Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.548
Filtrar
1.
N Engl J Med ; 390(19): 1781-1792, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38587247

RESUMEN

BACKGROUND: Familial chylomicronemia syndrome is a genetic disorder associated with severe hypertriglyceridemia and severe acute pancreatitis. Olezarsen reduces the plasma triglyceride level by reducing hepatic synthesis of apolipoprotein C-III. METHODS: In a phase 3, double-blind, placebo-controlled trial, we randomly assigned patients with genetically identified familial chylomicronemia syndrome to receive olezarsen at a dose of 80 mg or 50 mg or placebo subcutaneously every 4 weeks for 49 weeks. There were two primary end points: the difference between the 80-mg olezarsen group and the placebo group in the percent change in the fasting triglyceride level from baseline to 6 months, and (to be assessed if the first was significant) the difference between the 50-mg olezarsen group and the placebo group. Secondary end points included the mean percent change from baseline in the apolipoprotein C-III level and an independently adjudicated episode of acute pancreatitis. RESULTS: A total of 66 patients underwent randomization; 22 were assigned to the 80-mg olezarsen group, 21 to the 50-mg olezarsen group, and 23 to the placebo group. At baseline, the mean (±SD) triglyceride level among the patients was 2630±1315 mg per deciliter, and 71% had a history of acute pancreatitis within the previous 10 years. Triglyceride levels at 6 months were significantly reduced with the 80-mg dose of olezarsen as compared with placebo (-43.5 percentage points; 95% confidence interval [CI], -69.1 to -17.9; P<0.001) but not with the 50-mg dose (-22.4 percentage points; 95% CI, -47.2 to 2.5; P = 0.08). The difference in the mean percent change in the apolipoprotein C-III level from baseline to 6 months in the 80-mg group as compared with the placebo group was -73.7 percentage points (95% CI, -94.6 to -52.8) and between the 50-mg group as compared with the placebo group was -65.5 percentage points (95% CI, -82.6 to -48.3). By 53 weeks, 11 episodes of acute pancreatitis had occurred in the placebo group, and 1 episode had occurred in each olezarsen group (rate ratio [pooled olezarsen groups vs. placebo], 0.12; 95% CI, 0.02 to 0.66). Adverse events of moderate severity that were considered by a trial investigator at the site to be related to the trial drug or placebo occurred in 4 patients in the 80-mg olezarsen group. CONCLUSIONS: In patients with familial chylomicronemia syndrome, olezarsen may represent a new therapy to reduce plasma triglyceride levels. (Funded by Ionis Pharmaceuticals; Balance ClinicalTrials.gov number, NCT04568434.).


Asunto(s)
Apolipoproteína C-III , Hiperlipoproteinemia Tipo I , Pancreatitis , Triglicéridos , Humanos , Pancreatitis/tratamiento farmacológico , Masculino , Femenino , Método Doble Ciego , Apolipoproteína C-III/sangre , Persona de Mediana Edad , Adulto , Triglicéridos/sangre , Hiperlipoproteinemia Tipo I/tratamiento farmacológico , Hiperlipoproteinemia Tipo I/sangre , Hiperlipoproteinemia Tipo I/complicaciones , Enfermedad Aguda , Oligonucleótidos/uso terapéutico , Oligonucleótidos/efectos adversos , Anciano , Hipertrigliceridemia/tratamiento farmacológico , Hipertrigliceridemia/sangre , Adulto Joven
2.
N Engl J Med ; 390(19): 1770-1780, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38587249

RESUMEN

BACKGROUND: Reducing the levels of triglycerides and triglyceride-rich lipoproteins remains an unmet clinical need. Olezarsen is an antisense oligonucleotide targeting messenger RNA for apolipoprotein C-III (APOC3), a genetically validated target for triglyceride lowering. METHODS: In this phase 2b, randomized, controlled trial, we assigned adults either with moderate hypertriglyceridemia (triglyceride level, 150 to 499 mg per deciliter) and elevated cardiovascular risk or with severe hypertriglyceridemia (triglyceride level, ≥500 mg per deciliter) in a 1:1 ratio to either a 50-mg or 80-mg cohort. Patients were then assigned in a 3:1 ratio to receive monthly subcutaneous olezarsen or matching placebo within each cohort. The primary outcome was the percent change in the triglyceride level from baseline to 6 months, reported as the difference between each olezarsen group and placebo. Key secondary outcomes were changes in levels of APOC3, apolipoprotein B, non-high-density lipoprotein (HDL) cholesterol, and low-density lipoprotein (LDL) cholesterol. RESULTS: A total of 154 patients underwent randomization at 24 sites in North America. The median age of the patients was 62 years, and the median triglyceride level was 241.5 mg per deciliter. The 50-mg and 80-mg doses of olezarsen reduced triglyceride levels by 49.3 percentage points and 53.1 percentage points, respectively, as compared with placebo (P<0.001 for both comparisons). As compared with placebo, each dose of olezarsen also significantly reduced the levels of APOC3, apolipoprotein B, and non-HDL cholesterol, with no significant change in the LDL cholesterol level. The risks of adverse events and serious adverse events were similar in the three groups. Clinically meaningful hepatic, renal, or platelet abnormalities were uncommon, with similar risks in the three groups. CONCLUSIONS: In patients with predominantly moderate hypertriglyceridemia at elevated cardiovascular risk, olezarsen significantly reduced levels of triglycerides, apolipoprotein B, and non-HDL cholesterol, with no major safety concerns identified. (Funded by Ionis Pharmaceuticals; Bridge-TIMI 73a ClinicalTrials.gov number, NCT05355402.).


Asunto(s)
Apolipoproteína C-III , Enfermedades Cardiovasculares , Hipertrigliceridemia , Oligonucleótidos , Triglicéridos , Humanos , Hipertrigliceridemia/tratamiento farmacológico , Hipertrigliceridemia/complicaciones , Hipertrigliceridemia/sangre , Persona de Mediana Edad , Masculino , Femenino , Apolipoproteína C-III/sangre , Triglicéridos/sangre , Enfermedades Cardiovasculares/prevención & control , Enfermedades Cardiovasculares/etiología , Oligonucleótidos/uso terapéutico , Oligonucleótidos/efectos adversos , Anciano , Adulto , Método Doble Ciego , Oligonucleótidos Antisentido/uso terapéutico , Oligonucleótidos Antisentido/efectos adversos , Factores de Riesgo de Enfermedad Cardiaca , LDL-Colesterol/sangre , Hipolipemiantes/uso terapéutico , Hipolipemiantes/efectos adversos , Apolipoproteínas B/sangre
4.
Atherosclerosis ; 391: 117501, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38547584

RESUMEN

BACKGROUND AND AIMS: Inhibitors of apolipoprotein C-III (apoC3) are currently approved for the reduction of triglyceride levels in patients with Familial Chylomicronemia Syndrome. We used drug target Mendelian randomization (MR) to assess the effect of genetically predicted decrease in apoC3 blood protein levels on cardiometabolic traits and diseases. METHODS: We quantified lifelong reductions in apoC3 blood levels by selecting all genome wide significant and independent (r2<0.1) single nucleotide polymorphisms (SNPs) in the APOC3 gene region ±1 Mb, from three genome-wide association studies (GWAS) of apoC3 blood protein levels (deCODE, n = 35,378, Fenland, n = 10,708 and ARIC, n = 7213). We included the largest GWASes on 18 cardiometabolic traits and 9 cardiometabolic diseases as study outcomes. RESULTS: A one standard deviation lowering in apoC3 blood protein levels was associated with lower triglycerides, apolipoprotein B, low-density lipoprotein cholesterol, alanine aminotransferase, and glomerular filtration rate as well as higher high-density lipoprotein cholesterol levels. ApoC3 lowering was also associated with lower risk of acute pancreatitis (odds ratio [OR] = 0.91 95% CI = 0.82 to 1.00), aortic stenosis (OR = 0.82 95% CI = 0.73 to 0.93), and coronary artery disease (OR = 0.86 95% CI = 0.80 to 0.93), and was associated with increased parental lifespan (0.06 95% CI = 0.03-0.09 years). These results were concordant across robust MR methods, the three protein datasets and upon adjustment for APOA1, APOA4 and APOA5 using a multivariable MR framework. CONCLUSIONS: These results provide evidence that apoC3 lowering could result in widespread benefits for cardiometabolic health and encourage the launch of trials on apoC3 inhibition for coronary artery disease prevention.


Asunto(s)
Apolipoproteína C-III , Enfermedades Cardiovasculares , Humanos , Enfermedad Aguda , Apolipoproteína C-III/genética , Proteínas Sanguíneas , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/prevención & control , LDL-Colesterol , Enfermedad de la Arteria Coronaria/genética , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Pancreatitis , Polimorfismo de Nucleótido Simple , Triglicéridos
5.
Aging (Albany NY) ; 16(5): 4095-4115, 2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38441531

RESUMEN

FoxO6, an identified factor, induces hyperlipidemia and hepatic steatosis during aging by activating hepatic lipoprotein secretion and lipogenesis leading to increased ApoC3 concentrations in the bloodstream. However, the intricate mechanisms underlying hepatic steatosis induced by elevated FoxO6 under hyperglycemic conditions remain intricate and require further elucidation. In order to delineate the regulatory pathway involving ApoC3 controlled by FoxO6 and its resultant functional impacts, we employed a spectrum of models including liver cell cultures, aged rats subjected to HFD, transgenic mice overexpressing FoxO6 (FoxO6-Tg), and FoxO6 knockout mice (FoxO6-KO). Our findings indicate that FoxO6 triggered ApoC3-driven lipid accumulation in the livers of aged rats on an HFD and in FoxO6-Tg, consequently leading to hepatic steatosis and hyperglycemia. Conversely, the absence of FoxO6 attenuated the expression of genes involved in lipogenesis, resulting in diminished hepatic lipid accumulation and mitigated hyperlipidemia in murine models. Additionally, the upregulation of FoxO6 due to elevated glucose levels led to increased ApoC3 expression, consequently instigating cellular triglyceride mediated lipid accumulation. The transcriptional activation of FoxO6 induced by both the HFD and high glucose levels resulted in hepatic steatosis by upregulating ApoC3 and genes associated with gluconeogenesis in aged rats and liver cell cultures. Our conclusions indicate that the upregulation of ApoC3 by FoxO6 promotes the development of hyperlipidemia, hyperglycemia, and hepatic steatosis in vivo, and in vitro. Taken together, our findings underscore the significance of FoxO6 in driving hyperlipidemia and hepatic steatosis specifically under hyperglycemic states by enhancing the expression of ApoC3 in aged rats.


Asunto(s)
Hígado Graso , Hipercolesterolemia , Hiperglucemia , Hiperlipidemias , Animales , Ratones , Ratas , Dieta Alta en Grasa/efectos adversos , Hígado Graso/metabolismo , Glucosa/metabolismo , Hiperglucemia/metabolismo , Hiperlipidemias/metabolismo , Hígado/metabolismo , Ratones Noqueados , Ratones Transgénicos , Factores de Transcripción/metabolismo , Triglicéridos/metabolismo , Regulación hacia Arriba , Factores de Transcripción Forkhead/metabolismo , Apolipoproteína C-III/metabolismo
6.
Curr Opin Lipidol ; 35(3): 101-109, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38372218

RESUMEN

PURPOSE OF REVIEW: Hypertriglyceridemia (HTG) is an independent and casual risk factor for atherosclerotic cardiovascular disease (ASCVD). There is an unmet need for more effective treatments for patients with HTG. Angiopoietin-like protein 3 (ANGPTL3) and apolipoprotein C-III (apoC-III) are key regulators of triglyceride-rich lipoprotein (TRL) metabolism. We review recent clinical trials targeting ANGPTL3 and apoC-III with monoclonal antibody and nucleic acid therapies, including antisense oligonucleotides and small interfering RNA. RECENT FINDINGS: ANGPTL3 and apoC-III inhibitors are effective in lowering plasma triglycerides and TRLs, with possibly greater efficacy with the inhibition of apoC-III. By contrast to ANGPTL3 inhibition that has the advantage of greater lowering of plasma low-density lipoprotein (LDL)-cholesterol and apoB levels, apoC-III inhibition only has a modest or no effect in lowering plasma LDL-cholesterol and apoB concentrations. Therapeutic inhibition of ANGPTL3 and apoC-III can correct HTG possibly by reducing production and increasing catabolism of TRL particles, but this remains to be formally investigated in patients with HTG. SUMMARY: Novel agents targeting ANGPTL3 and apoC-III can correct HTG and potentially lower risk of ASCVD in patients with HTG. The long-term safety and cost-effectiveness of these agents await confirmation in ongoing and future studies.


Asunto(s)
Proteína 3 Similar a la Angiopoyetina , Proteínas Similares a la Angiopoyetina , Angiopoyetinas , Apolipoproteína C-III , Hipertrigliceridemia , Apolipoproteína C-III/antagonistas & inhibidores , Apolipoproteína C-III/sangre , Apolipoproteína C-III/metabolismo , Humanos , Proteínas Similares a la Angiopoyetina/antagonistas & inhibidores , Proteínas Similares a la Angiopoyetina/metabolismo , Hipertrigliceridemia/tratamiento farmacológico , Hipertrigliceridemia/sangre , Hipertrigliceridemia/metabolismo , Angiopoyetinas/metabolismo , Angiopoyetinas/antagonistas & inhibidores , Animales , Triglicéridos/sangre , Triglicéridos/metabolismo , Ensayos Clínicos como Asunto
7.
Mol Genet Metab ; 142(1): 108347, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38401382

RESUMEN

RATIONALE: Lipoprotein lipase (LPL) deficiency, a rare inherited metabolic disorder, is characterized by high triglyceride (TG) levels and life-threatening acute pancreatitis. Current treatment for pediatric patients involves a lifelong severely fat-restricted diet, posing adherence challenges. Volanesorsen, an EMA-approved RNA therapy for adults, effectively reduces TG levels by decreasing the production of apolipoprotein C-III. This 96-week observational open-label study explores Volanesorsen's safety and efficacy in a 13-year-old female with LPL deficiency. METHODS: The patient, with a history of severe TG elevations, 53 hospital admissions, and life-threatening recurrent pancreatitis despite dietary restrictions, received weekly subcutaneous Volanesorsen injections. We designed a protocol for this investigator-initiated study, primarily focusing on changes in fasting TG levels and hospital admissions. RESULTS: While the injections caused occasional pain and swelling, no other adverse events were observed. TG levels decreased during treatment, with more measurements below the pancreatitis risk threshold compared to pre-treatment. No hospital admissions occurred in the initial 14 months of treatment, contrasting with 21 admissions in the 96 weeks before. In the past 10 months, two pancreatitis episodes may have been linked to dietary noncompliance. Dietary restrictions were relaxed, increasing fat intake by 65% compared to baseline. While not fully reflected in the PedsQL, both parents and the patient narratively reported an improved quality of life. CONCLUSION: This study demonstrates, for the first time, that Volanesorsen is tolerated in a pediatric patient with severe LPL deficiency and effectively lowers TG levels, preventing life-threatening complications. This warrants consideration for expanded access in this population.


Asunto(s)
Hiperlipoproteinemia Tipo I , Oligonucleótidos , Pancreatitis , Triglicéridos , Humanos , Femenino , Adolescente , Hiperlipoproteinemia Tipo I/tratamiento farmacológico , Hiperlipoproteinemia Tipo I/genética , Pancreatitis/tratamiento farmacológico , Triglicéridos/sangre , Lipoproteína Lipasa/genética , Lipoproteína Lipasa/deficiencia , Resultado del Tratamiento , Apolipoproteína C-III
8.
Curr Opin Endocrinol Diabetes Obes ; 31(2): 70-77, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38334488

RESUMEN

PURPOSE OF REVIEW: The aim of this review is to present the clinical indications of apolipoprotein C-III (apoC3) inhibition in the therapeutic arsenal for the treatment of lipid disorders and associated risks and to compare the most advanced modalities of apoC3 inhibition currently available or in development, specifically APOC3 antisense oligonucleotides (ASO) and small interfering RNA (siRNA). RECENT FINDINGS: ApoC3 inhibition significantly decreases triglyceride levels by mechanisms coupling both lipoprotein lipase (LPL) upregulation and LPL-independent mechanisms. The main apoC3 inhibitors in advanced clinical development are the GalNAc-ASO olezarsen and the GalNAc-siRNA plozasiran. Clinical studies conducted with volanesorsen, the olezarsen precursor, showed a favorable effect on hepatic steatosis (nonalcoholic fatty liver disease, NAFLD). Olezarsen does not appear to be associated with the main side effects attributed to volanesorsen including thrombocytopenia. Plozasiran is in advanced clinical development and requires subcutaneous injection every 3 months and present to-date an efficacy and safety profile comparable to that of the monthly ASO. SUMMARY: Inhibition of apoC3 is effective across all the spectrum of hypertriglyceridemia, might have a favorable effect on hepatic steatosis (NAFLD) and the effect of apoC3 inhibition on cardiovascular risk is not limited to its effect on plasma triglycerides. APOC3 GalNAc-conjugated ASO and siRNA are both effective in decreasing plasma apoC3 and triglyceride levels.


Asunto(s)
Dislipidemias , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/uso terapéutico , Apolipoproteína C-III/genética , Oligonucleótidos Antisentido/uso terapéutico , Triglicéridos , Dislipidemias/genética , Dislipidemias/terapia
9.
Front Biosci (Landmark Ed) ; 29(1): 32, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38287814

RESUMEN

BACKGROUND: Aberrant glycosylation is a hallmark of cancer and thereby has an excellent potential for the discovery of novel biomarkers. Impairments in the glycan composition of lipoproteins impact their functional properties and can be associated with various diseases, including cancer. This research is still in its infancy; however, it can lead to the development of new diagnostic and disease stratification approaches as well as therapeutic strategies. Therefore, we aimed to evaluate anomalies in O-glycosylation of apolipoprotein C-III (apoC-III) in colorectal carcinoma (CRC) patients' sera, in comparison with sera from healthy individuals, and assess the disparities of O-glycoforms on apoC-III in CRC. METHODS: The choice of patients (n = 42) was based on the same tumor type (adenocarcinoma) and tumor size (T3), without or with inconsiderable lymph node infiltration. Patients with comorbidities were excluded from the study. The control healthy individuals (n = 40) were age- and sex-matched with patients. We used an approach based on the MALDI-TOF MS in linear positive ion mode, allowing simple analysis of O-glycosylation on intact apoC-III molecules in the serum samples directly, without the need for specific protein isolation. This approach enables relatively simple and high-throughput analysis. RESULTS: In CRC patients' sera samples, we observed significantly elevated apoC-III sialylation. Fully sialylated (disialylated) O-glycans had 1.26 times higher relative abundance in CRC samples compared to controls with a p-value of Mann-Whitney U test of 0.0021. CONCLUSIONS: We found altered O-glycosylation of apoC-III in the serum of CRC patients. However, it can be non-specific as it may be associated with another process such as ongoing inflammation. Therefore, to establish it as a potential novel non-invasive biomarker for CRC in suspected patients, further studies interrogating the changes in apoC-III O-glycosylation and the robustness of this biomarker need to be performed and evaluated.


Asunto(s)
Neoplasias Colorrectales , Polisacáridos , Humanos , Apolipoproteína C-III , Glicosilación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Biomarcadores , Neoplasias Colorrectales/diagnóstico
10.
J Lipid Res ; 65(1): 100475, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37972731

RESUMEN

Increased circulating levels of apolipoprotein C3 (APOC3) predict cardiovascular disease (CVD) risk in humans, and APOC3 promotes atherosclerosis in mouse models. APOC3's mechanism of action is due in large part to its ability to slow the clearance of triglyceride-rich lipoproteins (TRLs) and their remnants when APOC3 is carried by these lipoproteins. However, different pools and forms of APOC3 exert distinct biological effects or associations with atherogenic processes. Thus, lipid-free APOC3 induces inflammasome activation in monocytes whereas lipid particle-bound APOC3 does not. APOC3-enriched LDL binds better to the vascular glycosaminoglycan biglycan than does LDL depleted of APOC3. Patterns of APOC3 glycoforms predict CVD risk differently. The function of APOC3 bound to HDL is largely unknown. There is still much to learn about the mechanisms of action of different forms and pools of APOC3 in atherosclerosis and CVD, and whether APOC3 inhibition would prevent CVD risk in patients on LDL-cholesterol lowering medications.


Asunto(s)
Aterosclerosis , Lipoproteínas , Ratones , Animales , Humanos , Apolipoproteína C-III , Lipoproteínas/metabolismo , Triglicéridos/metabolismo , Aterosclerosis/metabolismo
11.
Cardiovasc Res ; 119(18): 2843-2857, 2024 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-38039351

RESUMEN

The availability of pharmacological approaches able to effectively reduce circulating LDL cholesterol (LDL-C) has led to a substantial reduction in the risk of atherosclerosis-related cardiovascular disease (CVD). However, a residual cardiovascular (CV) risk persists in treated individuals with optimal levels of LDL-C. Additional risk factors beyond LDL-C are involved, and among these, elevated levels of triglycerides (TGs) and TG-rich lipoproteins are causally associated with an increased CV risk. Apolipoprotein C-III (apoC-III) is a key regulator of TG metabolism and hence circulating levels through several mechanisms including the inhibition of lipoprotein lipase activity and alterations in the affinity of apoC-III-containing lipoproteins for both the hepatic receptors involved in their removal and extracellular matrix in the arterial wall. Genetic studies have clarified the role of apoC-III in humans, establishing a causal link with CVD and showing that loss-of-function mutations in the APOC3 gene are associated with reduced TG levels and reduced risk of coronary heart disease. Currently available hypolipidaemic drugs can reduce TG levels, although to a limited extent. Substantial reductions in TG levels can be obtained with new drugs that target specifically apoC-III; these include two antisense oligonucleotides, one small interfering RNA and an antibody.


Asunto(s)
Aterosclerosis , Enfermedad Coronaria , Humanos , Apolipoproteína C-III/genética , Apolipoproteína C-III/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Aterosclerosis/prevención & control , LDL-Colesterol , Enfermedad Coronaria/genética , Lipoproteínas/metabolismo , Triglicéridos/metabolismo
12.
Curr Atheroscler Rep ; 25(12): 1101-1111, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38095804

RESUMEN

PURPOSE OF REVIEW: The role of the inhibition of ANGPTL3 in severe or refractory hypercholesterolemia is well documented, less in severe hyperTG. This review focuses on the preclinical and clinical development of ApoC-III inhibitors and ANGPTL3, 4, and 3/8 complex inhibitors for the treatment of severe or refractory forms of hypertriglyceridemia to prevent cardiovascular disease or other morbidities. RECENT FINDINGS: APOC3 and ANGPTL3 became targets for drug development following the identification of naturally occurring loss of function variants in families with a favorable lipid profile and low cardiovascular risk. The inhibition of ANGPTL3 covers a broad spectrum of lipid disorders from severe hypercholesterolemia to severe hypertriglyceridemia, while the inhibition of ApoC-III can treat hypertriglyceridemia regardless of the severity. Preclinical and clinical data suggest that ApoC-III inhibitors, ANGPTL3 inhibitors, and inhibitors of the ANGPTL3/8 complex that is formed postprandially are highly effective for the treatment of severe or refractory hypertriglyceridemia. Inhibition of ANGPTL3 or the ANGPTL3/8 complex upregulates LPL and facilitates the hydrolysis and clearance of triglyceride-rich lipoproteins (TRL) (LPL-dependent mechanisms), whereas ApoC-III inhibitors contribute to the management and clearance of TRL through both LPL-dependent and LPL-independent mechanisms making it possible to successfully lower TG in subjects completely lacking LPL (familial chylomicronemia syndrome). Most of these agents are biologicals including monoclonal antibodies (mAb), antisense nucleotides (ASO), small interfering RNA (siRNA), or CRISPR-cas gene editing strategies.


Asunto(s)
Hipercolesterolemia , Hiperlipidemias , Hipertrigliceridemia , Humanos , Proteína 3 Similar a la Angiopoyetina , Apolipoproteína C-III/genética , Hipertrigliceridemia/tratamiento farmacológico , Hipertrigliceridemia/metabolismo , Triglicéridos/metabolismo
13.
Sheng Li Xue Bao ; 75(6): 767-778, 2023 Dec 25.
Artículo en Chino | MEDLINE | ID: mdl-38151342

RESUMEN

As a member of the apolipoprotein C (ApoC) family with a relatively high content, ApoC3 plays a major role in the regulation of triglyceride metabolism, and plays an important role in the occurrence and development of cardiovascular diseases, glucose and lipid metabolism disorders. Nonalcoholic fatty liver disease (NAFLD) refers to the accumulation of a large amount of fat in the liver in the absence of a history of chronic alcohol consumption or other damage to the liver. A large number of previous studies have shown that there is a correlation between the gene polymorphism and high expression of ApoC3 and NAFLD. In the context of hypertriglyceridemia (HTG), this article reviews the relationship between ApoC3 and NAFLD, glucose and lipid metabolism, and islet ß cell function, showing that ApoC3 can not only inhibit lipoprotein lipase (LPL) and hepatic lipase (HL) activity, delay the decomposition of triglyceride in plasma to maintain the body's energy metabolism during fasting, but also be significantly increased under insulin resistance, prompting the liver to secrete a large amount of very low-density lipoprotein (VLDL) to induce HTG. Therefore, targeting and inhibiting ApoC3 might become a new approach to treat HTG. Increasing evidence suggests that ApoC3 does not appear to be an independent "contributor" to NAFLD. Similarly, our previous studies have shown that ApoC3 is not an independent factor triggering islet ß cell dysfunction in ApoC3 transgenic mice, but in a state of excess nutrition, HTG triggered by ApoC3 high expression may exacerbate the effects of hyperglycemia and insulin resistance on islet ß cell function, and the underlying mechanism remains to be further discussed.


Asunto(s)
Apolipoproteína C-III , Glucosa , Islotes Pancreáticos , Metabolismo de los Lípidos , Enfermedad del Hígado Graso no Alcohólico , Apolipoproteína C-III/antagonistas & inhibidores , Apolipoproteína C-III/genética , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Glucosa/metabolismo , Humanos , Animales , Hipertrigliceridemia/metabolismo , Islotes Pancreáticos/metabolismo
14.
Int J Mol Sci ; 24(21)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37958510

RESUMEN

High-density lipoproteins (HDLs) are promising targets for predicting and treating atherosclerotic cardiovascular disease (ASCVD), as they mediate removal of excess cholesterol from lipid-laden macrophages that accumulate in the vasculature. This functional property of HDLs, termed cholesterol efflux capacity (CEC), is inversely associated with ASCVD. HDLs are compositionally diverse, associating with >250 different proteins, but their relative contribution to CEC remains poorly understood. Our goal was to identify and define key HDL-associated proteins that modulate CEC in humans. The proteomic signature of plasma HDL was quantified in 36 individuals in the multi-ethnic population-based Dallas Heart Study (DHS) cohort that exhibited persistent extremely high (>=90th%) or extremely low CEC (<=10th%) over 15 years. Levels of apolipoprotein (Apo)A-I associated ApoC-II, ApoC-III, and ApoA-IV were differentially correlated with CEC in high (r = 0.49, 0.41, and -0.21 respectively) and low (r = -0.46, -0.41, and 0.66 respectively) CEC groups (p for heterogeneity (pHet) = 0.03, 0.04, and 0.003 respectively). Further, we observed that levels of ApoA-I with ApoC-III, complement C3 (CO3), ApoE, and plasminogen (PLMG) were inversely associated with CEC in individuals within the low CEC group (r = -0.11 to -0.25 for subspecies with these proteins vs. r = 0.58 to 0.65 for subspecies lacking these proteins; p < 0.05 for heterogeneity). These findings suggest that enrichment of specific proteins on HDLs and, thus, different subspecies of HDLs, differentially modulate the removal of cholesterol from the vasculature.


Asunto(s)
Aterosclerosis , Proteómica , Humanos , Apolipoproteína C-III , Lipoproteínas HDL , Colesterol/metabolismo , HDL-Colesterol/metabolismo
15.
Int J Mol Sci ; 24(19)2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37834292

RESUMEN

Apolipoprotein-CIII (apo-CIII) is involved in triglyceride-rich lipoprotein metabolism and linked to beta-cell damage, insulin resistance, and cardiovascular disease. Apo-CIII exists in four main proteoforms: non-glycosylated (apo-CIII0a), and glycosylated apo-CIII with zero, one, or two sialic acids (apo-CIII0c, apo-CIII1 and apo-CIII2). Our objective is to determine how apo-CIII glycosylation affects lipid traits and type 2 diabetes prevalence, and to investigate the genetic basis of these relations with a genome-wide association study (GWAS) on apo-CIII glycosylation. We conducted GWAS on the four apo-CIII proteoforms in the DiaGene study in people with and without type 2 diabetes (n = 2318). We investigated the relations of the identified genetic loci and apo-CIII glycosylation with lipids and type 2 diabetes. The associations of the genetic variants with lipids were replicated in the Diabetes Care System (n = 5409). Rs4846913-A, in the GALNT2-gene, was associated with decreased apo-CIII0a. This variant was associated with increased high-density lipoprotein cholesterol and decreased triglycerides, while high apo-CIII0a was associated with raised high-density lipoprotein-cholesterol and triglycerides. Rs67086575-G, located in the IFT172-gene, was associated with decreased apo-CIII2 and with hypertriglyceridemia. In line, apo-CIII2 was associated with low triglycerides. On a genome-wide scale, we confirmed that the GALNT2-gene plays a major role i O-glycosylation of apolipoprotein-CIII, with subsequent associations with lipid parameters. We newly identified the IFT172/NRBP1 region, in the literature previously associated with hypertriglyceridemia, as involved in apolipoprotein-CIII sialylation and hypertriglyceridemia. These results link genomics, glycosylation, and lipid metabolism, and represent a key step towards unravelling the importance of O-glycosylation in health and disease.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hiperlipidemias , Hipertrigliceridemia , Humanos , Apolipoproteína C-III/genética , Apolipoproteínas C/genética , Diabetes Mellitus Tipo 2/genética , Glicosilación , Estudio de Asociación del Genoma Completo , Triglicéridos , HDL-Colesterol , Receptores Citoplasmáticos y Nucleares/genética , Proteínas de Transporte Vesicular/genética , Proteínas del Citoesqueleto/genética , Proteínas Adaptadoras Transductoras de Señales/genética
16.
Endokrynol Pol ; 74(5): 553-560, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37902017

RESUMEN

INTRODUCTION: Apolipoprotein C3 (APOC3) is known for its important functions in metabolism-related diseases. However, the function and molecular mechanism of APOC3 in polycystic ovarian syndrome (PCOS) have not been reported. MATERIAL AND METHODS: Quantitative polymerase chain reaction and western blot assays were used to detect the expression of APOC3 in KGN cells. Small interference APOC3 (siAPOC3) was applied to reduce APOC3 expression, and the proliferation ability of human granulosa cell line (KGN cells) was measured by cell counting kit-8 and colony formation assays. The protein levels of key genes related to apoptosis were detected by western blot assay. The transcriptional regulator of APOC3 was predicted by the UCSC and PROMO website, and verified by dual luciferase assay. siAPOC3 and pcDNA3.1-specific protein 1 (SP1) vector were co-transfected into KGN cells to detect the function of SP1 and APOC3 in KGN cells. RESULTS: APOC3 was overexpressed in KGN cells, and siAPOC3 transfection significantly reduced the growth ability of KGN cells and increased the apoptosis ability of KGN cells. SP1 directly bound to the promoter of APOC3 and transcriptional regulated APOC3 expression. Overexpression of SP1 increased the growth ability of KGN cells and decreased the apoptosis ability of KGN cells, which were reversed after siAPOC3 transfection. The increased levels of toll-like receptor 2 (TLR2) and p65 phosphorylation (p-P65) nuclear factor kappa B (NF-κB) caused by SP1 overexpression were inhibited by siAPOC3 transfection. APOC3, transcriptionally regulated by SP1, promoted the growth of KGN cells, and inhibited the apoptosis by regulating TLR2/NF-κB signalling pathway.


Asunto(s)
Apolipoproteína C-III , Síndrome del Ovario Poliquístico , Factor de Transcripción Sp1 , Humanos , Apolipoproteína C-III/genética , Progresión de la Enfermedad , FN-kappa B , Transducción de Señal , Receptor Toll-Like 2 , Factor de Transcripción Sp1/genética , Síndrome del Ovario Poliquístico/genética , Femenino
17.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(5): 994-999, 2023 Sep.
Artículo en Chino | MEDLINE | ID: mdl-37866958

RESUMEN

Objective: To investigate the apolipoprotein C-3 (APOC3) gene Sst Ⅰ polymorphism and its relationship with changes in serum lipids in patients with gestational diabetes mellitus (GDM). Methods: A total of 630 pregnant women with GDM and 1027 normal pregnant controls were covered in the study. The genotype and allele frequencies of APOC3 Sst Ⅰ polymorphism were analyzed by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP). Total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and glucose (Glu) were measured by enzymatic methods. Plasma insulin (INS) was measured by chemiluminescence. Apolipoproteins A 1 (apoA1) and B (apoB) levels were measured by turbidimetric immunoassay. Results: The allele frequencies of S1 and S2 of the APOC3 polymorphism at the SstⅠ locus were 0.704 and 0.296 in the GDM group and 0.721 and 0.279 in the control group, respectively. There was no significant difference in genotype frequency and allele frequency of APOC3 Sst Ⅰ polymorphism between the GDM and the control groups ( P>0.05). In the GDM group, those with S2S2 and S1S2 genotypes had higher plasma HDL-C levels and lower atherogenic index (AI) values than those with S1S1 genotype did, with the differences being statistically significant (all P<0.05). GDM patients were then divided into obesity and non-obesity subgroups. Further subgroup analysis showed that the association of APOC3 genotype with changes in HDL-C levels was observed only in obese GDM patients, while the association of APOC3 genotype with changes in AI values was observed in both obese and nonobese patients. In addition, in obese GDM patients, those with S2S2 genotype had significantly higher plasma TG levels than those with S1S1 and S1S2 genotypes did ( P<0.05 and P<0.01, respectively). In non-obese GDM patients, those with S2S2 genotype had significantly lower apoB/apoA1 ratio than S2S2 carriers did ( P<0.05). No genotype-related effect on lipid and apolipoprotein variations was evident in the normal controls. Conclusion: APOC3 Sst Ⅰ polymorphism in GDM patients is associated with HDL-C and TG levels as well as AI value and apoB/apoA1 ratio. The changes in lipid levels and apolipoprotein ratio showed BMI-dependent features. However, association between polymorphism at the locus and the development of GDM was not observed.


Asunto(s)
Diabetes Gestacional , Femenino , Humanos , Embarazo , Apolipoproteína A-I/genética , Apolipoproteína C-III/genética , Apolipoproteínas B/genética , Apolipoproteínas C/genética , HDL-Colesterol , Diabetes Gestacional/genética , Frecuencia de los Genes , Genotipo , Obesidad/genética , Triglicéridos
18.
Cancer Immunol Immunother ; 72(12): 4123-4144, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37853273

RESUMEN

Increased prevalence of cancer in obese individuals is involved with dyslipidemia- induced chronic inflammation and immune suppression. Although apolipoprotein C-III (ApoC3)-transgenic mice (ApoC3TG mice) or poloxamer 407 (P407)-treated mice had hyperlipidemia, CD8+ T cells with upregulated antitumor activities were observed in ApoC3TG mice, and decreased CD8+ T cell activities were observed in P407-treated mice. Increased ApoC3 expression in hepatocellular carcinoma was associated with increased infiltration of CD8+ T cells and predicted survival. Recombinant ApoC3 had no direct effects on CD8+ T cells. The upregulation of CD8+ T cells in ApoC3TG mice was due to cross-talk with context cells, as indicated by metabolic changes and RNA sequencing results. In contrast to dendritic cells, the macrophages of ApoC3TG mice (macrophagesTG) displayed an activated phenotype and increased IL-1ß, TNF-α, and IL-6 production. Coculture with macrophagesTG increased CD8+ T cell function, and the adoptive transfer of macrophagesTG suppressed tumor progression in vivo. Furthermore, spleen tyrosine kinase (Syk) activation induced by TLR2/TLR4 cross-linking after ApoC3 ligation promoted cellular phospholipase A2 (cPLA2) activation, which in turn activated NADPH oxidase 2 (NOX2) to promote an alternative mode of inflammasome activation. Meanwhile, mitochondrial ROS produced by increased oxidative phosphorylation of free fatty acids facilitated the classical inflammasome activation, which exerted an auxiliary effect on inflammasome activation of macrophagesTG. Collectively, the increased antitumor activity of CD8+ T cells was mediated by the ApoC3-stimulated inflammasome activation of macrophages, and the mimetic ApoC3 peptides that can bind TLR2/4 could be a future strategy to target liver cancer.


Asunto(s)
Inflamasomas , Neoplasias , Ratones , Animales , Inflamasomas/metabolismo , Apolipoproteína C-III/metabolismo , Apolipoproteína C-III/farmacología , Linfocitos T CD8-positivos/metabolismo , Receptor Toll-Like 2/metabolismo , Macrófagos/metabolismo , Neoplasias/metabolismo , Fosfolipasas A2 Citosólicas/metabolismo , Fosfolipasas A2 Citosólicas/farmacología , Ratones Endogámicos C57BL
19.
Int J Mol Sci ; 24(17)2023 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-37686091

RESUMEN

Dyslipidemias have emerged as prevalent disorders among patients, posing significant risks for the development and progression of cardiovascular diseases. These conditions are characterized by elevated levels of total cholesterol (TC), triglycerides (TGs), and low-density lipoprotein cholesterol (LDL-C). This review delves into the current treatment approach, focusing on equalizing these parameters while enhancing the overall quality of life for patients. Through an extensive analysis of clinical trials, we identify disorders that necessitate alternative treatment strategies, notably familial hypercholesterolemia. The primary objective of this review is to consolidate existing information concerning drugs with the potential to revolutionize dyslipidemia management significantly. Among these promising pharmaceuticals, we highlight alirocumab, bempedoic acid, antisense oligonucleotides, angiopoietin-like protein inhibitors, apolipoprotein C-III (APOC3) inhibitors, lomitapide, and cholesterol ester transfer protein (CETP) inhibitors. Our review demonstrates the pivotal roles played by each of these drugs in targeting specific parameters of lipid metabolism. We outline the future landscape of dyslipidemia treatment, envisaging a more tailored and effective therapeutic approach to address this widespread medical concern.


Asunto(s)
Dislipidemias , Calidad de Vida , Humanos , Proteínas Similares a la Angiopoyetina , Apolipoproteína C-III , LDL-Colesterol , Dislipidemias/tratamiento farmacológico
20.
Int J Mol Sci ; 24(17)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37686344

RESUMEN

Type II diabetes mellitus (T2DM) accounts for approximately 90% of all diabetes mellitus cases in the world. Glucagon-like peptide-1 receptor (GLP-1R) agonists have established an increased capability to target directly or indirectly six core defects associated with T2DM, while the underlying molecular mechanisms of these pharmacological effects are not fully known. This exploratory study was conducted to analyze the effect of treatment with GLP-1R agonists on the urinary peptidome of T2DM patients. Urine samples of thirty-two T2DM patients from the PROVALID study ("A Prospective Cohort Study in Patients with T2DM for Validation of Biomarkers") collected pre- and post-treatment with GLP-1R agonist drugs were analyzed by CE-MS. In total, 70 urinary peptides were significantly affected by GLP-1R agonist treatment, generated from 26 different proteins. The downregulation of MMP proteases, based on the concordant downregulation of urinary collagen peptides, was highlighted. Treatment also resulted in the downregulation of peptides from SERPINA1, APOC3, CD99, CPSF6, CRNN, SERPINA6, HBA2, MB, VGF, PIGR, and TTR, many of which were previously found to be associated with increased insulin resistance and inflammation. The findings indicate potential molecular mechanisms of GLP-1R agonists in the context of the management of T2DM and the prevention or delaying of the progression of its associated diseases.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Estudios Prospectivos , Apolipoproteína C-III , Redes y Vías Metabólicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA