Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Molecules ; 26(16)2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34443478

RESUMEN

Alzheimer's disease is a neurodegenerative disorder incompatible with normal daily activity, affecting one in nine people. One of its potential targets is the apelin receptor (APJR), a G-protein coupled receptor, which presents considerably high expression levels in the central nervous system. In silico studies of APJR drug-like molecule binding are in small numbers while high throughput screenings (HTS) are already sufficiently many to devise efficient drug design strategies. This presents itself as an opportunity to optimize different steps in future large scale virtual screening endeavours. Here, we ran a first stage docking simulation against a library of 95 known binders and 3829 generated decoys in an effort to improve the rescoring stage. We then analyzed receptor binding site structure and ligands binding poses to describe their interactions. As a result, we devised a simple and straightforward virtual screening Stage II filtering score based on search space extension followed by a geometric estimation of the ligand-binding site fitness. Having this score, we used an ensemble of receptors generated by Hamiltonian Monte Carlo simulation and reported the results. The improvements shown herein prove that our ensemble docking protocol is suited for APJR and can be easily extrapolated to other GPCRs.


Asunto(s)
Receptores de Apelina/química , Ensayos Analíticos de Alto Rendimiento/métodos , Simulación del Acoplamiento Molecular/métodos , Receptores Acoplados a Proteínas G/metabolismo , Apelina/análogos & derivados , Apelina/química , Sitios de Unión , Biomimética , Diseño de Fármacos , Humanos , Ligandos , Péptidos/química , Unión Proteica
2.
Mol Pharm ; 18(7): 2521-2539, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-34151567

RESUMEN

Liposomal formulations represent attractive biocompatible and tunable drug delivery systems for peptide drugs. Among the tools to analyze their physicochemical properties, nuclear magnetic resonance (NMR) spectroscopy, despite being an obligatory technique to characterize molecular structure and dynamics in chemistry as well as in structural biology, yet appears to be rather sparsely used to study drug-liposome formulations. In this work, we exploited several facets of liquid-state NMR spectroscopy to characterize liposomal delivery systems for the apelin-derived K14P peptide and K14P modified by Nα-fatty acylation. Various liposome compositions and preparation modes were analyzed. Using NMR, in combination with cryo-electron microscopy and dynamic light scattering, we determined structural, dynamic, and self-association properties of these peptides in solution and probed their interactions with liposomes. Using 31P and 1H NMR, we characterized membrane fluidity and thermotropic phase transitions in empty and loaded liposomes. Based on diffusion and 1H NMR experiments, we localized and quantified peptides with respect to the interior/exterior of liposomes and changes over time and upon thermal treatments. Finally, we assessed the release kinetics of several solutes and compared various formulations. Taken together, this work shows that NMR has the potential to assist the design of peptide/liposome systems and more generally drug delivery systems.


Asunto(s)
Apelina/química , Liposomas/química , Liposomas/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Química Farmacéutica , Composición de Medicamentos , Humanos , Cinética
3.
Cells ; 11(1)2021 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-35011661

RESUMEN

The apelinergic system, which includes the apelin receptor (APJ) as well as its two specific ligands, namely apelin and ELABELA (ELA/APELA/Toddler), have been the subject of many recent studies due to their pleiotropic effects in humans and other animals. Expression of these factors has been investigated in numerous tissues and organs-for example, the lungs, heart, uterus, and ovary. Moreover, a number of studies have been devoted to understanding the role of apelin and the entire apelinergic system in the most important processes in the body, starting from early stages of human life with regulation of placental function and the proper course of pregnancy. Disturbances in the balance of placental processes such as proliferation, apoptosis, angiogenesis, or hormone secretion may lead to specific pregnancy pathologies; therefore, there is a great need to search for substances that would help in their early diagnosis or treatment. A number of studies have indicated that compounds of the apelinergic system could serve this purpose. Hence, in this review, we summarized the most important reports about the role of apelin and the entire apelinergic system in the regulation of placental physiology and pregnancy.


Asunto(s)
Receptores de Apelina/metabolismo , Apelina/metabolismo , Feto/embriología , Feto/metabolismo , Placenta/metabolismo , Secuencia de Aminoácidos , Animales , Apelina/sangre , Apelina/química , Femenino , Humanos , Modelos Biológicos , Hormonas Peptídicas , Placenta/patología , Embarazo
4.
J Med Chem ; 63(20): 12073-12082, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-33001648

RESUMEN

Apelin is an important contributor to the renin-angiotensin axis, regulating cardiovascular, metabolic, and neurological functions. Apelin-17 has especially potent cardio-physiological effects but is rapidly degraded in human blood (t0.5 ∼ 4 min). Angiotensin-converting enzyme 2 (ACE-2), neprilysin (NEP), and plasma kallikrein (KLKB1) cleave and inactivate it, with the latter cutting within the arginine-arginine site. Here, we show that analogues with an N-terminal polyethylene glycol (PEG) extension as well as peptide bond isosteres resist KLKB1 cleavage but that only the PEG-extended analogues significantly improve physiologically activity. The PEGylated analogues feature comparatively high log D7.4 values and high plasma protein binding, adding to their stability. An alanine scan of apelin-17 reveals that the integrity and conformational flexibility of the KFRR motif are necessary for cardio-physiological activity. An optimized Cbz-PEG6 analogue is presented that is stable in blood (t0.5 ∼ 18 h), has significant blood-pressure lowering effect, and shows fast recovery of heart function in Langendorff assay.


Asunto(s)
Apelina/química , Polietilenglicoles/química , Sustancias Protectoras/química , Apelina/análogos & derivados , Humanos , Conformación Molecular , Estereoisomerismo
5.
Clin Sci (Lond) ; 134(17): 2319-2336, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32901821

RESUMEN

The apelinergic system is widely expressed and acts through autocrine and paracrine signaling to exert protective effects, including vasodilatory, metabolic, and inotropic effects on the cardiovascular (CV) system. The apelin pathway's dominant physiological role has delineated therapeutic implications for coronary artery disease, heart failure (HF), aortic aneurysm, pulmonary arterial hypertension (PAH), and transplant vasculopathy. Apelin peptides interact with the renin-angiotensin system (RAS) by promoting angiotensin converting enzyme 2 (ACE2) transcription leading to increased ACE2 protein and activity while also antagonizing the effects of angiotensin II (Ang II). Apelin modulation of the RAS by increasing ACE2 action is limited due to its rapid degradation by proteases, including ACE2, neprilysin (NEP), and kallikrein. Apelin peptides are hence tightly regulated in a negative feedback manner by ACE2. Plasma apelin levels are suppressed in pathological conditions, but its diagnostic and prognostic utility requires further clinical exploration. Enhancing the beneficial actions of apelin peptides and ACE2 axes while complementing existing pharmacological blockade of detrimental pathways is an exciting pathway for developing new therapies. In this review, we highlight the interaction between the apelin and ACE2 systems, discuss their pathophysiological roles and potential for treating a wide array of CV diseases (CVDs).


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Apelina/metabolismo , Enfermedades Cardiovasculares/tratamiento farmacológico , Sistema Cardiovascular/metabolismo , Secuencia de Aminoácidos , Enzima Convertidora de Angiotensina 2/sangre , Animales , Apelina/química , Apelina/uso terapéutico , Enfermedades Cardiovasculares/sangre , Sistema Cardiovascular/patología , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Humanos , Sistema Renina-Angiotensina
6.
Nat Commun ; 11(1): 2163, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32358530

RESUMEN

Angiogenesis is a necessary process for solid tumor growth. Cellular markers for endothelial cell proliferation are potential targets for identifying the vasculature of tumors in homeostasis. Here we customize the behaviors of engineered cells to recognize Apj, a surface marker of the neovascular endothelium, using synthetic Notch (synNotch) receptors. We designed apelin-based synNotch receptors (AsNRs) that can specifically interact with Apj and then stimulate synNotch pathways. Cells engineered with AsNRs have the ability to sense the proliferation of endothelial cells (ECs). Designed for different synNotch pathways, engineered cells express different proteins to respond to angiogenic signals; therefore, angiogenesis can be detected by cells engineered with AsNRs. Furthermore, T cells customized with AsNRs can sense the proliferation of vascular endothelial cells. As solid tumors generally require vascular support, AsNRs are potential tools for the detection and therapy of a variety of solid tumors in adults.


Asunto(s)
Apelina/química , Apelina/metabolismo , Neovascularización Patológica/metabolismo , Receptores Notch/química , Receptores Notch/metabolismo , Animales , Receptores de Apelina/metabolismo , Western Blotting , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Proliferación Celular/fisiología , Células Endoteliales/metabolismo , Citometría de Flujo , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inmunoterapia , Masculino , Ratones , Ratones Endogámicos C57BL
7.
Peptides ; 121: 170139, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31472173

RESUMEN

BACKGROUND: Apelin signalling pathways have important cardiovascular and metabolic functions. Recently, apelin-36-[L28A] and apelin-36-[L28C(30kDa-PEG)], were reported to function independent of the apelin receptor in vivo to produce beneficial metabolic effects without modulating blood pressure. We aimed to show that these peptides bound to the apelin receptor and to further characterise their pharmacology in vitro at the human apelin receptor. METHODS: [Pyr1]apelin-13 saturation binding experiments and competition binding experiments were performed in rat and human heart homogenates using [125I]apelin-13 (0.1 nM), and/or increasing concentrations of apelin-36, apelin-36-[L28A] and apelin-36-[L28C(30kDa-PEG)] (50pM-100µM). Apelin-36 and its analogues apelin-36-[F36A], apelin-36-[L28A], apelin-36-[L28C(30kDa-PEG)], apelin-36-[A28 A13] and [40kDa-PEG]-apelin-36 were tested in forskolin-induced cAMP inhibition and ß-arrestin assays in CHO-K1 cells heterologously expressing the human apelin receptor. Bias signaling was quantified using the operational model for bias. RESULTS: In both species, [Pyr1]apelin-13 had comparable subnanomolar affinity and the apelin receptor density was similar. Apelin-36, apelin-36-[L28A] and apelin-36-[L28C(30kDa-PEG)] competed for binding of [125I]apelin-13 with nanomolar affinities. Apelin-36-[L28A] and apelin-36-[L28C(30kDa-PEG)] inhibited forskolin-induced cAMP release, with nanomolar potencies but they were less potent compared to apelin-36 at recruiting ß-arrestin. Bias analysis suggested that these peptides were G protein biased. Additionally, [40kDa-PEG]-apelin-36 and apelin-36-[F36A] retained nanomolar potencies in both cAMP and ß-arrestin assays whilst apelin-36-[A13 A28] exhibited a similar profile to apelin-36-[L28C(30kDa-PEG)] in the ß-arrestin assay but was more potent in the cAMP assay. CONCLUSIONS: Apelin-36-[L28A] and apelin-36-[L28C(30kDa-PEG)] are G protein biased ligands of the apelin receptor, suggesting that the apelin receptor is an important therapeutic target in metabolic diseases.


Asunto(s)
Receptores de Apelina/metabolismo , Apelina/metabolismo , Ventrículos Cardíacos/metabolismo , Péptidos/metabolismo , beta-Arrestinas/metabolismo , Adulto , Animales , Apelina/química , Apelina/farmacología , Receptores de Apelina/química , Unión Competitiva , Células CHO , Colforsina/farmacología , Mezclas Complejas/química , Mezclas Complejas/metabolismo , Cricetulus , AMP Cíclico/metabolismo , Femenino , Ventrículos Cardíacos/química , Humanos , Ligandos , Masculino , Persona de Mediana Edad , Péptidos/síntesis química , Péptidos/farmacología , Unión Proteica , Ratas , Ratas Sprague-Dawley
8.
Eur J Med Chem ; 166: 119-124, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30690406

RESUMEN

Apelins are human peptide hormones with various physiological activities, including the moderation of cardiovascular, renal, metabolic and neurological function. Their potency is dependent on and limited by proteolytic degradation in the circulatory system. Here we identify human plasma kallikrein (KLKB1) as a protease that cleaves the first three N-terminal amino acids (KFR) of apelin-17. The cleavage kinetics are similar to neprilysin (NEP), which cleaves within the critical 'RPRL'-motif thereby inactivating apelin. The resulting C-terminal 14-mer after KLKB1 cleavage has much lower biological activity, and the presence of its N-terminal basic arginine seems to negate the blood pressure lowering effect. Based on C-terminally engineered apelin analogs (A2), resistant to angiotensin converting enzyme 2 (ACE2), attachment of an N-terminal C16 fatty acid chain (PALMitoylation) or polyethylene glycol chain (PEGylation) minimizes KLKB1 cleavage of the 17-mers, thereby extending plasma half-life while fully retaining biological activity. The N-terminally PEGylated apelin-17(A2) is a highly protease resistant analog, with excellent apelin receptor activation and pronounced blood pressure lowering effect.


Asunto(s)
Apelina/química , Apelina/metabolismo , Presión Sanguínea/efectos de los fármacos , Ácidos Grasos/química , Calicreína Plasmática/metabolismo , Polietilenglicoles/química , Proteolisis , Apelina/farmacología , Humanos , Estabilidad Proteica
9.
Biochem Cell Biol ; 97(3): 325-332, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30092142

RESUMEN

Apelin peptides are cognate ligands for the apelin receptor, a G-protein-coupled receptor (GPCR). The apelinergic system plays critical roles in wide-ranging physiological activities including function and development of the central nervous and cardiovascular systems. Apelin is found in 13-55 residue isoforms in vivo, all of which share the C-terminal portion of the preproapelin precursor. Characterization of high-resolution structures and detergent micelle interactions of apelin-17 led to a two-step membrane-catalyzed binding and GPCR activation mechanism hypothesis recapitulated in longer isoforms. Here, we examine interactions of the apelin-13 and -17 isoforms with isotropic zwitterionic and mixed zwitterionic-anionic lipid bicelles to test for hallmarks of membrane catalysis in a more physiological membrane-mimetic environment than a micelle. Specifically, 1H and 31P relaxation and diffusion solution-state NMR techniques demonstrate that both apelin isoforms interact with both types of isotropic bicelles. Bicelle hydrodynamics were observed to be differentially modulated by apelin peptides, although these effects were minimal. Phospholipid headgroup 31P spin relaxation behaviour was, conversely, clearly perturbed. Perturbation of this nature was also observed in magnetically aligned bicelles by 31P solid-state NMR spectroscopy and spin relaxation experiments. This behaviour is consistent with an apelin-bicelle binding process allowing significant peptide mobility, facilitating membrane-catalyzed GPCR encounter.


Asunto(s)
Apelina/metabolismo , Fosfolípidos/metabolismo , Apelina/química , Catálisis , Humanos , Micelas , Resonancia Magnética Nuclear Biomolecular , Fosfolípidos/química , Isoformas de Proteínas , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo
10.
Biochem J ; 475(23): 3813-3826, 2018 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-30409826

RESUMEN

Biased ligands of G protein-coupled receptors (GPCRs) may have improved therapeutic benefits and safety profiles. However, the molecular mechanism of GPCR biased signaling remains largely unknown. Using apelin receptor (APJ) as a model, we systematically investigated the potential effects of amino acid residues around the orthosteric binding site on biased signaling. We discovered that a single residue mutation I109A (I1093.32) in the transmembrane domain 3 (TM3) located in the deep ligand-binding pocket was sufficient to convert a balanced APJ into a G protein signaling biased receptor. APJ I109A mutant receptor retained full capabilities in ligand binding and G protein activation, but was defective in GRK recruitment, ß-arrestin recruitment, and downstream receptor-mediated ERK activation. Based on molecular dynamics simulations, we proposed a molecular mechanism for biased signaling of I109A mutant receptor. We postulate that due to the extra space created by I109A mutation, the phenyl group of the last residue (Phe-13) of apelin rotates down and initiates a cascade of conformational changes in TM3. Phe-13 formed a new cluster of hydrophobic interactions with the sidechains of residues in TM3, including F1103.33 and M1133.36, which stabilizes the mutant receptor in a conformation favoring biased signaling. Interruption of these stabilizing interactions by double mutation F110A/I109A or M113A/I109A largely restored the ß-arrestin-mediated signaling. Taken together, we describe herein the discovery of a biased APJ mutant receptor and provide detailed molecular insights into APJ signaling selectivity, facilitating the discovery of novel therapeutics targeting APJ.


Asunto(s)
Aminoácidos/química , Receptores de Apelina/química , Dominios Proteicos , Receptores Acoplados a Proteínas G/química , Secuencia de Aminoácidos , Aminoácidos/genética , Aminoácidos/metabolismo , Apelina/química , Apelina/metabolismo , Receptores de Apelina/genética , Receptores de Apelina/metabolismo , Sitios de Unión/genética , Línea Celular Tumoral , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Células HEK293 , Humanos , Ligandos , Simulación de Dinámica Molecular , Mutación Missense , Unión Proteica , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
11.
J Physiol Biochem ; 74(2): 283-290, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29464522

RESUMEN

The maintenance of nitric oxide (NO) bioavailability has been recognized as an important component of myocardial protection during cardiac surgery. This study was designed to evaluate the efficacy of using two NO-donating compounds in cardioplegia and reperfusion: (i) a modified peptide apelin-12 (MA12) that activates endothelial NO synthase (eNOS) and (ii) dinitrosyl iron complexes with reduced glutathione (DNIC-GS), a natural NO vehicle. Isolated perfused working rat hearts were subjected to normothermic global ischemia and reperfusion. St. Thomas' Hospital cardioplegic solution (STH) containing 140 µM MA12 or 100 µM DNIC-GS was used. In separate series, 140 µM MA12 or 100 µM DNIC-GS was administered at early reperfusion. Metabolic state of the hearts was evaluated by myocardial content of high-energy phosphates and lactate. Lactate dehydrogenase (LDH) activity in myocardial effluent was used as an index of cell membrane damage. Cardioplegia with MA12 or DNIC-GS improved recovery of coronary flow and cardiac function, and reduced LDH leakage in perfusate compared with STH without additives. Cardioplegic arrest with MA12 significantly enhanced preservation of high-energy phosphates and decreased accumulation of lactate in reperfused hearts. The overall protective effect of cardioplegia with MA12 was significantly greater than with DNIC-GS. The administration of MA12 or DNIC-GS at early reperfusion also increased metabolic and functional recovery of reperfused hearts. In this case, recovery of cardiac contractile and pump function indices was significantly higher if reperfusion was performed with DNIC-GS. The results show that MA12 and DNIC-GS are promising adjunct agents for protection of the heart during cardioplegic arrest and reperfusion.


Asunto(s)
Apelina/farmacología , Paro Cardíaco Inducido , Hierro/farmacología , Isquemia Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Óxidos de Nitrógeno/farmacología , Animales , Apelina/química , Soluciones Cardiopléjicas , Pruebas de Función Cardíaca , L-Lactato Deshidrogenasa/metabolismo , Masculino , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/fisiopatología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/fisiopatología , Donantes de Óxido Nítrico/farmacología , Ratas Wistar
12.
Curr Protein Pept Sci ; 19(2): 179-189, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28925900

RESUMEN

Diabetes is a metabolic disorder with multiple complications, including cardiomyopathy, retinopathy, nephropathy and neuropathy. Diabetic complications are the major cause of disability and death in diabetic patients. Apelin, a recently identified adipokine peptide, has been found to play important roles in diabetic complications. Here we summarize the current knowledge on the role of apelin in the pathogenesis of different diabetic complications. We also propose that similar to insulin resistance or leptin resistance, diabetics may also show apelin resistance. Potential clinical application of apelin and its analogue peptides in treating diabetic complications is discussed.


Asunto(s)
Apelina/química , Apelina/farmacología , Complicaciones de la Diabetes/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Apelina/metabolismo , Complicaciones de la Diabetes/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Humanos , Resistencia a la Insulina , Leptina/química , Leptina/metabolismo , Leptina/uso terapéutico , Estructura Molecular , Conformación Proteica , Relación Estructura-Actividad
13.
Sci Rep ; 7(1): 15433, 2017 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-29133807

RESUMEN

Apelin is one of two peptide hormones that activate the apelin receptor (AR or APJ) to regulate the cardiovascular system, central nervous system, and adipoinsular axis. Here, we apply circular dichroism (CD) spectropolarimetry and nuclear magnetic resonance (NMR) spectroscopy to characterize the potential membrane binding by the two longest bioactive apelin isoforms, apelin-55 and -36, using membrane-mimetic dodecylphosphocholine (DPC), sodium dodecyl sulfate (SDS), and 1-palmitoyl-2-hydroxy-sn-glycero-3-[phospho-rac-(1-glycerol)] (LPPG) micelles. Pulsed field gradient diffusion NMR experiments demonstrated preferential interaction of both apelin-55 and -36 with anionic SDS and LPPG micelles over zwitterionic DPC micelles. Chemical shift perturbations and changes in ps-ns scale dynamics of apelin-55 in all micelles were similarly localized along the polypeptide backbone, demonstrating clear dependence upon detergent headgroup, while comparison of chemical shifts between apelin-55 and apelin-36 showed negligible differences indicative of highly similar modes of micelle interaction. Notably, the observed behaviour was consistent with an ensemble averaged pair of free and bound states in fast exchange on the NMR timescale proportional to the fraction of micelle-bound protein, implying a similar conformational equilibrium regardless of headgroup and tailgroup. Membrane catalysis of apelin-AR binding would thus give rise to analogous behaviour in the essential C-terminal region common to all apelin isoforms.


Asunto(s)
Apelina/metabolismo , Membrana Celular/metabolismo , Detergentes/química , Apelina/química , Apelina/aislamiento & purificación , Membrana Celular/química , Dicroismo Circular , Membranas Artificiales , Micelas , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
14.
Structure ; 25(6): 858-866.e4, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28528775

RESUMEN

Apelin receptor (APJR) is a key regulator of human cardiovascular function and is activated by two different endogenous peptide ligands, apelin and Elabela, each with different isoforms diversified by length and amino acid sequence. Here we report the 2.6-Å resolution crystal structure of human APJR in complex with a designed 17-amino-acid apelin mimetic peptide agonist. The structure reveals that the peptide agonist adopts a lactam constrained curved two-site ligand binding mode. Combined with mutation analysis and molecular dynamics simulations with apelin-13 binding to the wild-type APJR, this structure provides a mechanistic understanding of apelin recognition and binding specificity. Comparison of this structure with that of other peptide receptors suggests that endogenous peptide ligands with a high degree of conformational flexibility may bind and modulate the receptors via a similar two-site binding mechanism.


Asunto(s)
Receptores de Apelina/química , Alanina , Apelina/química , Receptores de Apelina/agonistas , Receptores de Apelina/genética , Cristalografía por Rayos X , Humanos , Simulación de Dinámica Molecular , Imitación Molecular , Mutagénesis Sitio-Dirigida , Fragmentos de Péptidos/química , Péptidos Cíclicos/química , Conformación Proteica , Transducción de Señal
15.
J Phys Chem B ; 121(18): 4768-4777, 2017 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-28414462

RESUMEN

Bioactive apelin peptide forms ranging in length from 12 to 55 amino acids bind to and activate the apelin receptor (AR or APJ), a class A G-protein coupled receptor. Apelin-12, -17, and -36 isoforms, named according to length, with an additional N-terminal cysteine residue allowed for regiospecific and efficient conjugation of pyrene maleimide. Through steady-state fluorescence spectroscopy, the emission properties of pyrene in aqueous buffer were compared to those of the pyrene-apelin conjugates both without and with zwitterionic or anionic micelles. Pyrene photophysics are consistent with an expected partitioning into the hydrophobic micellar cores, while pyrene-apelin conjugation prevented this partitioning. Apelin, conversely, is expected to preferentially interact with anionic micelles; pyrene-apelin conjugates appear to lose preferential interaction. Finally, Förster resonance energy transfer between pyrene and tryptophan residues in the N-terminal tail and first transmembrane segment (the AR55 construct, comprising residues 1-55 of the AR) was consistent with efficient nonspecific pyrene-apelin conjugate binding to micelles rather than direct, specific apelin-AR55 binding. This approach provides a versatile fluorophore conjugation strategy for apelin, particularly valuable given that even a highly hydrophobic fluorophore is not deleterious to peptide behavior in membrane-mimetic micellar systems.


Asunto(s)
Apelina/química , Micelas , Pirenos/química , Apelina/genética , Apelina/aislamiento & purificación , Transferencia Resonante de Energía de Fluorescencia , Estructura Molecular , Espectrometría de Fluorescencia
16.
Sci Rep ; 7: 40335, 2017 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-28091541

RESUMEN

The apelin receptor (APJ) belongs to family A of the G protein-coupled receptors (GPCRs) and is a potential pharmacotherapeutic target for heart failure, hypertension, and other cardiovascular diseases. There is evidence APJ heterodimerizes with other GPCRs; however, the existence of APJ homodimers and oligomers remains to be investigated. Here, we measured APJ monomer-homodimer-oligomer interconversion by monitoring APJ dynamically on cells and compared their proportions, spatial arrangement, and mobility using total internal reflection fluorescence microscopy, resonance energy transfer, and proximity biotinylation. In cells with <0.3 receptor particles/µm2, approximately 60% of APJ molecules were present as dimers or oligomers. APJ dimers were present on the cell surface in a dynamic equilibrium with constant formation and dissociation of receptor complexes. Furthermore, we applied interference peptides and MALDI-TOF mass spectrometry to confirm APJ homo-dimer and explore the dimer-interfaces. Peptides corresponding to transmembrane domain (TMD)1, 2, 3, and 4, but not TMD5, 6, and 7, disrupted APJ dimerization. APJ mutants in TMD1 and TMD2 also decreased bioluminescence resonance energy transfer of APJ dimer. APJ dimerization resulted in novel functional characteristics, such as a distinct G-protein binding profile and cell responses after agonist stimulation. Thus, dimerization may serve as a unique mechanism for fine-tuning APJ-mediated functions.


Asunto(s)
Receptores de Apelina/metabolismo , Proteínas de Unión al GTP/metabolismo , Multimerización de Proteína , Transducción de Señal , Imagen Individual de Molécula/métodos , Secuencia de Aminoácidos , Animales , Apelina/química , Apelina/metabolismo , Receptores de Apelina/agonistas , Receptores de Apelina/química , Células CHO , Membrana Celular/metabolismo , Supervivencia Celular , Cricetinae , Cricetulus , Transferencia Resonante de Energía de Fluorescencia , Proteínas Fluorescentes Verdes/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Mutación Puntual/genética , Dominios Proteicos
17.
Compr Physiol ; 8(1): 407-450, 2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-29357134

RESUMEN

Apelin and apela (ELABELA/ELA/Toddler) are two peptide ligands for a class A G-protein-coupled receptor named the apelin receptor (AR/APJ/APLNR). Ligand-AR interactions have been implicated in regulation of the adipoinsular axis, cardiovascular system, and central nervous system alongside pathological processes. Each ligand may be processed into a variety of bioactive isoforms endogenously, with apelin ranging from 13 to 55 amino acids and apela from 11 to 32, typically being cleaved C-terminal to dibasic proprotein convertase cleavage sites. The C-terminal region of the respective precursor protein is retained and is responsible for receptor binding and subsequent activation. Interestingly, both apelin and apela exhibit isoform-dependent variability in potency and efficacy under various physiological and pathological conditions, but most studies focus on a single isoform. Biophysical behavior and structural properties of apelin and apela isoforms show strong correlations with functional studies, with key motifs now well determined for apelin. Unlike its ligands, the AR has been relatively difficult to characterize by biophysical techniques, with most characterization to date being focused on effects of mutagenesis. This situation may improve following a recently reported AR crystal structure, but there are still barriers to overcome in terms of comprehensive biophysical study. In this review, we summarize the three components of the apelinergic system in terms of structure-function correlation, with a particular focus on isoform-dependent properties, underlining the potential for regulation of the system through multiple endogenous ligands and isoforms, isoform-dependent pharmacological properties, and biological membrane-mediated receptor interaction. © 2018 American Physiological Society. Compr Physiol 8:407-450, 2018.


Asunto(s)
Apelina/química , Hormonas Peptídicas/química , Secuencia de Aminoácidos , Apelina/genética , Apelina/fisiología , Cristalización , Humanos , Estructura Molecular , Hormonas Peptídicas/genética , Hormonas Peptídicas/fisiología , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...