Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Intervalo de año de publicación
1.
Chem Biodivers ; 21(6): e202400258, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38581076

RESUMEN

We presented a strategy utilizing 2D NMR-based metabolomic analysis of crude extracts, categorized by different pharmacological activities, to rapidly identify the primary bioactive components of TCM. It was applied to identify the potential bioactive components from Scutellaria crude extracts that exhibit anti-non-small cell lung cancer (anti-NSCLC) activity. Four Scutellaria species were chosen as the study subjects because of their close phylogenetic relationship, but their crude extracts exhibit significantly different anti-NSCLC activity. Cell proliferation assay was used to assess the anti-NSCLC activity of four species of Scutellaria. 1H-13C HSQC spectra were acquired for the chemical profiling of these crude extracts. Based on the pharmacological classification (PCA, OPLS-DA and univariate hypothesis test) were performed to identify the bioactive constituents in Scutellaria associated with the anti-NSCLC activity. As a result, three compounds, baicalein, wogonin and scutellarin were identified as bioactive compounds. The anti-NSCLC activity of the three potential active compounds were further confirmed via cell proliferation assay. The mechanism of the anti-NSCLC activity by these active constituents was further explored via flow cytometry and western blot analyses. This study demonstrated 2D NMR-based metabolomic analysis of pharmacologically classified crude extracts to be an efficient approach to the identification of active components of herbal medicine.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Proliferación Celular , Espectroscopía de Resonancia Magnética , Metabolómica , Extractos Vegetales , Scutellaria , Scutellaria/química , Humanos , Proliferación Celular/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Apigenina/farmacología , Apigenina/química , Apigenina/aislamiento & purificación , Apigenina/análisis , Flavanonas/farmacología , Flavanonas/química , Flavanonas/aislamiento & purificación , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Glucuronatos/farmacología , Glucuronatos/aislamiento & purificación , Glucuronatos/química , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales
2.
J Sci Food Agric ; 104(6): 3381-3391, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38100295

RESUMEN

BACKGROUND: Several different factors underlie the molecular mechanisms of phenolic compound-protein interactions. They include the environmental conditions. In the case of γ-conglutin, pH conditions translate directly into the adoption of two distinct oligomeric assemblies, i.e. hexameric (pH 7.5) or monomeric (pH 4.5). This paper reports research on the pH-dependent oligomerization of γ-conglutin in terms of its ability to form complexes with a model flavonoid (vitexin). RESULTS: Fluorescence-quenching thermodynamic measurements indicate that hydrogen bonds, electrostatic forces, and van der Waals interactions are the main driving forces involved in the complex formation. The interaction turned out to be a spontaneous and exothermic process. Assessment of structural composition (secondary structure changes and arrangement/dynamics of aromatic amino acids), molecular size, and the thermal stability of the different oligomeric forms showed that γ-conglutin in a monomeric state was less affected by vitexin during the interaction. CONCLUSION: The data show precisely how environmental conditions might influence phenolic compound-protein complex formation directly. This knowledge is essential for the preparation of food products containing γ-conglutin. The results can contribute to a better understanding of the detailed fate of this unique health-promoting lupin seed protein after its intake. © 2023 Society of Chemical Industry.


Asunto(s)
Lupinus , Proteínas de Plantas , Proteínas de Plantas/metabolismo , Lupinus/química , Apigenina/análisis , Semillas/química
3.
Braz. j. biol ; 83: 1-15, 2023. ilus, graf, tab
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1468914

RESUMEN

In the current report, we studied the possible inhibitors of COVID-19 from bioactive constituents of Centaurea jacea using a threefold approach consisting of quantum chemical, molecular docking and molecular dynamic techniques. Centaurea jacea is a perennial herb often used in folk medicines of dermatological complaints and fever. Moreover, anticancer, antioxidant, antibacterial and antiviral properties of its bioactive compounds are also reported. The Mpro (Main proteases) was docked with different compounds of Centaurea jacea through molecular docking. All the studied compounds including apigenin, axillarin, Centaureidin, Cirsiliol, Eupatorin and Isokaempferide, show suitable binding affinities to the binding site of SARS-CoV-2 main protease with their binding energies -6.7 kcal/mol, -7.4 kcal/mol, -7.0 kcal/mol, -5.8 kcal/mol, -6.2 kcal/mol and -6.8 kcal/mol, respectively. Among all studied compounds, axillarin was found to have maximum inhibitor efficiency followed by Centaureidin, Isokaempferide, Apigenin, Eupatorin and Cirsiliol. Our results suggested that axillarin binds with the most crucial catalytic residues CYS145 and HIS41 of the Mpro, moreover axillarin shows 5 hydrogen bond interactions and 5 hydrophobic interactions with various residues of Mpro. Furthermore, the molecular dynamic calculations over 60 ns (6×106 femtosecond) time scale also shown significant insights into the binding effects of axillarin with Mpro of SARS-CoV-2 by imitating protein like aqueous environment. From molecular dynamic calculations, the RMSD and RMSF computations indicate the stability and dynamics of the best docked complex in aqueous environment. The ADME properties and toxicity prediction analysis of axillarin also recommended it as safe drug candidate. Further, in vivo and in [...].


No presente relatório, estudamos os possíveis inibidores de Covid-19 de constituintes bioativos de Centaurea jacea usando uma abordagem tripla que consiste em técnicas de química quântica, docking molecular e dinâmica molecular. Centaurea jacea é uma erva perene frequentemente usada em remédios populares de doenças dermatológicas e febre. Além disso, as propriedades anticâncer, antioxidante, antibacteriana e antiviral de seus compostos bioativos também são relatadas. A Mpro (proteases principais) foi acoplada a diferentes compostos de Centaurea jacea por meio de docking molecular. Todos os compostos estudados, incluindo apigenina, axilarina, Centaureidina, Cirsiliol, Eupatorina e Isokaempferide, mostram afinidades de ligação adequadas ao sítio de ligação da protease principal SARS-CoV-2 com suas energias de ligação -6,7 kcal / mol, -7,4 kcal / mol, - 7,0 kcal / mol, -5,8 kcal / mol, -6,2 kcal / mol e -6,8 kcal / mol, respectivamente. Dentre todos os compostos estudados, a axilarina apresentou eficiência máxima de inibidor, seguida pela Centaureidina, Isokaempferida, Apigenina, Eupatorina e Cirsiliol. Nossos resultados sugeriram que a axilarina se liga aos resíduos catalíticos mais cruciais CYS145 e HIS41 do Mpro, além disso a axilarina mostra 5 interações de ligações de hidrogênio e 5 interações hidrofóbicas com vários resíduos de Mpro. Além disso, os cálculos de dinâmica molecular em uma escala de tempo de 60 ns (6 × 106 femtossegundos) também mostraram percepções significativas sobre os efeitos de ligação da axilarina com Mpro de SARS-CoV-2 por imitação de proteínas como o ambiente aquoso. A partir de cálculos de dinâmica molecular, os cálculos RMSD e RMSF indicam a estabilidade e dinâmica do melhor complexo ancorado em ambiente [...].


Asunto(s)
Apigenina/análisis , Apigenina/uso terapéutico , Centaurea/química , Fenómenos Químicos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/efectos de los fármacos
4.
Clinics ; 68(6): 865-875, jun. 2013. tab, graf
Artículo en Inglés | LILACS | ID: lil-676934

RESUMEN

OBJECTIVE: Ficus deltoidea leaves have been used in traditional medicine in Southeast Asia to treat diabetes, inflammation, diarrhea, and infections. The present study was conducted to assess the genotoxicity and acute and subchronic toxicity of a standardized methanol extract of F. deltoidea leaves. METHODS: Sprague Dawley rats were orally treated with five different single doses of the extract and screened for signs of toxicity for two weeks after administration. In the subchronic study, three different doses of the extract were administered for 28 days. Mortality, clinical signs, body weight changes, hematological and biochemical parameters, gross findings, organ weights, and histological parameters were monitored during the study. Genotoxicity was assessed using the Ames test with the TA98 and TA100 Salmonella typhimurium strains. Phytochemical standardization was performed using a colorimeter and high-performance liquid chromatography. Heavy metal detection was performed using an atomic absorption spectrometer. RESULTS: The acute toxicity study showed that the LD50 of the extract was greater than 5000 mg/kg. In the subchronic toxicity study, there were no significant adverse effects on food consumption, body weight, organ weights, mortality, clinical chemistry, hematology, gross pathology, or histopathology. However, a dose-dependent increase in the serum urea level was observed. The Ames test revealed that the extract did not have any potential to induce gene mutations in S. typhimurium, either in the presence or absence of S9 activation. Phytochemical analysis of the extract revealed high contents of phenolics, flavonoids, and tannins. High-performance liquid chromatography analysis revealed high levels of vitexin and isovitexin in the extract, and the levels of heavy metals were below the toxic levels. CONCLUSION: The no-observed adverse effect level ...


Asunto(s)
Animales , Femenino , Masculino , Ratas , Ficus/toxicidad , Extractos Vegetales/toxicidad , Hojas de la Planta/toxicidad , Apigenina/análisis , Peso Corporal/efectos de los fármacos , Cromatografía Liquida , Metanol , Tamaño de los Órganos/efectos de los fármacos , Fitoterapia , Extractos Vegetales/administración & dosificación , Distribución Aleatoria , Ratas Sprague-Dawley , Pruebas de Toxicidad Aguda , Pruebas de Toxicidad Subcrónica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...