Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 737
Filtrar
1.
Medicine (Baltimore) ; 103(33): e39177, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39151519

RESUMEN

The Golgi apparatus (GA), an organelle that processes, sorts, and transports proteins synthesized by the endoplasmic reticulum, is also involved in many cellular processes associated with cancer, such as angiogenesis, the innate immune response, and tumor invasion and migration. We aimed to construct a breast cancer (BC) prognosis prediction model based on GA-related genetic information to evaluate the prognosis of patients with BC more accurately than existing models and to stratify patients for clinical therapy. In this study, The Cancer Genome Atlas-breast invasive carcinoma was used as the training cohort, and the Molecular Taxonomy of Breast Cancer International Consortium cohort was used as the validation cohort. Using bioinformatics methods, we constructed a GA-related gene risk score (GRS). The GRS was used to divide BC patients into a high-GRS group and a low-GRS group, and functional analysis, survival analysis, mutation analysis, immune landscape analysis, and metabolic analysis were performed to compare the 2 groups. Finally, a nomogram was constructed for clinical application. The genes in the GRS model were mainly related to the glucose metabolism pathway, and the main mutations in the 2 groups of patients were mutations in TP53 and CHD1. The mutation rate in the high-GRS group was greater than that in the low-GRS group. The high GRS group had higher tumor immune activity glycolysis; the pentose phosphate pathway tended to be the dominant metabolic pathways in this group, while fatty acid oxidation and glutamine catabolism tended to be dominant in the low-GRS group. GA-related genes were used to construct a prediction model for BC patients and had high accuracy in predicting prognosis. The mutations associated with the GRS are mainly TP53 and CDH1. Interestingly, the GRS is correlated with glucose metabolism in terms of gene expression and functional enrichment. In summary, the role of GRS-related genes in glucose metabolism is worthy of further study.


Asunto(s)
Neoplasias de la Mama , Aparato de Golgi , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Pronóstico , Aparato de Golgi/metabolismo , Aparato de Golgi/genética , Mutación , Nomogramas , Biología Computacional/métodos , Persona de Mediana Edad , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo
2.
Adv Sci (Weinh) ; 11(38): e2402550, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39119875

RESUMEN

Chronic pancreatitis (CP) is a complex disease with genetic and environmental factors at play. Through trio exome sequencing, a de novo SEC16A frameshift variant in a Chinese teenage CP patient is identified. Subsequent targeted next-generation sequencing of the SEC16A gene in 1,061 Chinese CP patients and 1,196 controls reveals a higher allele frequency of rare nonsynonymous SEC16A variants in patients (4.90% vs 2.93%; odds ratio [OR], 1.71; 95% confidence interval [CI], 1.26-2.33). Similar enrichments are noted in a French cohort (OR, 2.74; 95% CI, 1.67-4.50) and in a biobank meta-analysis (OR, 1.16; 95% CI, 1.04-1.31). Notably, Chinese CP patients with SEC16A variants exhibit a median onset age 5 years earlier than those without (40.0 vs 45.0; p = 0.012). Functional studies using three CRISPR/Cas9-edited HEK293T cell lines show that loss-of-function SEC16A variants disrupt coat protein complex II (COPII) formation, impede secretory protein vesicles trafficking, and induce endoplasmic reticulum (ER) stress due to protein overload. Sec16a+/- mice, which demonstrate impaired zymogen secretion and exacerbated ER stress compared to Sec16a+/+, are further generated. In cerulein-stimulated pancreatitis models, Sec16a+/- mice display heightened pancreatic inflammation and fibrosis compared to wild-type mice. These findings implicate a novel pathogenic mechanism predisposing to CP.


Asunto(s)
Estrés del Retículo Endoplásmico , Retículo Endoplásmico , Pancreatitis Crónica , Adolescente , Adulto , Animales , Femenino , Humanos , Masculino , Ratones , China , Modelos Animales de Enfermedad , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/genética , Estrés del Retículo Endoplásmico/genética , Predisposición Genética a la Enfermedad/genética , Aparato de Golgi/metabolismo , Aparato de Golgi/genética , Células HEK293 , Pancreatitis Crónica/genética , Pancreatitis Crónica/metabolismo
4.
Biochim Biophys Acta Gen Subj ; 1868(9): 130663, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38936637

RESUMEN

BACKGROUND: N-Acetylglucosaminyltransferase-III (GnT-III, also designated MGAT3) catalyzes the formation of a specific N-glycan branch, bisecting GlcNAc, in the Golgi apparatus. Bisecting GlcNAc is a key residue that suppresses N-glycan maturation and is associated with the pathogenesis of cancer and Alzheimer's disease. However, it remains unclear how GnT-III recognizes its substrates and how GnT-III activity is regulated in cells. METHODS: Using AlphaFold2 and structural comparisons, we predicted the key amino acid residues in GnT-III that interact with substrates in the catalytic pocket. We also performed in vitro activity assay, lectin blotting analysis and N-glycomic analysis using point mutants to assess their activity. RESULTS: Our data suggested that E320 of human GnT-III is the catalytic center. More interestingly, we found a unique mutant, K346T, that exhibited lower in vitro activity and higher intracellular activity than wild-type GnT-III. The enzyme assays using various substrates showed that the substrate specificity of K346T was unchanged, whereas cycloheximide chase experiments revealed that the K346T mutant has a slightly shorter half-life, suggesting that the mutant is unstable possibly due to a partial misfolding. Furthermore, TurboID-based proximity labeling showed that the localization of the K346T mutant is shifted slightly to the cis side of the Golgi, probably allowing for prior action to competing galactosyltransferases. CONCLUSIONS: The slight difference in K346T localization may be responsible for the higher biosynthetic activity despite the reduced activity. GENERAL SIGNIFICANCE: Our findings underscore the importance of fine intra-Golgi localization and reaction orders of glycosyltransferases for the biosynthesis of complex glycan structures in cells.


Asunto(s)
Aparato de Golgi , N-Acetilglucosaminiltransferasas , Humanos , N-Acetilglucosaminiltransferasas/metabolismo , N-Acetilglucosaminiltransferasas/genética , Especificidad por Sustrato , Aparato de Golgi/metabolismo , Aparato de Golgi/genética , Mutación , Polisacáridos/metabolismo , Dominio Catalítico , Glicosilación
5.
PLoS One ; 19(6): e0304001, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38885274

RESUMEN

The plant BEACH-domain protein SPIRRIG (SPI) is involved in regulating cell morphogenesis and salt stress responses in Arabidopsis thaliana, Arabis alpina, and Marchantia polymorpha and was reported to function in the context of two unrelated cellular processes: vesicular trafficking and P-body mediated RNA metabolism. To further explore the molecular function of SPI, we isolated a second-site mutant, specifically rescuing the spi mutant trichome phenotype. The molecular analysis of the corresponding gene revealed a dominant negative mutation in RABE1C, a ras-related small GTP-binding protein that localizes to Golgi. Taken together, our data identified the genetic interaction between RABE1C and SPI, which is beneficial for further dissecting the function of SPI in vesicle trafficking-associated cell morphogenesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Mutación , Fenotipo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Aparato de Golgi/metabolismo , Aparato de Golgi/genética , Tricomas/genética
6.
Genet Med ; 26(9): 101166, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38767059

RESUMEN

PURPOSE: The function of FAM177A1 and its relationship to human disease is largely unknown. Recent studies have demonstrated FAM177A1 to be a critical immune-associated gene. One previous case study has linked FAM177A1 to a neurodevelopmental disorder in 4 siblings. METHODS: We identified 5 individuals from 3 unrelated families with biallelic variants in FAM177A1. The physiological function of FAM177A1 was studied in a zebrafish model organism and human cell lines with loss-of-function variants similar to the affected cohort. RESULTS: These individuals share a characteristic phenotype defined by macrocephaly, global developmental delay, intellectual disability, seizures, behavioral abnormalities, hypotonia, and gait disturbance. We show that FAM177A1 localizes to the Golgi complex in mammalian and zebrafish cells. Intersection of the RNA sequencing and metabolomic data sets from FAM177A1-deficient human fibroblasts and whole zebrafish larvae demonstrated dysregulation of pathways associated with apoptosis, inflammation, and negative regulation of cell proliferation. CONCLUSION: Our data shed light on the emerging function of FAM177A1 and defines FAM177A1-related neurodevelopmental disorder as a new clinical entity.


Asunto(s)
Aparato de Golgi , Mutación con Pérdida de Función , Trastornos del Neurodesarrollo , Pez Cebra , Humanos , Pez Cebra/genética , Animales , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Trastornos del Neurodesarrollo/metabolismo , Aparato de Golgi/metabolismo , Aparato de Golgi/genética , Masculino , Femenino , Niño , Fenotipo , Preescolar , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Discapacidad Intelectual/metabolismo , Linaje , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
7.
Biotechnol J ; 19(5): e2400098, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38797728

RESUMEN

Human carboxypeptidase B1 (hCPB1) is vital for recombinant insulin production, holding substantial value in the pharmaceutical industry. Current challenges include limited hCPB1 enzyme activity. In this study, recombinant hCPB1 efficient expression in Pichia pastoris was achieved. To enhance hCPB1 secretion, we conducted signal peptides screening and deleted the Vps10 sortilin domain, reducing vacuolar mis-sorting. Overexpression of Sec4p increased the fusion of secretory vesicles with the plasma membrane and improved hCPB1 secretion by 20%. Rational protein engineering generated twenty-two single-mutation mutants and identified the A178L mutation resulted in a 30% increase in hCPB1 specific activity. However, all combinational mutations that increased specific activities decreased protein expression levels. Therefore, computer-aided global protein design with PROSS was employed for the aim of improving specific activities and preserving good protein expression. Among the six designed mutants, hCPB1-P6 showed a remarkable 114% increase in the catalytic rate constant (kcat), a 137% decrease in the Michaelis constant (Km), and a 490% increase in catalytic efficiency. Most mutations occurred on the surface of hCPB1-P6, with eight sites mutated to proline. In a 5 L fermenter, hCPB1-P6 was produced by the secretion-enhanced P. pastoris chassis to 199.6 ± 20 mg L-1 with a specific activity of 96 ± 0.32 U mg-1, resulting in a total enzyme activity of 19137 ± 1131 U L-1, demonstrating significant potential for industrial applications.


Asunto(s)
Carboxipeptidasa B , Membrana Celular , Aparato de Golgi , Ingeniería de Proteínas , Proteínas Recombinantes , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ingeniería de Proteínas/métodos , Carboxipeptidasa B/genética , Carboxipeptidasa B/metabolismo , Membrana Celular/metabolismo , Membrana Celular/genética , Aparato de Golgi/metabolismo , Aparato de Golgi/genética , Aparato de Golgi/enzimología , Saccharomycetales/genética , Saccharomycetales/enzimología , Mutación , Pichia/genética , Pichia/metabolismo , Señales de Clasificación de Proteína/genética , Transporte de Proteínas
8.
Fungal Genet Biol ; 172: 103896, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663635

RESUMEN

Manganese and calcium homeostasis and signalling, in eukaryotic organisms, are regulated through membrane located pumps, channels and exchangers, including the Mn2+/Ca2+ uncharacterized protein family 0016 (UPF0016). Here we show that Plasmodiophora brassicae PbGDT1 is a member of the UPF0016 and an ortholog of Saccharomyces cerevisiae Gdt1p (GCR Dependent Translation Factor 1) protein involved in manganese homeostasis as well as the calcium mediated stress response in yeast. PbGDT1 complemented the ScGdt1p and ScPMR1 (Ca2+ ATPase) double null mutant under elevated calcium stress but not under elevated manganese conditions. In both yeast and Nicotiana benthamiana, PbGDT1 localizes to the Golgi apparatus, with additional ER association in N. benthamiana. Expression of PbGDT1 in N. benthamiana, suppresses BAX-triggered cell death, further highlighting the importance of calcium homeostasis in maintaining cell physiology and integrity in a stress environment.


Asunto(s)
Calcio , Aparato de Golgi , Manganeso , Nicotiana , Saccharomyces cerevisiae , Nicotiana/genética , Manganeso/metabolismo , Calcio/metabolismo , Aparato de Golgi/metabolismo , Aparato de Golgi/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homeostasis , ATPasas Transportadoras de Calcio/genética , ATPasas Transportadoras de Calcio/metabolismo , Transporte Biológico/genética
9.
Proc Natl Acad Sci U S A ; 121(15): e2321759121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38579009

RESUMEN

Adjacent plant cells are connected by specialized cell wall regions, called middle lamellae, which influence critical agricultural characteristics, including fruit ripening and organ abscission. Middle lamellae are enriched in pectin polysaccharides, specifically homogalacturonan (HG). Here, we identify a plant-specific Arabidopsis DUF1068 protein, called NKS1/ELMO4, that is required for middle lamellae integrity and cell adhesion. NKS1 localizes to the Golgi apparatus and loss of NKS1 results in changes to Golgi structure and function. The nks1 mutants also display HG deficient phenotypes, including reduced seedling growth, changes to cell wall composition, and tissue integrity defects. These phenotypes are comparable to qua1 and qua2 mutants, which are defective in HG biosynthesis. Notably, genetic interactions indicate that NKS1 and the QUAs work in a common pathway. Protein interaction analyses and modeling corroborate that they work together in a stable protein complex with other pectin-related proteins. We propose that NKS1 is an integral part of a large pectin synthesis protein complex and that proper function of this complex is important to support Golgi structure and function.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Adhesión Celular/genética , Pectinas/metabolismo , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Pared Celular/metabolismo
10.
J Cell Biol ; 223(7)2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38578286

RESUMEN

The AP-1 adaptor complex is found in all eukaryotes, but it has been implicated in different pathways in different organisms. To look directly at AP-1 function, we generated stably transduced HeLa cells coexpressing tagged AP-1 and various tagged membrane proteins. Live cell imaging showed that AP-1 is recruited onto tubular carriers trafficking from the Golgi apparatus to the plasma membrane, as well as onto transferrin-containing early/recycling endosomes. Analysis of single AP-1 vesicles showed that they are a heterogeneous population, which starts to sequester cargo 30 min after exit from the ER. Vesicle capture showed that AP-1 vesicles contain transmembrane proteins found at the TGN and early/recycling endosomes, as well as lysosomal hydrolases, but very little of the anterograde adaptor GGA2. Together, our results support a model in which AP-1 retrieves proteins from post-Golgi compartments back to the TGN, analogous to COPI's role in the early secretory pathway. We propose that this is the function of AP-1 in all eukaryotes.


Asunto(s)
Aparato de Golgi , Proteínas de la Membrana , Transporte de Proteínas , Factor de Transcripción AP-1 , Humanos , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Membrana Celular/metabolismo , Endosomas/genética , Endosomas/metabolismo , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Células HeLa , Proteínas de la Membrana/metabolismo , Red trans-Golgi/metabolismo , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo
11.
J Cell Biol ; 223(6)2024 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-38478018

RESUMEN

The essential Golgi protein Sly1 is a member of the Sec1/mammalian Unc-18 (SM) family of SNARE chaperones. Sly1 was originally identified through remarkable gain-of-function alleles that bypass requirements for diverse vesicle tethering factors. Employing genetic analyses and chemically defined reconstitutions of ER-Golgi fusion, we discovered that a loop conserved among Sly1 family members is not only autoinhibitory but also acts as a positive effector. An amphipathic lipid packing sensor (ALPS)-like helix within the loop directly binds high-curvature membranes. Membrane binding is required for relief of Sly1 autoinhibition and also allows Sly1 to directly tether incoming vesicles to the Qa-SNARE on the target organelle. The SLY1-20 mutation bypasses requirements for diverse tethering factors but loses this ability if the tethering activity is impaired. We propose that long-range tethers, including Golgins and multisubunit tethering complexes, hand off vesicles to Sly1, which then tethers at close range to initiate trans-SNARE complex assembly and fusion in the early secretory pathway.


Asunto(s)
Vesículas Citoplasmáticas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animales , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Mamíferos/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Munc18/análisis , Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Vesículas Citoplasmáticas/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo
12.
J Clin Invest ; 134(4)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38175705

RESUMEN

Mutations in the N-terminal WD40 domain of coatomer protein complex subunit α (COPA) cause a type I interferonopathy, typically characterized by alveolar hemorrhage, arthritis, and nephritis. We described 3 heterozygous mutations in the C-terminal domain (CTD) of COPA (p.C1013S, p.R1058C, and p.R1142X) in 6 children from 3 unrelated families with a similar syndrome of autoinflammation and autoimmunity. We showed that these CTD COPA mutations disrupt the integrity and the function of coat protein complex I (COPI). In COPAR1142X and COPAR1058C fibroblasts, we demonstrated that COPI dysfunction causes both an anterograde ER-to-Golgi and a retrograde Golgi-to-ER trafficking defect. The disturbed intracellular trafficking resulted in a cGAS/STING-dependent upregulation of the type I IFN signaling in patients and patient-derived cell lines, albeit through a distinct molecular mechanism in comparison with mutations in the WD40 domain of COPA. We showed that CTD COPA mutations induce an activation of ER stress and NF-κB signaling in patient-derived primary cell lines. These results demonstrate the importance of the integrity of the CTD of COPA for COPI function and homeostatic intracellular trafficking, essential to ER homeostasis. CTD COPA mutations result in disease by increased ER stress, disturbed intracellular transport, and increased proinflammatory signaling.


Asunto(s)
Proteína Coat de Complejo I , Proteína Coatómero , Niño , Humanos , Proteína Coatómero/genética , Proteína Coat de Complejo I/genética , Proteína Coat de Complejo I/metabolismo , Mutación , Síndrome , Aparato de Golgi/genética , Aparato de Golgi/metabolismo
13.
Transl Res ; 266: 57-67, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38013006

RESUMEN

TMEM165-CDG has first been reported in 2012 and manganese supplementation was shown highly efficient in rescuing glycosylation in isogenic KO cells. The unreported homozygous missense c.928G>C; p.Ala310Pro variant leading to a functional but unstable protein was identified. This patient was diagnosed at 2 months and displays a predominant bone phenotype and combined defects in N-, O- and GAG glycosylation. We administered for the first time a combined D-Gal and Mn2+ therapy to the patient. This fully suppressed the N-; O- and GAG hypoglycosylation. There was also striking improvement in biochemical parameters and in gastrointestinal symptoms. This study offers exciting therapeutic perspectives for TMEM165-CDG.


Asunto(s)
Proteínas de Transporte de Catión , Trastornos Congénitos de Glicosilación , Humanos , Manganeso/metabolismo , Galactosa , Antiportadores/metabolismo , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Proteínas de Transporte de Catión/metabolismo , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/metabolismo
14.
Fungal Genet Biol ; 169: 103840, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37730157

RESUMEN

Neosynthesized plasma membrane (PM) proteins co-translationally translocate to the ER, concentrate at regions called ER-exit sites (ERes) and pack into COPII secretory vesicles which are sorted to the early-Golgi through membrane fusion. Following Golgi maturation, membrane cargoes reach the late-Golgi, from where they exit in clathrin-coated vesicles destined to the PM, directly or through endosomes. Post-Golgi membrane cargo trafficking also involves the cytoskeleton and the exocyst. The Golgi-dependent secretory pathway is thought to be responsible for the trafficking of all major membrane proteins. However, our recent findings in Aspergillus nidulans showed that several plasma membrane cargoes, such as transporters and receptors, follow a sorting route that seems to bypass Golgi functioning. To gain insight on membrane trafficking and specifically Golgi-bypass, here we used proximity dependent biotinylation (PDB) coupled with data-independent acquisition mass spectrometry (DIA-MS) for identifying transient interactors of the UapA transporter. Our assays, which included proteomes of wild-type and mutant strains affecting ER-exit or endocytosis, identified both expected and novel interactions that might be physiologically relevant to UapA trafficking. Among those, we validated, using reverse genetics and fluorescence microscopy, that COPI coatomer is essential for ER-exit and anterograde trafficking of UapA and other membrane cargoes. We also showed that ArfAArf1 GTPase activating protein (GAP) Glo3 contributes to UapA trafficking at increased temperature. This is the first report addressing the identification of transient interactions during membrane cargo biogenesis using PDB and proteomics coupled with fungal genetics. Our work provides a basis for dissecting dynamic membrane cargo trafficking via PDB assays.


Asunto(s)
Retículo Endoplásmico , Proteínas de Transporte de Membrana , Proteínas de Transporte de Membrana/metabolismo , Transporte de Proteínas , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Aparato de Golgi/genética , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo
15.
J Biol Chem ; 299(10): 105192, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37625589

RESUMEN

Point mutations in leucine-rich repeat kinase 2 (LRRK2) cause Parkinson's disease and augment LRRK2's kinase activity. However, cellular pathways that endogenously enhance LRRK2 kinase function have not been identified. While overexpressed Rab29 draws LRRK2 to Golgi membranes to increase LRRK2 kinase activity, there is little evidence that endogenous Rab29 performs this function under physiological conditions. Here, we identify Rab38 as a novel physiologic regulator of LRRK2 in melanocytes. In mouse melanocytes, which express high levels of Rab38, Rab32, and Rab29, knockdown (or CRISPR knockout) of Rab38, but not Rab32 or Rab29, decreases phosphorylation of multiple LRRK2 substrates, including Rab10 and Rab12, by both endogenous LRRK2 and exogenous Parkinson's disease-mutant LRRK2. In B16-F10 mouse melanoma cells, Rab38 drives LRRK2 membrane association and overexpressed kinase-active LRRK2 shows striking pericentriolar recruitment, which is dependent on the presence of endogenous Rab38 but not Rab32 or Rab29. Consistently, knockdown or mutation of BLOC-3, the guanine nucleotide exchange factor for Rab38 and Rab32, inhibits Rab38's regulation of LRRK2. Deletion or mutation of LRRK2's Rab38-binding site in the N-terminal armadillo domain decreases LRRK2 membrane association, pericentriolar recruitment, and ability to phosphorylate Rab10. In sum, our data identify Rab38 as a physiologic regulator of LRRK2 function and lend support to a model in which LRRK2 plays a central role in Rab GTPase coordination of vesicular trafficking.


Asunto(s)
Membranas Intracelulares , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Melanocitos , Proteínas de Unión al GTP rab , Animales , Ratones , Aparato de Golgi/enzimología , Aparato de Golgi/genética , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Melanocitos/metabolismo , Mutación , Enfermedad de Parkinson/metabolismo , Fosforilación , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Células HEK293 , Humanos , Expresión Génica , Dominios Proteicos , Unión Proteica , Membranas Intracelulares/metabolismo
16.
Front Immunol ; 14: 1113455, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37051238

RESUMEN

Introduction: The Golgi apparatus (GA) is the center of protein and lipid synthesis and modification in normal cells and is involved in regulating various cellular process as a signaling hub, the dysfunction of which can lead to the development of various pathological conditions, including tumors. Mutations in Golgi apparatus-related genes (GARGs) are prevalent in most tumors, and their mutations can make them pro-tumor metastatic. The aim of this study was to analyze the predictive role of GARGs in the prognosis and immunotherapeutic outcome of hepatocellular carcinoma. Methods: We used TCGA, GEO and ICGC databases to classify hepatocellular carcinoma samples into two molecular subtypes based on the expression of GARGs. Signature construction was then performed using GARGs, and signature genes were selected for expression validation and tumor phenotype experiments to determine the role of GARGs in the prognosis of hepatocellular carcinoma. Results: Using the TCGA, GEO and ICGC databases, two major subtypes of molecular heterogeneity among hepatocellular carcinoma tumors were identified based on the expression of GARGs, C1 as a high-risk subtype (low survival) and C2 as a low-risk subtype (high survival). The high-risk subtype had lower StromalScore, ImmuneScore, ESTIMATEScore and higher TumorPurity, indicating poorer treatment outcome for ICI. Meanwhile, we constructed a new risk assessment profile for hepatocellular carcinoma based on GARGs, and we found that the high-risk group had a worse prognosis, a higher risk of immune escape, and a higher TP53 mutation rate. Meanwhile, TME analysis showed higher tumor purity TumorPurity and lower ESTIMATEScore, ImmuneScore and StromalScore in the high-risk group. We also found that the high-risk group responded more strongly to a variety of anticancer drugs, which is useful for guiding clinical drug use. Meanwhile, the expression of BSG was experimentally found to be associated with poor prognosis of HCC. After interfering with the expression of BSG in HCC cells SMMC-7721, the proliferation and migration ability of HCC cells were significantly restricted. Discussion: The signature we constructed using GARGs can well predict the prognosis and immunotherapy effect of hepatocellular carcinoma, providing new ideas and strategies for the treatment of hepatocellular carcinoma.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Pronóstico , Inmunoterapia , Aparato de Golgi/genética
17.
Biochim Biophys Acta Mol Cell Res ; 1870(5): 119462, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36933771

RESUMEN

Nucleotide sugar transporters (NSTs) are multitransmembrane proteins, localized in the Golgi apparatus and/or endoplasmic reticulum, which provide glycosylation enzymes with their substrates. It has been demonstrated that NSTs may form complexes with functionally related glycosyltransferases, especially in the N-glycosylation pathway. However, potential interactions of NSTs with enzymes mediating the biosynthesis of mucin-type O-glycans have not been addressed to date. Here we report that UDP-galactose transporter (UGT; SLC35A2) associates with core 1 ß-1,3-galactosyltransferase 1 (C1GalT1; T-synthase). This provides the first example of an interaction between an enzyme that acts exclusively in the O-glycosylation pathway and an NST. We also found that SLC35A2 associated with the C1GalT1-specific chaperone Cosmc, and that the endogenous Cosmc was localized in both the endoplasmic reticulum and Golgi apparatus of wild-type HEK293T cells. Furthermore, in SLC35A2-deficient cells protein levels of C1GalT1 and Cosmc were decreased and their Golgi localization was less pronounced. Finally, we identified SLC35A2 as a novel molecular target for the antifungal agent itraconazole. Based on our findings we propose that NSTs may contribute to the stabilization of their interaction partners and help them to achieve target localization in the cell, most likely by facilitating their assembly into larger functional units.


Asunto(s)
Galactosiltransferasas , Chaperonas Moleculares , Humanos , Células HEK293 , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Galactosiltransferasas/genética , Galactosiltransferasas/metabolismo , Glicosilación , Aparato de Golgi/genética , Aparato de Golgi/metabolismo
18.
J Clin Invest ; 133(1)2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36594468

RESUMEN

Most proteins destined for the extracellular space or various intracellular compartments must traverse the intracellular secretory pathway. The first step is the recruitment and transport of cargoes from the endoplasmic reticulum (ER) lumen to the Golgi apparatus by coat protein complex II (COPII), consisting of five core proteins. Additional ER transmembrane proteins that aid cargo recruitment are referred to as cargo receptors. Gene duplication events have resulted in multiple COPII paralogs present in the mammalian genome. Here, we review the functions of each COPII protein, human disorders associated with each paralog, and evidence for functional conservation between paralogs. We also provide a summary of current knowledge regarding two prototypical cargo receptors in mammals, LMAN1 and SURF4, and their roles in human health and disease.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento , Proteínas de la Membrana , Animales , Humanos , Transporte de Proteínas , Vesículas Cubiertas por Proteínas de Revestimiento/genética , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Transporte Biológico/fisiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Mamíferos/metabolismo
19.
FEBS J ; 290(12): 3221-3242, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36705569

RESUMEN

The M2 isoform of pyruvate kinase (PKM2) is abundantly expressed in various cancer cells and associated with tumorigenesis, tumour proliferation and tumour progression. However, the role of PKM2 in these oncological processes is not fully understood. In the present study, we depleted PKM2 expression using RNA interference (RNAi), which induced apoptotic cell death and was accompanied by the downregulation of GM130, giantin, and p115 in HeLa and ME-180 cervical cancer cells. The decreased expression of these proteins caused structural and functional disturbances in the Golgi apparatus, which manifested as the dispersion of the Golgi apparatus and delayed anterograde trafficking from the ER to the Golgi. The transcription factor, TFE3, which functions in the Golgi stress response, was responsible for the expression of GM130, giantin, and p115 that maintained the integrity of the organelle under normal growth conditions. In PKM2-knockdown cells, the translation of TFE3 was markedly reduced. Knockdown of TFE3 by RNAi resulted in the downregulation of GM130, giantin, and p115, dispersion of the Golgi apparatus, and apoptotic cell death, similar to those observed following PKM2 knockdown. Conversely, the exogenous expression of TFE3 in PKM2 knockdown cells partially mitigated the aforementioned effects. We also demonstrated that PKM2 bound to the 5' UTR on TFE3 mRNA and promoted translation. This study is the first to identify a new function for PKM2, which activates the basal Golgi stress response to maintain the integrity of the Golgi apparatus through the translation of TFE3 and promote cancer cell survival.


Asunto(s)
Proteínas de la Membrana , Neoplasias del Cuello Uterino , Humanos , Femenino , Proteínas de la Membrana/metabolismo , Neoplasias del Cuello Uterino/genética , Células HeLa , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo
20.
Microb Cell Fact ; 22(1): 6, 2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36611199

RESUMEN

Phaeodactylum tricornutum (Pt) is a critical microbial cell factory to produce a wide spectrum of marketable products including recombinant biopharmaceutical N-glycoproteins. N-glycosylation modification of proteins is important for their activity, stability, and half-life, especially some special modifications, such as fucose-modification by fucosyltransferase (FucT). Three PtFucTs were annotated in the genome of P. tricornutum, PtFucT1 was located on the medial/trans-Golgi apparatus and PtFucT2-3 in the plastid stroma. Algal growth, biomass and photosynthesis efficiency were significantly inhibited in a knockout mutant of PtFucT1 (PtFucT1-KO). PtFucT1 played a role in non-core fucose modification of N-glycans. The knockout of PtFucT1 might affect the activity of PtGnTI in the complex and change the complex N-glycan to mannose type N-glycan. The study provided critical information for understanding the mechanism of protein N-glycosylation modification and using microalgae as an alternative ecofriendly cell factory to produce biopharmaceuticals.


Asunto(s)
Diatomeas , Fucosiltransferasas , Fucosiltransferasas/genética , Fucosiltransferasas/metabolismo , Diatomeas/genética , Diatomeas/metabolismo , Fucosa/metabolismo , Sistemas CRISPR-Cas , Proteínas Recombinantes/metabolismo , Polisacáridos/metabolismo , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Galactósido 2-alfa-L-Fucosiltransferasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...