Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.853
Filtrar
1.
Int J Periodontics Restorative Dent ; 44(3): 257-266, 2024 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-38787711

RESUMEN

Bone graft materials are often used in implant treatment to optimize functional and esthetic outcomes. The requirements for bone grafting materials are the ability to maintain space for bone regeneration to occur and the capability of being resorbed by osteoclasts and replaced with new bone tissue occurring in passive chemolysis and bone remodeling. Carbonate apatite (CO3Ap) granules (Cytrans Granules, GC) are a chemically synthetic bone graft material similar to autogenous bone minerals and more biocompatible than allografts and xenografts. The aim of this report is to evaluate the efficacy of CO3Ap granules in implant treatments when used alone or in combination with autogenous bone. The clinical findings and the radiographic and histologic assessments in three cases of immediate implant placement and lateral and vertical guided bone regeneration are reported. Despite the short-term follow-ups, histologic findings showed that CO3Ap granules were efficiently resorbed and replaced bone in clinical use. Furthermore, the clinical findings showed that CO3Ap granules maintained their morphology around the implant. This limited short-term case report suggests that this bone substitute is effective. However, further clinical studies and long-term reports of this new biomaterial are needed.


Asunto(s)
Apatitas , Sustitutos de Huesos , Humanos , Apatitas/química , Sustitutos de Huesos/uso terapéutico , Femenino , Masculino , Persona de Mediana Edad , Regeneración Ósea/efectos de los fármacos , Adulto , Regeneración Tisular Guiada Periodontal/métodos , Carga Inmediata del Implante Dental/métodos , Trasplante Óseo/métodos
2.
J Oral Biosci ; 66(2): 281-287, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723946

RESUMEN

BACKGROUND: The osseointegration of zirconia implants has been evaluated based on their implant fixture bonding with the alveolar bone at the optical microscopic level. Achieving nano-level bonding between zirconia and bone apatite is crucial for superior osseointegration; however, only a few studies have investigated nanoscale bonding. This review outlines zirconia osseointegration, including surface modification, and presents an evaluation of nanoscale zirconia-apatite bonding and its structure. HIGHLIGHT: Assuming osseointegration, the cells produced calcium salts on a ceria-stabilized zirconia substrate. We analyzed the interface between calcium salts and zirconia substrates using transmission electron microscopy and found that 1) the cell-induced calcium salts were bone-like apatite and 2) direct nanoscale bonding was observed between the bone-like apatite and zirconia crystals without any special modifications of the zirconia surface. CONCLUSION: Structural affinity exists between bone apatite and zirconia crystals. Apatite formation can be induced by the zirconia surface. Zirconia bonds directly with apatite, indicating superior osseointegration in vivo.


Asunto(s)
Durapatita , Oseointegración , Circonio , Circonio/química , Oseointegración/efectos de los fármacos , Durapatita/química , Propiedades de Superficie , Humanos , Implantes Dentales , Apatitas/química
3.
J Dent ; 145: 105022, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38670330

RESUMEN

OBJECTIVES: To evaluate the erosion preventive effect of 38 % silver diamine fluoride (SDF) solution in enamel and dentin of human permanent teeth. METHODS: Ninety enamel and ninety dentin blocks were prepared from permanent molars and allocated into three groups. Gp-SDF received a one-off application of 38 % SDF solution. Gp-SNF received a one-off application of a solution containing 800 ppm stannous chloride and 500 ppm fluoride. Gp-DW received a one-off application of deionized water. The blocks were submitted to acid challenge at pH 3.2, 2 min, 5 times/day for 7 days. All blocks were immersed in human saliva between cycles for one hour. The crystal characteristics, percentage of surface microhardness loss (%SMHL), surface loss, and elemental analysis and surface morphology were examined by X-ray diffraction (XRD), microhardness test, non-contact profilometry, and energy-dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM), respectively. Data of%SMHL and surface loss were analyzed by one-way ANOVA. RESULTS: XRD spectra revealed that fluorapatite and silver compounds formed in Gp-SDF, while fluorapatite and stannous compounds formed in Gp-SNF. Gp-DW presented only hydroxyapatite. The median (interquartile range) of%SMHL in Gp-SDF, Gp-SNF and Gp-DW were 27.86(3.66), 43.41(2.45), and 46.40(3.54) in enamel (p< 0.001), and 14.21(1.57), 27.99(1.95), and 33.18(1.73) in dentin, respectively (p < 0.001). The mean (standard deviation, µm) of surface loss of Gp-SDF, Gp-SNF, and Gp-DW were 2.81(0.59), 4.28(0.67), and 4.63(0.64) in enamel (p < 0.001) and 4.13(0.69), 6.04(0.61), and 7.72(0.66) in dentin, respectively (p < 0.001). SEM images exhibited less enamel corruption and more dentinal tubular occlusion in Gp-SDF compared to Gp-SNF and Gp-DW. EDS analysis showed silver was detected in Gp-SDF while stannous was detected in the dentin block of Gp-SNF. CONCLUSION: 38 % SDF yielded superior results in protecting enamel and dentin blocks from dental erosion compared to SNF and DW. CLINICAL SIGNIFICANCE: Topical application of 38 % SDF is effective in preventing dental erosion in human enamel and dentin.


Asunto(s)
Esmalte Dental , Dentina , Fluoruros Tópicos , Dureza , Microscopía Electrónica de Rastreo , Compuestos de Amonio Cuaternario , Compuestos de Plata , Espectrometría por Rayos X , Erosión de los Dientes , Difracción de Rayos X , Humanos , Compuestos de Amonio Cuaternario/farmacología , Esmalte Dental/efectos de los fármacos , Fluoruros Tópicos/farmacología , Erosión de los Dientes/prevención & control , Dentina/efectos de los fármacos , Concentración de Iones de Hidrógeno , Apatitas , Compuestos de Estaño/farmacología , Saliva/efectos de los fármacos , Saliva/química , Propiedades de Superficie , Ensayo de Materiales , Factores de Tiempo
4.
Environ Res ; 252(Pt 2): 118873, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38604484

RESUMEN

Chemical crystallization granulation in a fluidized bed offers an environmentally friendly technology with significant promise for fluoride removal. This study investigates the impact of stratified pH control in a crystallization granulation fluidized bed for the removal of fluoride and phosphate on a pilot scale. The results indicate that using dolomite as a seed crystal, employing sodium dihydrogen phosphate (SDP) and calcium chloride as crystallizing agents, and controlling the molar ratio n(F):n(P):n(Ca) = 1:5:10 with an upflow velocity of 7.52 m/h, effectively removes fluoride and phosphate. Stratified pH control-maintaining weakly acidic conditions (pH = 6-7) at the bottom and weakly alkaline conditions (pH = 7-8) at the top-facilitates the induction of fluoroapatite (FAP) and calcium phosphate crystallization. This approach reduces groundwater fluoride levels from 9.5 mg/L to 0.2-0.6 mg/L and phosphate levels to 0.1-0.2 mg/L. Particle size analysis, scanning electron microscopy-energy-dispersive X-ray spectroscopy, and X-ray diffraction physical characterizations reveal significant differences in crystal morphology between the top and bottom layers, with the lower layer primarily generating high-purity FAP crystals. Further analysis shows that dolomite-induced FAP crystallization offers distinct advantages. SDP not only dissolves on the dolomite surface to provide active sites for crystallization but also, under weakly acidic conditions, renders both dolomite and FAP surfaces negatively charged. This allows for the effective adsorption of PO43-, HPO42-, and F- anions onto the crystal surfaces. This study provides supporting data for the removal of fluoride from groundwater through induced FAP crystallization in a chemical crystallization pellet fluidized bed.


Asunto(s)
Cristalización , Fluoruros , Fosfatos , Fluoruros/química , Concentración de Iones de Hidrógeno , Fosfatos/química , Purificación del Agua/métodos , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Apatitas/química , Fosfatos de Calcio/química , Microscopía Electrónica de Rastreo
5.
Br Dent J ; 236(7): 566, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38609631

Asunto(s)
Apatitas , Minerales
6.
BMC Oral Health ; 24(1): 484, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649931

RESUMEN

BACKGROUND: Root caries is preventable and can be arrested at any stage of disease development. The aim of this study was to investigate the potential mineral exchange and fluorapatite formation within artificial root carious lesions (ARCLs) using different toothpastes containing 5,000 ppm F, 1,450 ppm F or bioactive glass (BG) with 540 ppm F. MATERIALS AND METHODS: The crowns of each extracted sound tooth were removed. The remaining roots were divided into four parts (n = 12). Each sample was randomly allocated into one of four groups: Group 1 (Deionised water); Group 2 (BG with 540 ppm F); Group 3 (1,450 ppm F) and Group 4 (5,000 ppm F). ARCLs were developed using demineralisation solution (pH 4.8). The samples were then pH-cycled in 13 days using demineralisation solution (6 h) and remineralisation solution (pH 7) (16 h). Standard tooth brushing was carried out twice a day with the assigned toothpaste. X-ray Microtomography (XMT) was performed for each sample at baseline, following ARCL formation and after 13-day pH-cycling. Scanning Electron Microscope (SEM) and 19F Magic angle spinning nuclear magnetic resonance (19F-MAS-NMR) were also performed. RESULTS: XMT results showed that the highest mineral content increase (mean ± SD) was Group 4 (0.09 ± 0.05), whilst the mineral content decreased in Group 1 (-0.08 ± 0.06) after 13-day pH-cycling, however there was evidence of mineral loss within the subsurface for Groups 1, 3 and 4 (p < 0.05). SEM scans showed that mineral contents within the surface of dentine tubules were high in comparison to the subsurface in all toothpaste groups. There was evidence of dentine tubules being either partially or completely occluded in toothpaste groups. 19F-MAS-NMR showed peaks between - 103 and - 104ppm corresponding to fluorapatite formation in Groups 3 and 4. CONCLUSION: Within the limitation of this laboratory-based study, all toothpastes were potentially effective to increase the mineral density of artificial root caries on the surface, however there was evidence of mineral loss within the subsurface for Groups 1, 3 and 4.


Asunto(s)
Caries Radicular , Pastas de Dientes , Microtomografía por Rayos X , Proyectos Piloto , Pastas de Dientes/uso terapéutico , Humanos , Apatitas/uso terapéutico , Apatitas/análisis , Concentración de Iones de Hidrógeno , Fluoruros/uso terapéutico , Remineralización Dental/métodos , Cariostáticos/uso terapéutico , Técnicas In Vitro , Microscopía Electrónica de Rastreo
7.
Sci Rep ; 14(1): 8347, 2024 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594297

RESUMEN

Phosphatized fish fossils occur in various locations worldwide. Although these fossils have been intensively studied over the past decades they remain a matter of ongoing research. The mechanism of the permineralization reaction itself remains still debated in the community. The mineralization in apatite of a whole fish requires a substantial amount of phosphate which is scarce in seawater, so the origin of the excess is unknown. Previous research has shown that alkaline phosphatase, a ubiquitous enzyme, can increase the phosphate content in vitro in a medium to the degree of saturation concerning apatite. We applied this principle to an experimental setup where fish scales were exposed to commercial bovine alkaline phosphatase. We analyzed the samples with SEM and TEM and found that apatite crystals had formed on the remaining soft tissue. A comparison of these newly formed apatite crystals with fish fossils from the Solnhofen and Santana fossil deposits showed striking similarities. Both are made up of almost identically sized and shaped nano-apatites. This suggests a common formation process: the spontaneous precipitation from an oversaturated solution. The excess activity of alkaline phosphatase could explain that effect. Therefore, our findings could provide insight into the formation of well-preserved fossils.


Asunto(s)
Fosfatasa Alcalina , Apatitas , Animales , Bovinos , Apatitas/química , Fosfatos/metabolismo , Fósiles
8.
Kidney Blood Press Res ; 49(1): 239-244, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38513628

RESUMEN

INTRODUCTION: This study was designed to determine the mineral composition of calculi in nephrocalcinosis with nephrolithiasis, diagnose the underlying disease, and monitor the course of renal function in patients with nephrocalcinosis-nephrolithiasis. METHODS: Renal calculi extruded in a series of 8 patients with nephrocalcinosis were analysed using Fourier transmission infrared spectrometry. In 4 patients, next-generation sequencing using a nephrocalcinosis-nephrolithiasis panel was performed to determine the nature of the underlying disease. In addition, longitudinal analysis of renal function was performed in all patients. RESULTS: Seven patients revealed carbonate apatite as the sole constituent of renal calculi. One patient showed a mixed composition of dicalcium phosphate dihydrate/carbonate apatite at first analysis yet in subsequent episodes also had calculi composed of pure carbonate apatite. Further molecular analysis displayed distal renal tubular acidosis in 2 of 4 patients who consented to sequencing. No known genetic defect could be found in the other two cases. In line with prior reports, decline of renal function was dependent on underlying disease. Distal renal tubular acidosis revealed a progressive course of renal failure, whereas other causes showed stable renal function in long term analysis. CONCLUSION: Nephrocalcinosis with nephrolithiasis is a rare condition with heterogeneous aetiology. Yet mineral composition of renal calculi predominantly consisted of pure carbonate apatite. This uniform finding is similar to subcutaneous calcifications of various origins and might propose a general principle of tissue calcification. Progressive decline of renal function was found in distal renal tubular acidosis, whereas other conditions remained stable over time.


Asunto(s)
Apatitas , Nefrocalcinosis , Nefrolitiasis , Humanos , Apatitas/análisis , Nefrocalcinosis/etiología , Masculino , Nefrolitiasis/etiología , Femenino , Adulto , Persona de Mediana Edad , Acidosis Tubular Renal
9.
Sci Rep ; 14(1): 5412, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443566

RESUMEN

Human enamel is composed mainly of apatite. This mineral of sorption properties is susceptible to chemical changes, which in turn affect its resistance to dissolution. This study aimed to investigate whether metal leakage from orthodontic appliances chemically alters the enamel surface during an in vitro simulated orthodontic treatment. Totally 107 human enamel samples were subjected to the simulation involving metal appliances and cyclic pH fluctuations over a period of 12 months in four complimentary experiments. The average concentrations and distribution of Fe, Cr, Ni, Ti and Cu within the enamel before and after the experiments were examined using ICP‒MS and LA‒ICP‒MS techniques. The samples exposed to the interaction with metal appliances exhibited a significant increase in average Fe, Cr and Ni (Kruskal-Wallis, p < 0.002) content in comparison to the control group. The outer layer, narrow fissures and points of contact with the metal components showed increased concentrations of Fe, Ti, Ni and Cr after simulated treatment, conversely to the enamel sealed with an adhesive system. It has been concluded that metal leakage from orthodontic appliances chemically alters enamel surface and microlesions during experimental in vitro simulated treatment.


Asunto(s)
Atención Odontológica , Aparatos Ortodóncicos , Humanos , Apatitas , Simulación por Computador , Metales
10.
J Biomed Mater Res B Appl Biomater ; 112(3): e35397, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38456309

RESUMEN

In this study, we have formulated a novel apatite bone cements derived from natural sources (i.e. eggshell and fishbone) with improved qualities that is, porosity, resorbability, biological activity, and so forth. The naturally-derived apatite bone cement (i.e. FBDEAp) was prepared by mixing hydroxyapatite (synthesized from fishbone) and tricalcium phosphate (synthesized from eggshell) as a solid phase with a liquid phase (a dilute acidic blend of cement binding accelerator and biopolymers like gelatin and chitosan) with polysorbate (as liquid porogen) to get a desired bone cement paste. The prepared cement paste sets within the clinically acceptable setting time (≤20 min), easily injectable (>85%) through hands and exhibits physiological pH stability (7.3-7.4). The pure apatite phased bone cement was confirmed by x-ray diffraction and Fourier transform infrared spectroscopy analyses. The FBDEAp bone cement possesses acceptable compressive strength (i.e. 5-7 MPa) within trabecular bone range and is resorbable up to 28% in simulated body fluid solution within 12 weeks of incubation at physiological conditions. The FBDEAp is macroporous in nature (average pore size ~50-400 µm) with interconnected pores verified by SEM and micro-CT analyses. The FBDEAp showed significantly increased MG63 cell viability (>125% after 72 h), cell adhesion, proliferation, and key osteogenic genes expression levels (up to 5-13 folds) compared to the synthetically derived, synthetic and eggshell derived as well as synthetic and fishbone derived bone cements. Thus, we strongly believe that our prepared FBDEAp bone cement can be used as potential trabecular bone substitute in orthopedics.


Asunto(s)
Sustitutos de Huesos , Quitosano , Apatitas/farmacología , Apatitas/química , Sustitutos de Huesos/química , Cementos para Huesos/farmacología , Cementos para Huesos/química , Fosfatos de Calcio/química , Durapatita , Quitosano/farmacología , Quitosano/química , Difracción de Rayos X , Fuerza Compresiva
11.
Br Dent J ; 236(5): 414, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38459336
12.
Biomater Adv ; 159: 213813, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38428122

RESUMEN

The ability of human tissues to self-repair is limited, which motivates the scientific community to explore new and better therapeutic approaches to tissue regeneration. The present manuscript provides a comparative study between a marine-based composite biomaterial, and another composed of well-established counterparts for bone tissue regeneration. Blue shark skin collagen was combined with bioapatite obtained from blue shark's teeth (mColl:BAp), while bovine collagen was combined with synthetic hydroxyapatite (bColl:Ap) to produce 3D composite scaffolds by freeze-drying. Collagens showed similar profiles, while apatite particles differed in their composition, being the marine bioapatite a fluoride-enriched ceramic. The marine-sourced biomaterials presented higher porosities, improved mechanical properties, and slower degradation rates when compared to synthetic apatite-reinforced bovine collagen. The in vivo performance regarding bone tissue regeneration was evaluated in defects created in femoral condyles in New Zealand rabbits twelve weeks post-surgery. Micro-CT results showed that mColl:BAp implanted condyles had a slower degradation and an higher tissue formation (17.9 ± 6.9 %) when compared with bColl:Ap implanted ones (12.9 ± 7.6 %). The histomorphometry analysis provided supporting evidence, confirming the observed trend by quantifying 13.1 ± 7.9 % of new tissue formation for mColl:BAp composites and 10.4 ± 3.2 % for bColl:Ap composites, suggesting the potential use of marine biomaterials for bone regeneration.


Asunto(s)
Materiales Biocompatibles , Andamios del Tejido , Humanos , Animales , Conejos , Bovinos , Materiales Biocompatibles/uso terapéutico , Apatitas , Regeneración Ósea , Colágeno/farmacología
13.
J Mater Sci Mater Med ; 35(1): 22, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38526601

RESUMEN

Biodegradable porous Mg scaffolds are a promising approach to bone repair. In this work, 3D-spherical porous Mg-1.5Zn-0.2Ca (wt.%) scaffolds were prepared by vacuum infiltration casting technology, and MgF2 and fluorapatite coatings were designed to control the degradation behavior of Mg-based scaffolds. The results showed that the pores in Mg-based scaffolds were composed of the main spherical pores (450-600 µm) and interconnected pores (150-200 µm), and the porosity was up to 74.97%. Mg-based porous scaffolds exhibited sufficient mechanical properties with a compressive yield strength of about 4.04 MPa and elastic modulus of appropriately 0.23 GPa. Besides, both MgF2 coating and fluorapatite coating could effectively improve the corrosion resistance of porous Mg-based scaffolds. In conclusion, this research would provide data support and theoretical guidance for the application of biodegradable porous Mg-based scaffolds in bone tissue engineering.


Asunto(s)
Procedimientos de Cirugía Plástica , Porosidad , Apatitas , Zinc
14.
Pathol Oncol Res ; 30: 1611454, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38505147

RESUMEN

Introduction: Apatite rheumatism (AR), chondrocalcinosis (Ch-C), and primary synovial chondromatosis (prSynCh) are regarded as distinct clinical entities. The introduction of the non-staining technique by Bély and Apáthy (2013) opened a new era in the microscopic diagnosis of crystal induced diseases, allowing the analysis of MSU (monosodium urate monohydrate) HA (calcium hydroxyapatite), CPPD (calcium pyrophosphate dihydrate) crystals, cholesterol, crystalline liquid lipid droplets, and other crystals in unstained sections of conventionally proceeded (aqueous formaldehyde fixed, paraffin-embedded) tissue samples. The aim of this study was to describe the characteristic histology of crystal deposits in AR, Ch-C, and prSynCh with traditional stains and histochemical reactions comparing with unstained tissue sections according to Bély and Apáthy (2013). Patients and methods: Tissue samples of 4 with apatite rheumatism (Milwaukee syndrome), 16 with chondrocalcinosis, and 20 with clinically diagnosed primary synovial chondromatosis were analyzed. Results and conclusion: Apatite rheumatism, chondrocalcinosis, and primary synovial chondromatosis are related metabolic disorders with HA and CPPD depositions. The authors assume that AR and Ch-C are different stages of the same metabolic disorder, which differ from prSynCh in amorphous mineral production, furthermore in the production of chondroid, osteoid and/or bone. prSynCh is a defective variant of HA and CPPD induced metabolic disorders with reduced mineralization capabilities, where the deficient mineralization is replaced by chondroid and/or bone formation. The non-staining technique of Bély and Apáthy proved to be a much more effective method for the demonstration of crystals in metabolic diseases than conventional stains and histochemical reactions.


Asunto(s)
Condrocalcinosis , Condromatosis Sinovial , Enfermedades Metabólicas , Enfermedades Reumáticas , Humanos , Condrocalcinosis/diagnóstico , Condrocalcinosis/patología , Apatitas
15.
Medicine (Baltimore) ; 103(10): e37374, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38457575

RESUMEN

The current report aimed to evaluate the characteristics of stone composition in 3637 renal and ureteral calculi patients in a single center while clarifying its relationship with sex, age, and time. Out of 3637 cases of upper urinary tract stones, stone specimens were analyzed retrospectively. There were 2373 male patients aged 6 months-87 years, with an average age of 44.73 ±â€…15.63 years, and 1264 female patients aged 4 months-87 years, with an average age of 46.84 ±â€…16.00 years. The male-female ratio was 1.88:1. Five hundred twelve patients had ureteral calculi, and 3125 had renal calculi. The SPSS software helped analyze the relationship between renal and ureteral calculi composition and sex, age, and time. Stone composition demonstrated 2205 cases of calcium oxalate stones (60.6%), 518 carbonate apatite (14.2%), 386 uric acids (10.6%), 232 magnesium ammonium phosphate (6.4%), 117 calcium phosphate (3.2%), 76 cystine (2.1%), 47 sodium urate (1.3%), 31 others (0.9%), and 25 ammonium urate (0.7%) cases. The overall male-to-female sex ratio was 1.88:1. Stones in the upper urinary tract were significantly more frequent in men than in women between the ages of 31 and 60. However, such stones were significantly more frequent in women than men over 80 (P < .05). Cystine, Sodium urate, Carbonated apatite, and uric acid indicated significant differences between different age categories (all P < .001). Stone composition analyses revealed that the frequency of calcium oxalate calculi has increased annually, while cystine and carbonated apatite incidences have dropped annually over the past decade. The components of renal and ureteral calculi vary significantly based on age and sex, with calcium oxalate calculi being more frequent in men while magnesium ammonium phosphate stones are more frequent in female patients. The age between 31 and 60 years is the most prevalent for renal and ureteral calculi in men and women.


Asunto(s)
Cálculos Renales , Cálculos Ureterales , Cálculos Urinarios , Humanos , Femenino , Masculino , Adulto , Persona de Mediana Edad , Cálculos Ureterales/epidemiología , Estruvita , Oxalato de Calcio , Cistina/análisis , Estudios Retrospectivos , Ácido Úrico , Fosfatos , Cálculos Urinarios/epidemiología , Cálculos Renales/epidemiología , Apatitas , China/epidemiología
16.
Lab Chip ; 24(7): 2017-2024, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38407354

RESUMEN

Effective prevention of recurrent kidney stone disease requires the understanding of the mechanisms of its formation. Numerous in vivo observations have demonstrated that a large number of pathological calcium oxalate kidney stones develop on an apatitic calcium phosphate deposit, known as Randall's plaque. In an attempt to understand the role of the inorganic hydroxyapatite phase in the formation and habits of calcium oxalates, we confined their growth under dynamic physicochemical and flow conditions in a reversible microfluidic channel coated with hydroxyapatite. Using multi-scale characterization techniques including scanning electron and Raman microscopy, we showed the successful formation of carbonated hydroxyapatite as found in Randall's plaque. This was possible due to a new two-step flow seed-mediated growth strategy which allowed us to coat the channel with carbonated hydroxyapatite. Precipitation of calcium oxalates under laminar flow from supersaturated solutions of oxalate and calcium ions showed that the formation of crystals is a substrate and time dependent complex process where diffusion of oxalate ions to the surface of carbonated hydroxyapatite and the solubility of the latter are among the most important steps for the formation of calcium oxalate crystals. Indeed when an oxalate solution was flushed for 24 h, dissolution of the apatite layer and formation of calcium carbonate calcite crystals occurred which seems to promote calcium oxalate crystal formation. Such a growth route has never been observed in vivo in the context of kidney stones. Under our experimental conditions, our results do not show any direct promoting role of carbonated hydroxyapatite in the formation of calcium oxalate crystals, consolidating therefore the important role that macromolecules can play in the process of nucleation and growth of calcium oxalate crystals on Randall's plaque.


Asunto(s)
Oxalato de Calcio , Cálculos Renales , Humanos , Médula Renal/patología , Cristalización , Calcio , Microfluídica , Cálculos Renales/química , Cálculos Renales/patología , Apatitas , Oxalatos , Iones , Hidroxiapatitas
17.
Dent Mater ; 40(4): 716-727, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38395738

RESUMEN

OBJECTIVES: This study aimed to compare two types of bioactive additives which were strontium-containing fluorinated bioactive glass (SrBGF) or strontium-containing fluorapatite (SrFA) added to sol-gel derived glass ionomer cement (SGIC). The objective was to develop antibacterial and mineralisation properties, using bioactive additives, to minimize the occurrence of caries lesions in caries disease. METHODS: Synthesized SrBGF and SrFA nanoparticles were added to SGIC at 1 wt% concentration to improve antibacterial properties against S. mutans, promote remineralisation, and hASCs and hDPSCs viability. Surface roughness and ion-releasing behavior were also evaluated to clarify the effect on the materials. Antibacterial activity was measured via agar disc diffusion and bacterial adhesion. Remineralisation ability was assessed by applying the material to demineralised teeth and subjecting them to a 14-day pH cycle, followed by microCT and SEM-EDS analysis. RESULTS: The addition of SrFA into SGIC significantly improved its antibacterial property. SGIC modified with either SrBGF or SrFA additives could similarly induce apatite crystal precipitation onto demineralised dentin and increase dentin density, indicating its ability to remineralise dentin. Moreover, this study also showed that SGIC modified with SrBGF or SrFA additives had promising results on the in vitro cytotoxicity of hASC and hDPSC. SIGNIFICANT: SrFA has superior antibacterial property as compared to SrBGF while demonstrating equal remineralisation ability. Furthermore, the modified SGIC showed promising results in reducing the cytotoxicity of hASCs and hDPSCs, indicating its potential for managing caries.


Asunto(s)
Caries Dental , Fluoruros , Humanos , Fluoruros/farmacología , Fluoruros/química , Cementos de Ionómero Vítreo/farmacología , Cementos de Ionómero Vítreo/química , Estroncio/farmacología , Estroncio/química , Antibacterianos/farmacología , Antibacterianos/química , Apatitas/farmacología , Caries Dental/terapia , Ensayo de Materiales
18.
Biomater Adv ; 159: 213801, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38401402

RESUMEN

Obtaining rapid mineralisation is a challenge in current bone graft materials, which has been attributed to the difficulty of guiding the biological processes towards osteogenesis. Amelogenin, a key protein in enamel formation, inspired the design of two intrinsically disordered peptides (P2 and P6) that enhance in vivo bone formation, but the process is not fully understood. In this study, we have elucidated the mechanism by which these peptides induce improved mineralisation. Our molecular dynamics analysis demonstrated that in an aqueous environment, P2 and P6 fold to interact with the surrounding Ca2+, PO43- and OH- ions, which can lead to apatite nucleation. Although P2 has a less stable backbone, it folds to a stable structure that allows for the nucleation of larger calcium phosphate aggregates than P6. These results were validated experimentally in a concentrated simulated body fluid solution, where the peptide solutions accelerated the mineralisation process compared to the control and yielded mineral structures mimicking the amorphous calcium phosphate crystals that can be found in lamella bone. A pH drop for the peptide groups suggests depletion of calcium and phosphate, a prerequisite for intrinsic osteoinduction, while S/TEM and SEM suggested that the peptide regulated the mineral nucleation into lamella flakes. Evidently, the peptides accelerate and guide mineral formation, elucidating the mechanism for how these peptides can improve the efficacy of P2 or P6 containing devices for bone regeneration. The work also demonstrates how experimental mineralisation study coupled with molecular dynamics is a valid method for understanding and predicting in vivo performance prior to animal trials.


Asunto(s)
Regeneración Ósea , Osteogénesis , Animales , Apatitas/química , Péptidos/farmacología , Huesos
19.
Biomater Adv ; 158: 213795, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38335762

RESUMEN

The grand discovery of morphogens, or "form-generating substances", revealed that tissue morphogenesis is initiated by soluble molecular signals or morphogens primarily belonging to the transforming growth factor-ß (TGF-ß) supergene family. The regenerative potential of bone rests on its extracellular matrix, which is the repository of several morphogens that tightly control cellular differentiating pathways, cellular matrix deposition and remodeling. Alluringly, the matrix also contains specific factors transferred from the heterotopic implanted bone matrices initiating "Tissue Induction", as provocatively described in Nature in 1945. Later, it was found that selected genes and gene products of the TGF-ß supergene family singly, synchronously, and synergistically mastermind the induction of bone formation. This review describes the phenomenon of the spontaneous and/or intrinsic osteoinductivity of calcium phosphate-based biomaterials and titanium' constructs without the applications of soluble osteogenetic molecular signals. The review shows the spontaneous induction of bone formation initiated by Ca++ activating stem cell differentiation and up-regulation of bone morphogenetic proteins genes. Expressed gene products are embedded into the concavities of the calcium phosphate-based substrata, initiating bone formation as a secondary response. Pure titanium's substrata do not initiate the spontaneous induction of bone formation. The induction of bone is solely dependent on acid, alkali and heat treatments to form apatite layers on the treated titanium surfaces. The induction of bone formation is achieved exclusively by apatite-based biomaterial surfaces. The hydroxyapatite, in its various forms and geometric configurations, finely tunes the induction of bone formation in heterotopic sites. Cellular differentiation by fine-tuning of the cellular molecular machinery is initiated by specific geometric modularity of the hydroxyapatite substrata that push cellular buttons that start the ripple-like cascade of "Tissue Induction", generating newly formed ossicles with bone marrow in heterotopic extraskeletal sites. The highlighted mechanistic insights into the spontaneous induction of bone formation are a research platform invocating selected molecular elements to construct the induction of bone formation.


Asunto(s)
Fosfatos de Calcio , Osteogénesis , Titanio , Osteogénesis/genética , Apatitas , Materiales Biocompatibles , Durapatita , Factor de Crecimiento Transformador beta
20.
Microb Cell Fact ; 23(1): 64, 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38402158

RESUMEN

Phosphate solubilizing fungi Penicillium oxalicum (POX) and Red yeast Rhodotorula mucilaginosa (Rho) have been applied in Pb remediation with the combination of fluorapatite (FAp), respectively. The secretion of oxalic acid by POX and the production of extracellular polymers (EPS) by Rho dominate the Pb remediation. In this study, the potential of Pb remediation by the fungal combined system (POX and Rho) with FAp was investigated. After six days of incubation, the combination of POX and Rho showed the highest Pb remove ratio (99.7%) and the lowest TCLP-Pb concentration (2.9 mg/L). The EPS combined with POX also enhanced Pb remediation, which has a 99.3% Pb removal ratio and 5.5 mg/L TCLP-Pb concentration. Meanwhile, Rho and EPS can also stimulate POX to secrete more oxalic acid, which reached 1510.1 and 1450.6 mg/L in six days, respectively. The secreted oxalic acid can promote FAp dissolution and the formation of lead oxalate and pyromorphite. Meanwhile, the EPS produced by Rho can combine with Pb to form EPS-Pb. In the combined system of POX + Rho and POX + EPS, all of the lead oxalate, pyromorphite, and EPS-Pb were observed. Our findings suggest that the combined application of POX and Rho with FAp is an effective approach for enhancing Pb remediation.


Asunto(s)
Apatitas , Productos Biológicos , Minerales , Penicillium , Plomo , Fosfatos , Ácido Oxálico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA