In the in vitro model simulating hyperlipidemic/hyperglycemic conditions, we observe significant hallmarks of endothelial dysfunction, including eNOS/NO signaling impairment, ROS overproduction, and a reduction in CSE-derived H2S. Transitioning to an ex vivo model using db/db mice, a genetic MetS model, we identify a downregulation of CBS and CSE expression in aorta, coupled with a diminished L-cysteine-induced vasorelaxation. Molecular mechanisms of eNOS/NO signaling impairment, dissected using pharmacological and molecular approaches, indicate an altered eNOS/Cav-1 ratio, along with reduced Ach- and Iso-induced vasorelaxation and increased L-NIO-induced contraction. In vivo treatment with the H2S donor Erucin ameliorates vascular dysfunction observed in db/db mice without impacting eNOS, further highlighting a specific action on smooth muscle component rather than the endothelium. Analyzing the NO signaling pathway in db/db mice aortas, reduced cGMP levels were detected, implicating a defective sGC/cGMP signaling. In vivo Erucin administration restores cGMP content. This beneficial effect involves an increased sGC activity, due to enzyme persulfidation observed in sGC overexpressed cells, coupled with PDE5 inhibition. In conclusion, our study demonstrates a pivotal role of reduced cGMP levels in impaired vasorelaxation in a murine model of MetS involving an impairment of both H2S and NO signaling. Exogenous H2S supplementation through Erucin represents a promising alternative in MetS therapy, targeting smooth muscle cells and supporting the importance of lifestyle and nutrition in managing MetS.


Asunto(s)
GMP Cíclico , Sulfuro de Hidrógeno , Síndrome Metabólico , Ratones Endogámicos C57BL , Guanilil Ciclasa Soluble , Animales , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , GMP Cíclico/metabolismo , Síndrome Metabólico/metabolismo , Ratones , Masculino , Guanilil Ciclasa Soluble/metabolismo , Vasodilatación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo III/metabolismo , Humanos , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Óxido Nítrico/metabolismo , Aorta/efectos de los fármacos , Aorta/metabolismo , Enfermedades Vasculares/metabolismo , Modelos Animales de Enfermedad
13.
Cardiovasc Res ; 120(6): 658-670, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454645

RESUMEN

AIMS: Vascular calcification is highly prevalent in atherosclerosis, diabetes, and chronic kidney disease. It is associated with increased morbidity and mortality in patients with cardiovascular disease. Matrix metalloproteinase 3 (MMP-3), also known as stromelysin-1, is part of the large matrix metalloproteinase family. It can degrade extracellular matrix components of the arterial wall including elastin, which plays a central role in medial calcification. In this study, we sought to determine the role of MMP-3 in medial calcification. METHODS AND RESULTS: We found that MMP-3 was increased in rodent models of medial calcification as well as in vascular smooth muscle cells (SMCs) cultured in a phosphate calcification medium. It was also highly expressed in calcified tibial arteries in patients with peripheral arterial disease (PAD). Knockdown and inhibition of MMP-3 suppressed phosphate-induced SMC osteogenic transformation and calcification, whereas the addition of a recombinant MMP-3 protein facilitated SMC calcification. In an ex vivo organ culture model and a rodent model of medial calcification induced by vitamin D3, we found that MMP-3 deficiency significantly suppressed medial calcification in the aorta. We further found that medial calcification and osteogenic transformation were significantly reduced in SMC-specific MMP-3-deficient mice, suggesting that MMP-3 in SMCs is an important factor in this process. CONCLUSION: These findings suggest that MMP-3 expression in vascular SMCs is an important regulator of medial calcification and that targeting MMP-3 could provide a therapeutic strategy to reduce it and address its consequences in patients with PAD.


Asunto(s)
Eliminación de Gen , Metaloproteinasa 3 de la Matriz , Calcificación Vascular , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Metaloproteinasa 3 de la Matriz/deficiencia , Metaloproteinasa 3 de la Matriz/genética , Metaloproteinasa 3 de la Matriz/metabolismo , Calcificación Vascular/enzimología , Calcificación Vascular/genética , Modelos Animales de Enfermedad , Músculo Liso Vascular/citología , Humanos , Proteínas Recombinantes/farmacología , Aorta/metabolismo , Expresión Génica
14.
Hypertension ; 81(4): 738-751, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38318714

RESUMEN

Aortic diseases such as atherosclerosis, aortic aneurysms, and aortic stiffening are significant complications that can have significant impact on end-stage cardiovascular disease. With limited pharmacological therapeutic strategies that target the structural changes in the aorta, surgical intervention remains the only option for some patients with these diseases. Although there have been significant contributions to our understanding of the cellular architecture of the diseased aorta, particularly in the context of atherosclerosis, furthering our insight into the cellular drivers of disease is required. The major cell types of the aorta are well defined; however, the advent of single-cell RNA sequencing provides unrivaled insights into the cellular heterogeneity of each aortic cell type and the inferred biological processes associated with each cell in health and disease. This review discusses previous concepts that have now been enhanced with recent advances made by single-cell RNA sequencing with a focus on aortic cellular heterogeneity.


Asunto(s)
Enfermedades de la Aorta , Aterosclerosis , Humanos , ARN , Aorta/metabolismo , Enfermedades de la Aorta/genética , Perfilación de la Expresión Génica , Aterosclerosis/genética , Aterosclerosis/metabolismo
15.
Sci Adv ; 10(7): eadj7481, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38354249

RESUMEN

Exercise promotes pulsatile shear stress in the arterial circulation and ameliorates cardiometabolic diseases. However, exercise-mediated metabolic transducers for vascular protection remain under-investigated. Untargeted metabolomic analysis demonstrated that wild-type mice undergoing voluntary wheel running exercise expressed increased endothelial stearoyl-CoA desaturase 1 (SCD1) that catalyzes anti-inflammatory lipid metabolites, namely, oleic (OA) and palmitoleic acids (PA), to mitigate NF-κB-mediated inflammatory responses. In silico analysis revealed that exercise augmented time-averaged wall shear stress but mitigated flow recirculation and oscillatory shear index in the lesser curvature of the mouse aortic arch. Following exercise, endothelial Scd1-deleted mice (Ldlr-/- Scd1EC-/-) on high-fat diet developed persistent VCAM1-positive endothelium in the lesser curvature and the descending aorta, whereas SCD1 overexpression via adenovirus transfection mitigated endoplasmic reticulum stress and inflammatory biomarkers. Single-cell transcriptomics of the aorta identified Scd1-positive and Vcam1-negative endothelial subclusters interacting with other candidate genes. Thus, exercise mitigates flow recirculation and activates endothelial SCD1 to catalyze OA and PA for vascular endothelial protection.


Asunto(s)
Aorta , Actividad Motora , Animales , Ratones , Aorta/metabolismo , Dieta Alta en Grasa , Endotelio Vascular/metabolismo , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo
16.
Arterioscler Thromb Vasc Biol ; 44(4): 898-914, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38328934

RESUMEN

BACKGROUND: Smooth muscle cells (SMCs), which make up the medial layer of arteries, are key cell types involved in cardiovascular disease, the leading cause of mortality and morbidity worldwide. In response to microenvironment alterations, SMCs dedifferentiate from a contractile to a synthetic phenotype characterized by an increased proliferation, migration, production of ECM (extracellular matrix) components, and decreased expression of SMC-specific contractile markers. These phenotypic changes result in vascular remodeling and contribute to the pathogenesis of cardiovascular disease, including coronary artery disease, stroke, hypertension, and aortic aneurysms. Here, we aim to identify the genetic variants that regulate ECM secretion in SMCs and predict the causal proteins associated with vascular disease-related loci identified in genome-wide association studies. METHODS: Using human aortic SMCs from 123 multiancestry healthy heart transplant donors, we collected the serum-free media in which the cells were cultured for 24 hours and conducted liquid chromatography-tandem mass spectrometry-based proteomic analysis of the conditioned media. RESULTS: We measured the abundance of 270 ECM and related proteins. Next, we performed protein quantitative trait locus mapping and identified 20 loci associated with secreted protein abundance in SMCs. We functionally annotated these loci using a colocalization approach. This approach prioritized the genetic variant rs6739323-A at the 2p22.3 locus, which is associated with lower expression of LTBP1 (latent-transforming growth factor beta-binding protein 1) in SMCs and atherosclerosis-prone areas of the aorta, and increased risk for SMC calcification. We found that LTBP1 expression is abundant in SMCs, and its expression at mRNA and protein levels was reduced in unstable and advanced atherosclerotic plaque lesions. CONCLUSIONS: Our results unravel the SMC proteome signature associated with vascular disorders, which may help identify potential therapeutic targets to accelerate the pathway to translation.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Humanos , Enfermedades Cardiovasculares/metabolismo , Estudio de Asociación del Genoma Completo , Proteómica , Músculo Liso Vascular/metabolismo , Aorta/metabolismo , Aterosclerosis/patología , Miocitos del Músculo Liso/metabolismo , Células Cultivadas
17.
Arterioscler Thromb Vasc Biol ; 44(3): 741-754, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38299357

RESUMEN

BACKGROUND: The metabolic alterations occurring within the arterial architecture during atherosclerosis development remain poorly understood, let alone those particular to each arterial tunica. We aimed first to identify, in a spatially resolved manner, the specific metabolic changes in plaque, media, adventitia, and cardiac tissue between control and atherosclerotic murine aortas. Second, we assessed their translatability to human tissue and plasma for cardiovascular risk estimation. METHODS: In this observational study, mass spectrometry imaging (MSI) was applied to identify region-specific metabolic differences between atherosclerotic (n=11) and control (n=11) aortas from low-density lipoprotein receptor-deficient mice, via histology-guided virtual microdissection. Early and advanced plaques were compared within the same atherosclerotic animals. Progression metabolites were further analyzed by MSI in 9 human atherosclerotic carotids and by targeted mass spectrometry in human plasma from subjects with elective coronary artery bypass grafting (cardiovascular risk group, n=27) and a control group (n=27). RESULTS: MSI identified 362 local metabolic alterations in atherosclerotic mice (log2 fold-change ≥1.5; P≤0.05). The lipid composition of cardiac tissue is altered during atherosclerosis development and presents a generalized accumulation of glycerophospholipids, except for lysolipids. Lysolipids (among other glycerophospholipids) were found at elevated levels in all 3 arterial layers of atherosclerotic aortas. LPC(18:0) (lysophosphatidylcholine; P=0.024) and LPA(18:1) (lysophosphatidic acid; P=0.025) were found to be significantly elevated in advanced plaques as compared with mouse-matched early plaques. Higher levels of both lipid species were also observed in fibrosis-rich areas of advanced- versus early-stage human samples. They were found to be significantly reduced in human plasma from subjects with elective coronary artery bypass grafting (P<0.001 and P=0.031, respectively), with LPC(18:0) showing significant association with cardiovascular risk (odds ratio, 0.479 [95% CI, 0.225-0.883]; P=0.032) and diagnostic potential (area under the curve, 0.778 [95% CI, 0.638-0.917]). CONCLUSIONS: An altered phospholipid metabolism occurs in atherosclerosis, affecting both the aorta and the adjacent heart tissue. Plaque-progression lipids LPC(18:0) and LPA(18:1), as identified by MSI on tissue, reflect cardiovascular risk in human plasma.


Asunto(s)
Enfermedades de la Aorta , Aterosclerosis , Enfermedades Cardiovasculares , Placa Aterosclerótica , Humanos , Animales , Ratones , Placa Aterosclerótica/metabolismo , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/metabolismo , Factores de Riesgo , Aterosclerosis/diagnóstico , Aterosclerosis/metabolismo , Aorta/diagnóstico por imagen , Aorta/metabolismo , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/metabolismo , Glicerofosfolípidos/metabolismo , Factores de Riesgo de Enfermedad Cardiaca
18.
Biochem Biophys Res Commun ; 702: 149628, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38335704

RESUMEN

Atherosclerosis (AS) is considered to be one of the main pathogenic factors of coronary heart disease, cerebral infarction and peripheral vascular disease. Oxidative stress and inflammation run through the occurrence and development of atherosclerosis and related cardiovascular events. Muscone is a natural extract of deer musk and also the main physiological active substance of musk. This study investigated the impact of muscone on atherosclerosis. ApoE-/- mice were used to establised AS model and injected with low-dose (4 mg/kg/day) or high-dose (8 mg/kg/day) of muscone intraperitoneally for 4 weeks. Then aortic tissues were collected, and pathological sections of the aorta were prepared for oil red staining, HE and masson staining. The changes of MDA, SOD, VCAM-1, NF-κB, and TNF-α were observed by Western blotting or immunofluorescence staining. The results showed that high-dose muscone could effectively reduce the plaque area/aortic root area and relative atherosclerotic area, reduce the collagen composition in plaque tissue. In addition, we also found that high-dose muscone can effectively increase MDA level, reduce the level of SOD, and inhibit the expression of VCAM-1, NF-κB/p65, TNF-α in arterial plaques. Our results indicate that the administration of muscone has the benefit of inhibiting atherosclerosis. The potential mechanisms may be associated with antioxidant effect and inhibition of inflammatory reaction in arterial plaques. With the increasing understanding of the relationship between muscone and atherosclerosis, muscone has high potential value as a new drug to treat atherosclerosis.


Asunto(s)
Aterosclerosis , Cicloparafinas , Ciervos , Placa Aterosclerótica , Ratones , Animales , Placa Aterosclerótica/patología , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo , Ratones Noqueados para ApoE , Ciervos/metabolismo , Aterosclerosis/metabolismo , Inflamación/patología , Aorta/metabolismo , Superóxido Dismutasa/metabolismo , Apolipoproteínas E/metabolismo
19.
Nat Commun ; 15(1): 1604, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383534

RESUMEN

Hematopoietic stem cells (HSCs) develop from the hemogenic endothelium (HE) in the aorta- gonads-and mesonephros (AGM) region and reside within Intra-aortic hematopoietic clusters (IAHC) along with hematopoietic progenitors (HPC). The signalling mechanisms that distinguish HSCs from HPCs are unknown. Notch signaling is essential for arterial specification, IAHC formation and HSC activity, but current studies on how Notch segregates these different fates are inconsistent. We now demonstrate that Notch activity is highest in a subset of, GFI1 + , HSC-primed HE cells, and is gradually lost with HSC maturation. We uncover that the HSC phenotype is maintained due to increasing levels of NOTCH1 and JAG1 interactions on the surface of the same cell (cis) that renders the NOTCH1 receptor from being activated. Forced activation of the NOTCH1 receptor in IAHC activates a hematopoietic differentiation program. Our results indicate that NOTCH1-JAG1 cis-inhibition preserves the HSC phenotype in the hematopoietic clusters of the embryonic aorta.


Asunto(s)
Células Madre Hematopoyéticas , Receptor Notch1 , Receptor Notch1/genética , Receptor Notch1/metabolismo , Células Madre Hematopoyéticas/metabolismo , Diferenciación Celular/genética , Aorta/metabolismo , Arterias/metabolismo , Mesonefro , Gónadas/metabolismo
20.
Biochem Biophys Res Commun ; 701: 149552, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38335918

RESUMEN

The Interleukin-17 (IL17) family is a group of cytokines implicated in the etiology of several inflammatory diseases. Interleukin-17 receptor D (IL17RD), also known as Sef (similar expression to fibroblast growth factor) belonging to the family of IL17 receptors, has been shown to modulate IL17A-associated inflammatory phenotypes. The objective of this study was to test the hypothesis that IL17RD promotes endothelial cell activation and consequent leukocyte adhesion. We utilized primary human aortic endothelial cells and demonstrated that RNAi targeting of IL17RD suppressed transcript levels by 83 % compared to non-targeted controls. Further, RNAi knockdown of IL17RD decreased the adhesion of THP-1 monocytic cells onto a monolayer of aortic endothelial cells in response to IL17A. Additionally, we determined that IL17A did not significantly enhance the activation of canonical MAPK and NFκB pathways in endothelial cells, and further did not significantly affect the expression of VCAM-1 and ICAM-1 in aortic endothelial cells, which is contrary to previous findings. We also determined the functional relevance of our findings in vivo by comparing the expression of endothelial VCAM-1 and ICAM-1 and leukocyte infiltration in the aorta in Western diet-fed Il17rd null versus wild-type mice. Our results showed that although Il17rd null mice do not have significant alteration in aortic expression of VCAM-1 and ICAM-1 in endothelial cells, they exhibit decreased accumulation of proinflammatory monocytes and neutrophils, suggesting that endothelial IL17RD induced in vivo myeloid cell accumulation is not dependent on upregulation of VCAM-1 and ICAM-1 expression. We further performed proteomics analysis to identify potential molecular mediators of the IL17A/IL17RD signaling axis. Collectively, our results underscore a critical role for Il17rd in the regulation of aortic myeloid cell infiltration in the context of Western diet feeding.


Asunto(s)
Células Endoteliales , Molécula 1 de Adhesión Intercelular , Humanos , Animales , Ratones , Molécula 1 de Adhesión Intercelular/metabolismo , Células Endoteliales/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/metabolismo , Dieta Occidental , Aorta/metabolismo , Células Mieloides/metabolismo , Monocitos/metabolismo , Adhesión Celular , Receptores de Interleucina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA