Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 630(8015): 247-254, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38750358

RESUMEN

The noradrenaline transporter has a pivotal role in regulating neurotransmitter balance and is crucial for normal physiology and neurobiology1. Dysfunction of noradrenaline transporter has been implicated in numerous neuropsychiatric diseases, including depression and attention deficit hyperactivity disorder2. Here we report cryo-electron microscopy structures of noradrenaline transporter in apo and substrate-bound forms, and as complexes with six antidepressants. The structures reveal a noradrenaline transporter dimer interface that is mediated predominantly by cholesterol and lipid molecules. The substrate noradrenaline binds deep in the central binding pocket, and its amine group interacts with a conserved aspartate residue. Our structures also provide insight into antidepressant recognition and monoamine transporter selectivity. Together, these findings advance our understanding of noradrenaline transporter regulation and inhibition, and provide templates for designing improved antidepressants to treat neuropsychiatric disorders.


Asunto(s)
Antidepresivos , Microscopía por Crioelectrón , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática , Norepinefrina , Multimerización de Proteína , Humanos , Antidepresivos/química , Antidepresivos/metabolismo , Antidepresivos/farmacología , Apoproteínas/química , Apoproteínas/metabolismo , Apoproteínas/ultraestructura , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Sitios de Unión , Colesterol/metabolismo , Colesterol/química , Modelos Moleculares , Norepinefrina/metabolismo , Norepinefrina/química , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/antagonistas & inhibidores , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/química , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/metabolismo , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/ultraestructura , Unión Proteica , Especificidad por Sustrato
2.
Nature ; 629(8011): 467-473, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38471529

RESUMEN

Prokaryotes have evolved intricate innate immune systems against phage infection1-7. Gabija is a highly widespread prokaryotic defence system that consists of two components, GajA and GajB8. GajA functions as a DNA endonuclease that is inactive in the presence of ATP9. Here, to explore how the Gabija system is activated for anti-phage defence, we report its cryo-electron microscopy structures in five states, including apo GajA, GajA in complex with DNA, GajA bound by ATP, apo GajA-GajB, and GajA-GajB in complex with ATP and Mg2+. GajA is a rhombus-shaped tetramer with its ATPase domain clustered at the centre and the topoisomerase-primase (Toprim) domain located peripherally. ATP binding at the ATPase domain stabilizes the insertion region within the ATPase domain, keeping the Toprim domain in a closed state. Upon ATP depletion by phages, the Toprim domain opens to bind and cleave the DNA substrate. GajB, which docks on GajA, is activated by the cleaved DNA, ultimately leading to prokaryotic cell death. Our study presents a mechanistic landscape of Gabija activation.


Asunto(s)
Bacillus cereus , Proteínas Bacterianas , Bacteriófagos , Microscopía por Crioelectrón , Inmunidad Innata , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/ultraestructura , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Apoproteínas/química , Apoproteínas/inmunología , Apoproteínas/metabolismo , Apoproteínas/ultraestructura , Proteínas Bacterianas/química , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Bacteriófagos/inmunología , ADN/metabolismo , ADN/química , División del ADN , Magnesio/química , Magnesio/metabolismo , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Viabilidad Microbiana , Bacillus cereus/química , Bacillus cereus/inmunología , Bacillus cereus/metabolismo , Bacillus cereus/ultraestructura , Estructura Cuaternaria de Proteína , ADN Primasa/química , ADN Primasa/metabolismo , ADN Primasa/ultraestructura , ADN-Topoisomerasas/química , ADN-Topoisomerasas/metabolismo , ADN-Topoisomerasas/ultraestructura
3.
Nature ; 609(7927): 616-621, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35917926

RESUMEN

The PIN-FORMED (PIN) protein family of auxin transporters mediates polar auxin transport and has crucial roles in plant growth and development1,2. Here we present cryo-electron microscopy structures of PIN3 from Arabidopsis thaliana in the apo state and in complex with its substrate indole-3-acetic acid and the inhibitor N-1-naphthylphthalamic acid (NPA). A. thaliana PIN3 exists as a homodimer, and its transmembrane helices 1, 2 and 7 in the scaffold domain are involved in dimerization. The dimeric PIN3 forms a large, joint extracellular-facing cavity at the dimer interface while each subunit adopts an inward-facing conformation. The structural and functional analyses, along with computational studies, reveal the structural basis for the recognition of indole-3-acetic acid and NPA and elucidate the molecular mechanism of NPA inhibition on PIN-mediated auxin transport. The PIN3 structures support an elevator-like model for the transport of auxin, whereby the transport domains undergo up-down rigid-body motions and the dimerized scaffold domains remain static.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos , Apoproteínas/química , Apoproteínas/metabolismo , Apoproteínas/ultraestructura , Arabidopsis/química , Arabidopsis/metabolismo , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/antagonistas & inhibidores , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/ultraestructura , Transporte Biológico/efectos de los fármacos , Microscopía por Crioelectrón , Ácidos Indolacéticos/química , Ácidos Indolacéticos/metabolismo , Ftalimidas/química , Ftalimidas/farmacología , Dominios Proteicos , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo
4.
Nature ; 606(7916): 1021-1026, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35580629

RESUMEN

Chronic infection with hepatitis B virus (HBV) affects more than 290 million people worldwide, is a major cause of cirrhosis and hepatocellular carcinoma, and results in an estimated 820,000 deaths annually1,2. For HBV infection to be established, a molecular interaction is required between the large glycoproteins of the virus envelope (known as LHBs) and the host entry receptor sodium taurocholate co-transporting polypeptide (NTCP), a sodium-dependent bile acid transporter from the blood to hepatocytes3. However, the molecular basis for the virus-transporter interaction is poorly understood. Here we report the cryo-electron microscopy structures of human, bovine and rat NTCPs in the apo state, which reveal the presence of a tunnel across the membrane and a possible transport route for the substrate. Moreover, the cryo-electron microscopy structure of human NTCP in the presence of the myristoylated preS1 domain of LHBs, together with mutation and transport assays, suggest a binding mode in which preS1 and the substrate compete for the extracellular opening of the tunnel in NTCP. Our preS1 domain interaction analysis enables a mechanistic interpretation of naturally occurring HBV-insusceptible mutations in human NTCP. Together, our findings provide a structural framework for HBV recognition and a mechanistic understanding of sodium-dependent bile acid translocation by mammalian NTCPs.


Asunto(s)
Microscopía por Crioelectrón , Virus de la Hepatitis B , Transportadores de Anión Orgánico Sodio-Dependiente , Receptores Virales , Simportadores , Animales , Apoproteínas/química , Apoproteínas/genética , Apoproteínas/metabolismo , Apoproteínas/ultraestructura , Bovinos , Virus de la Hepatitis B/metabolismo , Hepatocitos/metabolismo , Humanos , Mutación , Transportadores de Anión Orgánico Sodio-Dependiente/química , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/ultraestructura , Ratas , Receptores Virales/química , Receptores Virales/genética , Receptores Virales/metabolismo , Receptores Virales/ultraestructura , Sodio/metabolismo , Simportadores/química , Simportadores/genética , Simportadores/metabolismo , Simportadores/ultraestructura
5.
Nature ; 595(7865): 130-134, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34040256

RESUMEN

Folates (also known as vitamin B9) have a critical role in cellular metabolism as the starting point in the synthesis of nucleic acids, amino acids and the universal methylating agent S-adenylsmethionine1,2. Folate deficiency is associated with a number of developmental, immune and neurological disorders3-5. Mammals cannot synthesize folates de novo; several systems have therefore evolved to take up folates from the diet and distribute them within the body3,6. The proton-coupled folate transporter (PCFT) (also known as SLC46A1) mediates folate uptake across the intestinal brush border membrane and the choroid plexus4,7, and is an important route for the delivery of antifolate drugs in cancer chemotherapy8-10. How PCFT recognizes folates or antifolate agents is currently unclear. Here we present cryo-electron microscopy structures of PCFT in a substrate-free state and in complex with a new-generation antifolate drug (pemetrexed). Our results provide a structural basis for understanding antifolate recognition and provide insights into the pH-regulated mechanism of folate transport mediated by PCFT.


Asunto(s)
Microscopía por Crioelectrón , Antagonistas del Ácido Fólico/química , Antagonistas del Ácido Fólico/metabolismo , Pemetrexed/química , Pemetrexed/metabolismo , Transportador de Folato Acoplado a Protón/química , Transportador de Folato Acoplado a Protón/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Apoproteínas/ultraestructura , Transporte Biológico , Humanos , Modelos Moleculares , Transportador de Folato Acoplado a Protón/ultraestructura , Protones
6.
Nature ; 592(7854): 469-473, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33762731

RESUMEN

Serotonin, or 5-hydroxytryptamine (5-HT), is an important neurotransmitter1,2 that activates the largest subtype family of G-protein-coupled receptors3. Drugs that target 5-HT1A, 5-HT1D, 5-HT1E and other 5-HT receptors are used to treat numerous disorders4. 5-HT receptors have high levels of basal activity and are subject to regulation by lipids, but the structural basis for the lipid regulation and basal activation of these receptors and the pan-agonism of 5-HT remains unclear. Here we report five structures of 5-HT receptor-G-protein complexes: 5-HT1A in the apo state, bound to 5-HT or bound to the antipsychotic drug aripiprazole; 5-HT1D bound to 5-HT; and 5-HT1E in complex with a 5-HT1E- and 5-HT1F-selective agonist, BRL-54443. Notably, the phospholipid phosphatidylinositol 4-phosphate is present at the G-protein-5-HT1A interface, and is able to increase 5-HT1A-mediated G-protein activity. The receptor transmembrane domain is surrounded by cholesterol molecules-particularly in the case of 5-HT1A, in which cholesterol molecules are directly involved in shaping the ligand-binding pocket that determines the specificity for aripiprazol. Within the ligand-binding pocket of apo-5-HT1A are structured water molecules that mimic 5-HT to activate the receptor. Together, our results address a long-standing question of how lipids and water molecules regulate G-protein-coupled receptors, reveal how 5-HT acts as a pan-agonist, and identify the determinants of drug recognition in 5-HT receptors.


Asunto(s)
Microscopía por Crioelectrón , Ligandos , Lípidos , Receptores de Serotonina 5-HT1/metabolismo , Receptores de Serotonina 5-HT1/ultraestructura , Apoproteínas/química , Apoproteínas/metabolismo , Apoproteínas/ultraestructura , Aripiprazol/metabolismo , Aripiprazol/farmacología , Sitios de Unión , Colesterol/farmacología , Proteínas de Unión al GTP Heterotriméricas/química , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Proteínas de Unión al GTP Heterotriméricas/ultraestructura , Humanos , Modelos Moleculares , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatos de Fosfatidilinositol/farmacología , Receptor de Serotonina 5-HT1A/química , Receptor de Serotonina 5-HT1A/metabolismo , Receptor de Serotonina 5-HT1A/ultraestructura , Receptores de Serotonina 5-HT1/química , Agonistas del Receptor de Serotonina 5-HT1/química , Agonistas del Receptor de Serotonina 5-HT1/metabolismo , Agonistas del Receptor de Serotonina 5-HT1/farmacología , Agua/química
7.
Nature ; 590(7846): 463-467, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33536618

RESUMEN

Actinobacteria produce numerous antibiotics and other specialized metabolites that have important applications in medicine and agriculture1. Diffusible hormones frequently control the production of such metabolites by binding TetR family transcriptional repressors (TFTRs), but the molecular basis for this remains unclear2. The production of methylenomycin antibiotics in Streptomyces coelicolor A3(2) is initiated by the binding of 2-alkyl-4-hydroxymethylfuran-3-carboxylic acid (AHFCA) hormones to the TFTR MmfR3. Here we report the X-ray crystal structure of an MmfR-AHFCA complex, establishing the structural basis for hormone recognition. We also elucidate the mechanism for DNA release upon hormone binding through the single-particle cryo-electron microscopy structure of an MmfR-operator complex. DNA binding and release assays with MmfR mutants and synthetic AHFCA analogues define the role of individual amino acid residues and hormone functional groups in ligand recognition and DNA release. These findings will facilitate the exploitation of actinobacterial hormones and their associated TFTRs in synthetic biology and in the discovery of new antibiotics.


Asunto(s)
Antibacterianos/biosíntesis , Furanos/metabolismo , Streptomyces coelicolor/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Apoproteínas/ultraestructura , Proteínas Bacterianas/química , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Microscopía por Crioelectrón , Cristalografía por Rayos X , ADN/química , ADN/genética , ADN/metabolismo , ADN/ultraestructura , Furanos/química , Hormonas/química , Hormonas/clasificación , Hormonas/metabolismo , Ligandos , Modelos Moleculares , Péptidos/metabolismo , Proteínas Represoras/química , Proteínas Represoras/clasificación , Proteínas Represoras/metabolismo , Proteínas Represoras/ultraestructura , Transducción de Señal , Streptomyces coelicolor/química , Streptomyces coelicolor/genética , Relación Estructura-Actividad
8.
Nature ; 586(7831): 807-811, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32814342

RESUMEN

The serum level of iron in humans is tightly controlled by the action of the hormone hepcidin on the iron efflux transporter ferroportin. Hepcidin regulates iron absorption and recycling by inducing the internalization and degradation of ferroportin1. Aberrant ferroportin activity can lead to diseases of iron overload, such as haemochromatosis, or iron limitation anaemias2. Here we determine cryogenic electron microscopy structures of ferroportin in lipid nanodiscs, both in the apo state and in complex with hepcidin and the iron mimetic cobalt. These structures and accompanying molecular dynamics simulations identify two metal-binding sites within the N and C domains of ferroportin. Hepcidin binds ferroportin in an outward-open conformation and completely occludes the iron efflux pathway to inhibit transport. The carboxy terminus of hepcidin directly contacts the divalent metal in the ferroportin C domain. Hepcidin binding to ferroportin is coupled to iron binding, with an 80-fold increase in hepcidin affinity in the presence of iron. These results suggest a model for hepcidin regulation of ferroportin, in which only ferroportin molecules loaded with iron are targeted for degradation. More broadly, our structural and functional insights may enable more targeted manipulation of the hepcidin-ferroportin axis in disorders of iron homeostasis.


Asunto(s)
Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/metabolismo , Microscopía por Crioelectrón , Hepcidinas/metabolismo , Homeostasis , Hierro/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Apoproteínas/ultraestructura , Sitios de Unión , Proteínas de Transporte de Catión/ultraestructura , Cobalto/química , Cobalto/metabolismo , Hepcidinas/química , Humanos , Hierro/química , Simulación de Dinámica Molecular , Dominios Proteicos , Proteolisis
9.
Nature ; 584(7822): 646-651, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32494015

RESUMEN

Pannexin 1 (PANX1) is an ATP-permeable channel with critical roles in a variety of physiological functions such as blood pressure regulation1, apoptotic cell clearance2 and human oocyte development3. Here we present several structures of human PANX1 in a heptameric assembly at resolutions of up to 2.8 angström, including an apo state, a caspase-7-cleaved state and a carbenoxolone-bound state. We reveal a gating mechanism that involves two ion-conducting pathways. Under normal cellular conditions, the intracellular entry of the wide main pore is physically plugged by the C-terminal tail. Small anions are conducted through narrow tunnels in the intracellular domain. These tunnels connect to the main pore and are gated by a long linker between the N-terminal helix and the first transmembrane helix. During apoptosis, the C-terminal tail is cleaved by caspase, allowing the release of ATP through the main pore. We identified a carbenoxolone-binding site embraced by W74 in the extracellular entrance and a role for carbenoxolone as a channel blocker. We identified a gap-junction-like structure using a glycosylation-deficient mutant, N255A. Our studies provide a solid foundation for understanding the molecular mechanisms underlying the channel gating and inhibition of PANX1 and related large-pore channels.


Asunto(s)
Conexinas/química , Conexinas/metabolismo , Microscopía por Crioelectrón , Activación del Canal Iónico , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Técnicas de Placa-Clamp , Adenosina Trifosfato/metabolismo , Animales , Apoproteínas/química , Apoproteínas/metabolismo , Apoproteínas/ultraestructura , Apoptosis , Sitios de Unión/efectos de los fármacos , Carbenoxolona/química , Carbenoxolona/metabolismo , Carbenoxolona/farmacología , Caspasa 7/metabolismo , Línea Celular , Conexinas/ultraestructura , Uniones Comunicantes , Glicosilación , Humanos , Activación del Canal Iónico/efectos de los fármacos , Modelos Moleculares , Mutación , Proteínas del Tejido Nervioso/ultraestructura , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Células Sf9
10.
Nature ; 584(7820): 298-303, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32555460

RESUMEN

Metabotropic γ-aminobutyric acid receptors (GABAB) are involved in the modulation of synaptic responses in the central nervous system and have been implicated in neuropsychological conditions that range from addiction to psychosis1. GABAB belongs to class C of the G-protein-coupled receptors, and its functional entity comprises an obligate heterodimer that is composed of the GB1 and GB2 subunits2. Each subunit possesses an extracellular Venus flytrap domain, which is connected to a canonical seven-transmembrane domain. Here we present four cryo-electron microscopy structures of the human full-length GB1-GB2 heterodimer: one structure of its inactive apo state, two intermediate agonist-bound forms and an active form in which the heterodimer is bound to an agonist and a positive allosteric modulator. The structures reveal substantial differences, which shed light on the complex motions that underlie the unique activation mechanism of GABAB. Our results show that agonist binding leads to the closure of the Venus flytrap domain of GB1, triggering a series of transitions, first rearranging and bringing the two transmembrane domains into close contact along transmembrane helix 6 and ultimately inducing conformational rearrangements in the GB2 transmembrane domain via a lever-like mechanism to initiate downstream signalling. This active state is stabilized by a positive allosteric modulator binding at the transmembrane dimerization interface.


Asunto(s)
Microscopía por Crioelectrón , Receptores de GABA-B/química , Receptores de GABA-B/ultraestructura , Regulación Alostérica/efectos de los fármacos , Apoproteínas/química , Apoproteínas/metabolismo , Apoproteínas/ultraestructura , Sitios de Unión/efectos de los fármacos , Agonistas de Receptores GABA-B/química , Agonistas de Receptores GABA-B/metabolismo , Agonistas de Receptores GABA-B/farmacología , Humanos , Modelos Moleculares , Dominios Proteicos/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Receptores de GABA-B/metabolismo , Transducción de Señal , Relación Estructura-Actividad
11.
Nature ; 576(7787): 492-497, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31766050

RESUMEN

Among the ten subtypes of mammalian voltage-gated calcium (Cav) channels, Cav3.1-Cav3.3 constitute the T-type, or the low-voltage-activated, subfamily, the abnormal activities of which are associated with epilepsy, psychiatric disorders and pain1-5. Here we report the cryo-electron microscopy structures of human Cav3.1 alone and in complex with a highly Cav3-selective blocker, Z9446,7, at resolutions of 3.3 Å and 3.1 Å, respectively. The arch-shaped Z944 molecule reclines in the central cavity of the pore domain, with the wide end inserting into the fenestration on the interface between repeats II and III, and the narrow end hanging above the intracellular gate like a plug. The structures provide the framework for comparative investigation of the distinct channel properties of different Cav subfamilies.


Asunto(s)
Apoproteínas/química , Apoproteínas/ultraestructura , Bloqueadores de los Canales de Calcio/química , Canales de Calcio Tipo T/química , Canales de Calcio Tipo T/ultraestructura , Microscopía por Crioelectrón , Piperidinas/química , Regulación Alostérica/efectos de los fármacos , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Apoproteínas/genética , Sitios de Unión , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo T/genética , Humanos , Modelos Moleculares , Piperidinas/farmacología , Unión Proteica , Conformación Proteica , Eliminación de Secuencia
12.
J Biosci ; 44(2)2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31180059

RESUMEN

Flavonoids are polyphenol compounds abundantly found in plants and reported to have an inhibitory effect on amyloid fibrillation. The number and position of hydroxyl groups, as well as the arrangement of flavonoids rings, may influence their inhibitory effects. In this study, we investigate the effect of structural characteristics of flavonoids on amyloid fibril formation. For this purpose, five compounds (i.e., biochanin A, daidzein, quercetin, chrysin and fisetin) were selected that represent a variety in the number and position of their hydroxyl groups. The inhibitory effect of these flavonoids on the amyloid fibril formation of apo-carbonic anhydrase (apo-BCA), as a model protein, was evaluated using thioflavin T and transmission electron microscopy. The results showed that fisetin possessed the most significant inhibitory effect. Interestingly, upon apo-BCA acetylation, none of the tested flavonoids could inhibit the fibrillation process, which indicates that the interactions of these compounds with the amine groups of lysine residues could be somewhat important.


Asunto(s)
Proteínas Amiloidogénicas/química , Apoproteínas/química , Anhidrasas Carbónicas/química , Flavonoides/química , Acetilación , Proteínas Amiloidogénicas/ultraestructura , Apoproteínas/ultraestructura , Benzotiazoles/química , Anhidrasas Carbónicas/ultraestructura , Flavonoles , Colorantes Fluorescentes/química , Genisteína/química , Isoflavonas/química , Quercetina/química , Soluciones , Relación Estructura-Actividad
13.
Nature ; 567(7748): 389-393, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30842659

RESUMEN

Infections by pathogens that contain DNA trigger the production of type-I interferons and inflammatory cytokines through cyclic GMP-AMP synthase, which produces 2'3'-cyclic GMP-AMP (cGAMP) that binds to and activates stimulator of interferon genes (STING; also known as TMEM173, MITA, ERIS and MPYS)1-8. STING is an endoplasmic-reticulum membrane protein that contains four transmembrane helices followed by a cytoplasmic ligand-binding and signalling domain9-13. The cytoplasmic domain of STING forms a dimer, which undergoes a conformational change upon binding to cGAMP9,14. However, it remains unclear how this conformational change leads to STING activation. Here we present cryo-electron microscopy structures of full-length STING from human and chicken in the inactive dimeric state (about 80 kDa in size), as well as cGAMP-bound chicken STING in both the dimeric and tetrameric states. The structures show that the transmembrane and cytoplasmic regions interact to form an integrated, domain-swapped dimeric assembly. Closure of the ligand-binding domain, induced by cGAMP, leads to a 180° rotation of the ligand-binding domain relative to the transmembrane domain. This rotation is coupled to a conformational change in a loop on the side of the ligand-binding-domain dimer, which leads to the formation of the STING tetramer and higher-order oligomers through side-by-side packing. This model of STING oligomerization and activation is supported by our structure-based mutational analyses.


Asunto(s)
Pollos , Microscopía por Crioelectrón , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/ultraestructura , Nucleótidos Cíclicos/metabolismo , Animales , Apoproteínas/química , Apoproteínas/metabolismo , Apoproteínas/ultraestructura , Células HEK293 , Células HeLa , Humanos , Proteínas de la Membrana/química , Modelos Moleculares , Nucleótidos Cíclicos/química
14.
Nature ; 563(7730): 270-274, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30401837

RESUMEN

The 5-HT3A serotonin receptor1, a cationic pentameric ligand-gated ion channel (pLGIC), is the clinical target for management of nausea and vomiting associated with radiation and chemotherapies2. Upon binding, serotonin induces a global conformational change that encompasses the ligand-binding extracellular domain (ECD), the transmembrane domain (TMD) and the intracellular domain (ICD), the molecular details of which are unclear. Here we present two serotonin-bound structures of the full-length 5-HT3A receptor in distinct conformations at 3.32 Å and 3.89 Å resolution that reveal the mechanism underlying channel activation. In comparison to the apo 5-HT3A receptor, serotonin-bound states underwent a large twisting motion in the ECD and TMD, leading to the opening of a 165 Å permeation pathway. Notably, this motion results in the creation of lateral portals for ion permeation at the interface of the TMD and ICD. Combined with molecular dynamics simulations, these structures provide novel insights into conformational coupling across domains and functional modulation.


Asunto(s)
Microscopía por Crioelectrón , Receptores de Serotonina 5-HT3/química , Receptores de Serotonina 5-HT3/ultraestructura , Serotonina/química , Serotonina/metabolismo , Animales , Apoproteínas/química , Apoproteínas/metabolismo , Apoproteínas/ultraestructura , Sitios de Unión , Conductividad Eléctrica , Femenino , Activación del Canal Iónico , Transporte Iónico , Ratones , Simulación de Dinámica Molecular , Movimiento , Conformación Proteica , Receptores de Serotonina 5-HT3/genética , Receptores de Serotonina 5-HT3/metabolismo , Xenopus laevis
15.
Nature ; 562(7725): 145-149, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30250252

RESUMEN

Transient receptor potential melastatin 2 (TRPM2) is a calcium-permeable, non-selective cation channel that has an essential role in diverse physiological processes such as core body temperature regulation, immune response and apoptosis1-4. TRPM2 is polymodal and can be activated by a wide range of stimuli1-7, including temperature, oxidative stress and NAD+-related metabolites such as ADP-ribose (ADPR). Its activation results in both Ca2+ entry across the plasma membrane and Ca2+ release from lysosomes8, and has been linked to diseases such as ischaemia-reperfusion injury, bipolar disorder and Alzheimer's disease9-11. Here we report the cryo-electron microscopy structures of the zebrafish TRPM2 in the apo resting (closed) state and in the ADPR/Ca2+-bound active (open) state, in which the characteristic NUDT9-H domains hang underneath the MHR1/2 domain. We identify an ADPR-binding site located in the bi-lobed structure of the MHR1/2 domain. Our results provide an insight into the mechanism of activation of the TRPM channel family and define a framework for the development of therapeutic agents to treat neurodegenerative diseases and temperature-related pathological conditions.


Asunto(s)
Adenosina Difosfato Ribosa/farmacología , Calcio/farmacología , Canales Catiónicos TRPM/metabolismo , Canales Catiónicos TRPM/ultraestructura , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/ultraestructura , Adenosina Difosfato Ribosa/química , Adenosina Difosfato Ribosa/metabolismo , Animales , Apoproteínas/química , Apoproteínas/metabolismo , Apoproteínas/ultraestructura , Sitios de Unión , Calcio/química , Calcio/metabolismo , Microscopía por Crioelectrón , Ácido Edético/química , Humanos , Activación del Canal Iónico/efectos de los fármacos , Ligandos , Modelos Moleculares , Enfermedades Neurodegenerativas/tratamiento farmacológico , Dominios Proteicos , Pirofosfatasas/química , Transducción de Señal/efectos de los fármacos , Canales Catiónicos TRPM/química , Pez Cebra , Proteínas de Pez Cebra/química
16.
Nature ; 559(7713): 274-278, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29973720

RESUMEN

The maintenance of genome stability during mitosis is coordinated by the spindle assembly checkpoint (SAC) through its effector the mitotic checkpoint complex (MCC), an inhibitor of the anaphase-promoting complex (APC/C, also known as the cyclosome)1,2. Unattached kinetochores control MCC assembly by catalysing a change in the topology of the ß-sheet of MAD2 (an MCC subunit), thereby generating the active closed MAD2 (C-MAD2) conformer3-5. Disassembly of free MCC, which is required for SAC inactivation and chromosome segregation, is an ATP-dependent process driven by the AAA+ ATPase TRIP13. In combination with p31comet, an SAC antagonist6, TRIP13 remodels C-MAD2 into inactive open MAD2 (O-MAD2)7-10. Here, we present a mechanism that explains how TRIP13-p31comet disassembles the MCC. Cryo-electron microscopy structures of the TRIP13-p31comet-C-MAD2-CDC20 complex reveal that p31comet recruits C-MAD2 to a defined site on the TRIP13 hexameric ring, positioning the N terminus of C-MAD2 (MAD2NT) to insert into the axial pore of TRIP13 and distorting the TRIP13 ring to initiate remodelling. Molecular modelling suggests that by gripping MAD2NT within its axial pore, TRIP13 couples sequential ATP-driven translocation of its hexameric ring along MAD2NT to push upwards on, and simultaneously rotate, the globular domains of the p31comet-C-MAD2 complex. This unwinds a region of the αA helix of C-MAD2 that is required to stabilize the C-MAD2 ß-sheet, thus destabilizing C-MAD2 in favour of O-MAD2 and dissociating MAD2 from p31comet. Our study provides insights into how specific substrates are recruited to AAA+ ATPases through adaptor proteins and suggests a model of how translocation through the axial pore of AAA+ ATPases is coupled to protein remodelling.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Mad2/química , Proteínas Mad2/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/química , ATPasas Asociadas con Actividades Celulares Diversas/ultraestructura , Apoproteínas/química , Apoproteínas/metabolismo , Apoproteínas/ultraestructura , Sitios de Unión , Biocatálisis/efectos de los fármacos , Proteínas Cdc20/química , Proteínas Cdc20/metabolismo , Proteínas Cdc20/ultraestructura , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/ultraestructura , Microscopía por Crioelectrón , Humanos , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Proteínas Mad2/ultraestructura , Modelos Moleculares , Conformación Proteica , Huso Acromático/efectos de los fármacos , Especificidad por Sustrato
17.
Nature ; 556(7700): 203-208, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29618818

RESUMEN

The light-harvesting 1-reaction centre (LH1-RC) complex is a key functional component of bacterial photosynthesis. Here we present a 2.9 Å resolution cryo-electron microscopy structure of the bacteriochlorophyll b-based LH1-RC complex from Blastochloris viridis that reveals the structural basis for absorption of infrared light and the molecular mechanism of quinone migration across the LH1 complex. The triple-ring LH1 complex comprises a circular array of 17 ß-polypeptides sandwiched between 17 α- and 16 γ-polypeptides. Tight packing of the γ-apoproteins between ß-polypeptides collectively interlocks and stabilizes the LH1 structure; this, together with the short Mg-Mg distances of bacteriochlorophyll b pairs, contributes to the large redshift of bacteriochlorophyll b absorption. The 'missing' 17th γ-polypeptide creates a pore in the LH1 ring, and an adjacent binding pocket provides a folding template for a quinone, Q P, which adopts a compact, export-ready conformation before passage through the pore and eventual diffusion to the cytochrome bc 1 complex.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/ultraestructura , Microscopía por Crioelectrón , Hyphomicrobiaceae/química , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/ultraestructura , Apoproteínas/química , Apoproteínas/metabolismo , Apoproteínas/ultraestructura , Proteínas Bacterianas/metabolismo , Bacterioclorofilas/química , Bacterioclorofilas/metabolismo , Benzoquinonas/metabolismo , Sitios de Unión , Complejos de Proteína Captadores de Luz/metabolismo , Magnesio/química , Magnesio/metabolismo , Modelos Moleculares , Fotosíntesis , Conformación Proteica , Estabilidad Proteica
18.
Nature ; 550(7676): 366-370, 2017 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-29019983

RESUMEN

Transient receptor potential mucolipin 1 (TRPML1) is a Ca2+-releasing cation channel that mediates the calcium signalling and homeostasis of lysosomes. Mutations in TRPML1 lead to mucolipidosis type IV, a severe lysosomal storage disorder. Here we report two electron cryo-microscopy structures of full-length human TRPML1: a 3.72-Å apo structure at pH 7.0 in the closed state, and a 3.49-Å agonist-bound structure at pH 6.0 in an open state. Several aromatic and hydrophobic residues in pore helix 1, helices S5 and S6, and helix S6 of a neighbouring subunit, form a hydrophobic cavity to house the agonist, suggesting a distinct agonist-binding site from that found in TRPV1, a TRP channel from a different subfamily. The opening of TRPML1 is associated with distinct dilations of its lower gate together with a slight structural movement of pore helix 1. Our work reveals the regulatory mechanism of TRPML channels, facilitates better understanding of TRP channel activation, and provides insights into the molecular basis of mucolipidosis type IV pathogenesis.


Asunto(s)
Microscopía por Crioelectrón , Canales de Potencial de Receptor Transitorio/química , Canales de Potencial de Receptor Transitorio/ultraestructura , Apoproteínas/química , Apoproteínas/ultraestructura , Sitios de Unión , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Modelos Moleculares , Mucolipidosis/metabolismo , Conformación Proteica , Canales de Potencial de Receptor Transitorio/agonistas
19.
Nature ; 534(7605): 63-8, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27135925

RESUMEN

The physiology of N-methyl-d-aspartate (NMDA) receptors is fundamental to brain development and function. NMDA receptors are ionotropic glutamate receptors that function as heterotetramers composed mainly of GluN1 and GluN2 subunits. Activation of NMDA receptors requires binding of neurotransmitter agonists to a ligand-binding domain (LBD) and structural rearrangement of an amino-terminal domain (ATD). Recent crystal structures of GluN1-GluN2B NMDA receptors bound to agonists and an allosteric inhibitor, ifenprodil, represent the allosterically inhibited state. However, how the ATD and LBD move to activate the NMDA receptor ion channel remains unclear. Here we applied X-ray crystallography, single-particle electron cryomicroscopy and electrophysiology to rat NMDA receptors to show that, in the absence of ifenprodil, the bi-lobed structure of GluN2 ATD adopts an open conformation accompanied by rearrangement of the GluN1-GluN2 ATD heterodimeric interface, altering subunit orientation in the ATD and LBD and forming an active receptor conformation that gates the ion channel.


Asunto(s)
Piperidinas/farmacología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/química , Animales , Apoproteínas/química , Apoproteínas/metabolismo , Apoproteínas/ultraestructura , Microscopía por Crioelectrón , Cristalografía por Rayos X , Electrofisiología , Activación del Canal Iónico/efectos de los fármacos , Ligandos , Modelos Moleculares , Conformación Proteica/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Ratas , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/ultraestructura
20.
Nature ; 531(7596): 598-603, 2016 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-27029275

RESUMEN

The cullin-RING ubiquitin E3 ligase (CRL) family comprises over 200 members in humans. The COP9 signalosome complex (CSN) regulates CRLs by removing their ubiquitin-like activator NEDD8. The CUL4A-RBX1-DDB1-DDB2 complex (CRL4A(DDB2)) monitors the genome for ultraviolet-light-induced DNA damage. CRL4A(DBB2) is inactive in the absence of damaged DNA and requires CSN to regulate the repair process. The structural basis of CSN binding to CRL4A(DDB2) and the principles of CSN activation are poorly understood. Here we present cryo-electron microscopy structures for CSN in complex with neddylated CRL4A ligases to 6.4 Å resolution. The CSN conformers defined by cryo-electron microscopy and a novel apo-CSN crystal structure indicate an induced-fit mechanism that drives CSN activation by neddylated CRLs. We find that CSN and a substrate cannot bind simultaneously to CRL4A, favouring a deneddylated, inactive state for substrate-free CRL4 complexes. These architectural and regulatory principles appear conserved across CRL families, allowing global regulation by CSN.


Asunto(s)
Biocatálisis , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Péptido Hidrolasas/metabolismo , Péptido Hidrolasas/ultraestructura , Regulación Alostérica , Apoproteínas/química , Apoproteínas/metabolismo , Apoproteínas/ultraestructura , Sitios de Unión , Complejo del Señalosoma COP9 , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas Portadoras/ultraestructura , Microscopía por Crioelectrón , Cristalografía por Rayos X , Proteínas Cullin/química , Proteínas Cullin/metabolismo , Proteínas Cullin/ultraestructura , Daño del ADN , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/ultraestructura , Humanos , Cinética , Modelos Moleculares , Complejos Multiproteicos/química , Péptido Hidrolasas/química , Unión Proteica , Ubiquitinación , Ubiquitinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...