Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.616
Filtrar
1.
Mol Biol Rep ; 51(1): 633, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724835

RESUMEN

BACKGROUND: Radiation therapy is utilized for treatment of localized prostate cancer. Nevertheless, cancerous cells frequently develop radiation resistance. While higher radiation doses have not always been effective, radiosensitizers have been extensively studied for their ability to enhance the cytotoxic effects of radiation. So, this study aims to evaluate the possible radiosensitization effects of docetaxel (DTX) and silver nanoparticles (SNP) in LNCaP cells. METHODS: The cytotoxic effects of DTX, SNP and 2 Gy of X-Ray radiation treatments were assessed in human LNCaP cell line using the MTT test after 24 h. Moreover, the effects of DTX, SNP and radiation on Epidermal growth factor (EGF), Caspase 3, inducible nitric oxide synthase and E-cadherin gene expression were analyzed using the Real-time PCR method. The level of Hydrogen peroxide (H2O2), an oxidative stress marker, was also detected 24 h after various single and combined treatments. RESULTS: The combinations of SNP (in low toxic concentration) and/or DTX (0.25× IC50 and 0.5 × IC50 concentrations for triple and double combinations respectively) with radiation induced significant cytotoxicity in LNCaP cells in comparison to monotherapies. These cytotoxic effects were associated with the downregulation of EGF mRNA. Additionally, H2O2 levels increased after Radiation + SNP + DTX triple combination and double combinations including Radiation + SNP and Radiation + DTX versus single treatments. The triple combination treatment also increased Caspase 3 and and E-cadherin mRNA levels in compared to single treatments in LNCaP cells. CONCLUSION: Our results indicate that the combination of SNP and DTX with radiation induces significant anti-cancer effects. Upregulation of Caspase 3 and E-cadherin gene expression, and decreased mRNA expression level of EGF may be exerted specifically by use of this combination versus single treatments.


Asunto(s)
Docetaxel , Nanopartículas del Metal , Neoplasias de la Próstata , Fármacos Sensibilizantes a Radiaciones , Plata , Humanos , Docetaxel/farmacología , Masculino , Plata/farmacología , Neoplasias de la Próstata/radioterapia , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/genética , Línea Celular Tumoral , Fármacos Sensibilizantes a Radiaciones/farmacología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/efectos de la radiación , Peróxido de Hidrógeno/farmacología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Caspasa 3/metabolismo , Caspasa 3/genética , Antineoplásicos/farmacología , Factor de Crecimiento Epidérmico/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Cadherinas/metabolismo , Cadherinas/genética
2.
Exp Clin Transplant ; 22(3): 229-238, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38695592

RESUMEN

OBJECTIVES: The eradication of leukemia cells while sparing hematopoietic stem cells in the graft before autologous hematopoietic stem cell transplant is critical to prevention of leukemia relapse. Proliferating cells have been shown to be more prone to apoptosis than differentiated cells in response to ultraviolet radiation; however, whether leukemia cells are more sensitive to ultraviolet LED radiation than hematopoietic stem cells remains unclear. MATERIALS AND METHODS: We compared the in vitro responses between murine leukemia L1210 cells and murine hematopoietic stem cells to 280-nm ultraviolet LED radiation. We also investigated the effects of ultraviolet LED radiation on the tumorigenic and metastatic capacity of L1210 cells and hematopoietic stem cell hematopoiesis in a mouse model of hematopoietic stem cell transplant. RESULTS: L1210 cells were more sensitive to ultraviolet LED radiation than hematopoietic stem cells in vitro, as evidenced by significantly reduced colony formation rates and cell proliferation rates, along with remarkably increased apoptosis rates in L1210 cells. Compared with corresponding unirradiated cells, ultraviolet LED-irradiated L1210 cells failed to generate palpable tumors in mice, whereas ultraviolet LED-irradiated bone marrow cells restored hematopoiesis in vivo. Furthermore, transplant with an irradiated mixture of L1210 cells and bone marrow cells showed later onset of leukemia, milder leukemic infiltration, and prolonged survival in mice, compared with unirradiated cell transplant. CONCLUSIONS: Our results suggest that ultraviolet LED radiation can suppress the proliferative and tumorigenic abilities of leukemia cells without reducing the hematopoietic reconstitution capacity of hematopoietic stem cells, serving as a promising approach to kill leukemia cells in autograft before autologous hematopoietic stem cell transplant.


Asunto(s)
Apoptosis , Proliferación Celular , Hematopoyesis , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas , Animales , Células Madre Hematopoyéticas/efectos de la radiación , Células Madre Hematopoyéticas/patología , Células Madre Hematopoyéticas/metabolismo , Apoptosis/efectos de la radiación , Hematopoyesis/efectos de la radiación , Proliferación Celular/efectos de la radiación , Línea Celular Tumoral , Rayos Ultravioleta/efectos adversos , Ratones , Ratones Endogámicos C57BL , Factores de Tiempo , Terapia Ultravioleta
3.
Am J Physiol Gastrointest Liver Physiol ; 326(6): G631-G642, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38593468

RESUMEN

Lysophosphatidic acid (LPA) is a bioactive lipid molecule that regulates a wide array of cellular functions, including proliferation, differentiation, and survival, via activation of cognate receptors. The LPA5 receptor is highly expressed in the intestinal epithelium, but its function in restoring intestinal epithelial integrity following injury has not been examined. Here, we use a radiation-induced injury model to study the role of LPA5 in regulating intestinal epithelial regeneration. Control mice (Lpar5f/f) and mice with an inducible, epithelial cell-specific deletion of Lpar5 in the small intestine (Lpar5IECKO) were subjected to 10 Gy total body X-ray irradiation and analyzed during recovery. Repair of the intestinal mucosa was delayed in Lpar5IECKO mice with reduced epithelial proliferation and increased crypt cell apoptosis. These effects were accompanied by reduced numbers of OLFM4+ intestinal stem cells (ISCs). The effects of LPA5 on ISCs were corroborated by studies using organoids derived from Lgr5-lineage tracking reporter mice with deletion of Lpar5 in Lgr5+-stem cells (Lgr5Cont or Lgr5ΔLpar5). Irradiation of organoids resulted in fewer numbers of Lgr5ΔLpar5 organoids retaining Lgr5+-derived progenitor cells compared with Lgr5Cont organoids. Finally, we observed that impaired regeneration in Lpar5IECKO mice was associated with reduced numbers of Paneth cells and decreased expression of Yes-associated protein (YAP), a critical factor for intestinal epithelial repair. Our study highlights a novel role for LPA5 in regeneration of the intestinal epithelium following irradiation and its effect on the maintenance of Paneth cells that support the stem cell niche.NEW & NOTEWORTHY We used mice lacking expression of the lysophosphatidic acid receptor 5 (LPA5) in intestinal epithelial cells and intestinal organoids to show that the LPA5 receptor protects intestinal stem cells and progenitors from radiation-induced injury. We show that LPA5 induces YAP signaling and regulates Paneth cells.


Asunto(s)
Proliferación Celular , Mucosa Intestinal , Receptores del Ácido Lisofosfatídico , Regeneración , Transducción de Señal , Proteínas Señalizadoras YAP , Animales , Receptores del Ácido Lisofosfatídico/metabolismo , Receptores del Ácido Lisofosfatídico/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de la radiación , Ratones , Regeneración/efectos de la radiación , Proteínas Señalizadoras YAP/metabolismo , Proliferación Celular/efectos de la radiación , Células Madre/efectos de la radiación , Células Madre/metabolismo , Organoides/metabolismo , Organoides/efectos de la radiación , Ratones Noqueados , Apoptosis/efectos de la radiación , Lisofosfolípidos/metabolismo , Intestino Delgado/efectos de la radiación , Intestino Delgado/metabolismo , Traumatismos Experimentales por Radiación/metabolismo , Traumatismos Experimentales por Radiación/patología
4.
Reprod Biol Endocrinol ; 22(1): 51, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671458

RESUMEN

BACKGROUND: Ovarian damage and follicle loss are major side effects of chemotherapy in young female patients with cancer. However, effective strategies to prevent these injuries are still lacking. The purpose of this study was to verify low-intensity pulsed ultrasound (LIPUS) can reduce ovarian injury caused by chemotherapy and to explore its underlying mechanisms in mice model. METHODS: The mice were randomly divided into the Control group, Cisplatin group, and Cisplatin + LIPUS group. The Cisplatin group and Cisplatin + LIPUS group were intraperitoneally injected with cisplatin every other day for a total of 10 injections, and the Control group was injected with saline. On the second day of each injection, the Cisplatin + LIPUS group received irradiation, whereas the other two groups received sham irradiation. We used a variety of biotechnologies to detect the differences in follicle count, granulosa cell apoptosis, fibrosis, transcriptome level, oxidative damage, and inflammation in differently treated mice. RESULT: LIPUS was able to reduce primordial follicle pool depletion induced by cisplatin and inhibit the apoptosis of granulosa cells. Transcriptomic results confirmed that LIPUS can reduce ovarian tissue injury. We demonstrated that LIPUS can relieve ovarian fibrosis by inhibiting TGF-ß1/Smads pathway. Meanwhile, it can reduce the oxidative damage and reduced the mRNA levels of proinflammatory cytokines caused by chemotherapy. CONCLUSION: LIPUS can reduce the toxic effects of chemotherapy drugs on ovaries, inhibit ovarian fibrosis, reduce the inflammatory response, and redcue the oxidative damage, reduce follicle depletion and to maintain the number of follicle pools.


Asunto(s)
Antineoplásicos , Cisplatino , Ovario , Ondas Ultrasónicas , Animales , Femenino , Ratones , Cisplatino/efectos adversos , Ovario/efectos de los fármacos , Ovario/efectos de la radiación , Ovario/patología , Antineoplásicos/efectos adversos , Antineoplásicos/toxicidad , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Folículo Ovárico/efectos de los fármacos , Folículo Ovárico/efectos de la radiación , Terapia por Ultrasonido/métodos
5.
Cell Signal ; 119: 111192, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38685522

RESUMEN

IRAK1 has been implicated in promoting development of various types of cancers and mediating radioresistance. However, its role in cervical cancer tumorigenesis and radioresistance, as well as the potential underlying mechanisms, remain poorly defined. In this study, we evaluated IRAK1 expression in radiotherapy-treated cervical cancer tissues and found that IRAK1 expression is negatively associated with the efficacy of radiotherapy. Consistently, ionizing radiation (IR)-treated HeLa and SiHa cervical cancer cells express a lower level of IRAK1 than control cells. Depletion of IRAK1 resulted in reduced activation of the NF-κB pathway, decreased cell viability, downregulated colony formation efficiency, cell cycle arrest, increased apoptosis, and impaired migration and invasion in IR-treated cervical cancer cells. Conversely, overexpressing IRAK1 mitigated the anti-cancer effects of IR in cervical cancer cells. Notably, treatment of IRAK1-overexpressing IR-treated HeLa and SiHa cells with the NF-κB pathway inhibitor pyrrolidine dithiocarbamate (PDTC) partially counteracted the effects of excessive IRAK1. Furthermore, our study demonstrated that IRAK1 deficiency enhanced the anti-proliferative role of IR treatment in a xenograft mouse model. These collective observations highlight IRAK1's role in mitigating the anti-cancer effects of radiotherapy, partly through the activation of the NF-κB pathway. SUMMARY: IRAK1 enhances cervical cancer resistance to radiotherapy, with IR treatment reducing IRAK1 expression and increasing cancer cell vulnerability and apoptosis.


Asunto(s)
Apoptosis , Quinasas Asociadas a Receptores de Interleucina-1 , FN-kappa B , Neoplasias del Cuello Uterino , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Humanos , Neoplasias del Cuello Uterino/radioterapia , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo , Femenino , Animales , FN-kappa B/metabolismo , Apoptosis/efectos de la radiación , Ratones , Células HeLa , Proliferación Celular , Ratones Desnudos , Línea Celular Tumoral , Transducción de Señal , Movimiento Celular , Tolerancia a Radiación , Ensayos Antitumor por Modelo de Xenoinjerto , Supervivencia Celular/efectos de la radiación , Radiación Ionizante
6.
J Cancer Res Ther ; 20(2): 695-705, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38687942

RESUMEN

BACKGROUND: Tumor-associated macrophages (TAMs) are intimately involved in cancer radiochemotherapy resistance. However, the mechanism by which macrophages affect radiosensitivity through autophagy remains unclear. The purpose of our study was to investigate how activating autophagy in type-II macrophages (M2) by using rapamycin (RAP) would affect the radiosensitivity of colorectal cancer (CRC) xenografts. MATERIALS AND METHODS: A nude mouse CRC model was established by injecting LoVo CRC cells. After tumor formation, supernatant from M2 cells (autophagy-unactivated), autophagy-activated M2 cells, or autophagy-downregulated M2 cells was injected peritumorally. All tumor-bearing mice were irradiated with 8-Gy X-rays twice, and the radiosensitivity of CRC xenografts was analyzed in each group. RESULTS: The mass, volume, and microvessel density (MVD) of tumors in the autophagy-unactivated M2 group significantly increased; however, supernatant from M2 cells that were autophagy-activated by rapamycin significantly decreased tumor weight, volume, and MVD compared with negative control. Combining bafilomycin A1 (BAF-A1) with RAP treatment restored the ability of the M2 supernatant to increase tumor mass, volume, and MVD. Immunohistochemical and Western blot results showed that compared with the negative control group, supernatant from M2 cells that were not activated by autophagy downregulated the expression of Livin and Survivin in tumor tissues; activation of M2 autophagy further downregulated the protein levels. CONCLUSIONS: Therefore, autophagy-activated M2 supernatant can downregulate the expression of the antiapoptotic genes Livin and Survivin in CRC xenografts, improving the radiosensitivity of CRC by inducing apoptosis in combination with radiotherapy and inhibiting the growth of transplanted tumors.


Asunto(s)
Autofagia , Neoplasias Colorrectales , Ratones Desnudos , Tolerancia a Radiación , Sirolimus , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/terapia , Neoplasias Colorrectales/radioterapia , Neoplasias Colorrectales/metabolismo , Ratones , Autofagia/efectos de los fármacos , Autofagia/efectos de la radiación , Humanos , Tolerancia a Radiación/efectos de los fármacos , Sirolimus/farmacología , Sirolimus/uso terapéutico , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Macrófagos Asociados a Tumores/efectos de los fármacos , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/efectos de la radiación , Survivin/metabolismo , Survivin/genética , Ratones Endogámicos BALB C , Masculino
7.
Sci Rep ; 14(1): 9906, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689033

RESUMEN

CUL4B, a crucial scaffolding protein in the largest E3 ubiquitin ligase complex CRL4B, is involved in a broad range of physiological and pathological processes. While previous research has shown that CUL4B participates in maintaining intestinal homeostasis and function, its involvement in facilitating intestinal recovery following ionizing radiation (IR) damage has not been fully elucidated. Here, we utilized in vivo and in vitro models to decipher the role of CUL4B in intestinal repair after IR-injury. Our findings demonstrated that prior to radiation exposure, CUL4B inhibited the ubiquitination modification of PSME3, which led to the accumulation of PSME3 and subsequent negative regulation of p53-mediated apoptosis. In contrast, after radiation, CUL4B dissociated from PSME3 and translocated into the nucleus at phosphorylated histones H2A (γH2AX) foci, thereby impeding DNA damage repair and augmenting p53-mediated apoptosis through inhibition of BRCA1 phosphorylation and RAD51. Our study elucidated the dynamic role of CUL4B in the repair of radiation-induced intestinal damage and uncovered novel molecular mechanisms underlying the repair process, suggesting a potential therapeutic strategy of intestinal damage after radiation therapy for cancers.


Asunto(s)
Apoptosis , Proteínas Cullin , Intestinos , Regeneración , Proteína p53 Supresora de Tumor , Animales , Humanos , Ratones , Apoptosis/efectos de la radiación , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , Proteínas Cullin/metabolismo , Proteínas Cullin/genética , Daño del ADN , Reparación del ADN , Histonas/metabolismo , Intestinos/efectos de la radiación , Intestinos/patología , Ratones Endogámicos C57BL , Fosforilación/efectos de la radiación , Recombinasa Rad51/metabolismo , Radiación Ionizante , Regeneración/efectos de la radiación , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitinación
8.
Sci Rep ; 14(1): 7410, 2024 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548749

RESUMEN

Mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) has recently emerged as a promising therapeutic target in cancer. In this study, we explored the biological function of MAP4K4 in radioresistant breast cancer cells using two MAP4K4 inhibitors, namely PF06260933 and GNE-495. Radioresistant SR and MR cells were established by exposing SK-BR-3 and MCF-7 breast cancer cells to 48-70 Gy of radiation delivered at 4-5 Gy twice a week over 10 months. Surprisingly, although radioresistant cells were derived from two different subtypes of breast cancer cell lines, MAP4K4 was significantly elevated regardless of subtype. Inhibition of MAP4K4 with PF06260933 or GNE-495 selectively targeted radioresistant cells and improved the response to irradiation. Furthermore, MAP4K4 inhibitors induced apoptosis through the accumulation of DNA damage by inhibiting DNA repair systems in radioresistant cells. Notably, Inhibition of MAP4K4 suppressed the expressions of ACSL4, suggesting that MAP4K4 functioned as an upstream effector of ACSL4. This study is the first to report that MAP4K4 plays a crucial role in mediating the radioresistance of breast cancer by acting upstream of ACSL4 to enhance DNA damage response and inhibit apoptosis. We hope that our findings provide a basis for the development of new drugs targeting MAP4K4 to overcome radioresistance.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/genética , Línea Celular Tumoral , Tolerancia a Radiación/genética , Reparación del ADN , Células MCF-7 , Apoptosis/efectos de la radiación , Proteínas Serina-Treonina Quinasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo
9.
Cell Cycle ; 23(3): 233-247, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38551450

RESUMEN

Colorectal cancer (CRC) poses a significant challenge in terms of treatment due to the prevalence of radiotherapy resistance. However, the underlying mechanisms responsible for radio-resistance in CRC have not been thoroughly explored. This study aimed to shed light on the role of human coilin interacting nuclear ATPase protein (hCINAP) in radiation-resistant HT-29 and SW480 CRC cells (HT-29-IR and SW480-IR) and investigate its potential implications. Firstly, radiation-resistant CRC cell lines were established by subjecting HT-29 and SW480 cells to sequential radiation exposure. Subsequent analysis revealed a notable increase in hCINAP expression in radiation-resistant CRC cells. To elucidate the functional role of hCINAP in radio-resistance, knockdown experiments were conducted. Remarkably, knockdown of hCINAP resulted in an elevation of reactive oxygen species (ROS) generation upon radiation treatment and subsequent activation of apoptosis mediated by mitochondria. These observations indicate that hCINAP depletion enhances the radiosensitivity of CRC cells. Conversely, when hCINAP was overexpressed, it was found to enhance the radio-resistance of CRC cells. This suggests that elevated hCINAP expression contributes to the development of radio-resistance. Further investigation revealed an interaction between hCINAP and ATPase family AAA domain containing 3A (ATAD3A). Importantly, ATAD3A was identified as an essential factor in hCINAP-mediated radio-resistance. These findings establish the involvement of hCINAP and its interaction with ATAD3A in the regulation of radio-resistance in CRC cells. Overall, the results of this study demonstrate that upregulating hCINAP expression may improve the survival of radiation-exposed CRC cells. Understanding the intricate molecular mechanisms underlying hCINAP function holds promise for potential strategies in targeted radiation therapy for CRC. These findings emphasize the importance of further research to gain a comprehensive understanding of hCINAP's precise molecular mechanisms and explore its potential as a therapeutic target in overcoming radio-resistance in CRC. By unraveling the complexities of hCINAP and its interactions, novel therapeutic approaches may be developed to enhance the efficacy of radiation therapy and improve outcomes for CRC patients.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas , Apoptosis , Neoplasias Colorrectales , Técnicas de Silenciamiento del Gen , Tolerancia a Radiación , Especies Reactivas de Oxígeno , Humanos , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/radioterapia , Tolerancia a Radiación/genética , Apoptosis/efectos de la radiación , Apoptosis/genética , Especies Reactivas de Oxígeno/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , Línea Celular Tumoral , Radiación Ionizante , Mitocondrias/metabolismo , Mitocondrias/efectos de la radiación , Células HT29
10.
Electromagn Biol Med ; 43(1-2): 61-70, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38347683

RESUMEN

Osteoporotic osteoarthritis (OPOA) is a specific phenotype of OA with high incidence and severe cartilage damage. This study aimed to explore the protective efficacy of PEMF on the progression of OPOA and observed the effects of PEMF on PPARγ, autophagy- and apoptosis-related proteins in OPOA rats. Rats were randomly divided into three groups: control group, OPOA group, and PEMF group (n = 6). One week after surgery, the rats in PEMF group were subjected to PEMF (3.82 mT, 8 Hz, 40 min/day and 5 day/week) for 12 weeks. Results showed that PEMF retarded cartilage degeneration and bone loss, as evidenced by pathological staining image, decreased MMP-13 expression and increased bone mineral density. PEMF inhibited the serum levels of inflammatory cytokines, and the expressions of caspase-3 and caspase-8, while upregulated the expression of PPARγ. Moreover, PEMF significantly improved the autophagy disorders, represented by decrease expressions of Beclin-1, P62, and LC3B. The research demonstrates that PEMF can effectively prevent cartilage and subchondral bone destruction in OPOA rats. The potential mechanism may be related to upregulation of PPARγ, inhibition of chondrocyte apoptosis and inflammation, and improvement of autophagy disorder. PEMF therapy thus shows promising application prospects in the treatment of postmenopausal OA.


Osteoporotic osteoarthritis (OPOA) is a very common combination disease, that characterized by chronic pain, swollen joints and susceptibility to fractures. It is particularly common in postmenopausal women. At present, drug therapy is the main treatment method, but the adverse reactions are serious and can not stop the progression of the disease. PEMF is a safe physical therapy that has been shown to increase bone density, reduce pain, and improve joints mobility. In this study, we aimed to explore the protective effect and potential mechanism of PEMF on OPOA. We found that PEMF significantly inhibited the inflammatory response, ameliorated the damaged cartilage and subchondral bone in OPOA rats, that maybe related to the regulation of chondrocyte autophagy and apoptosis. This study provided a new vision for PEMF' treatment on OPOA and has positive significance for the clinical promotion of PEMF.


Asunto(s)
Apoptosis , Autofagia , Modelos Animales de Enfermedad , Osteoartritis , PPAR gamma , Ratas Sprague-Dawley , Animales , Autofagia/efectos de la radiación , PPAR gamma/metabolismo , Apoptosis/efectos de la radiación , Ratas , Osteoartritis/terapia , Osteoartritis/patología , Osteoartritis/metabolismo , Femenino , Magnetoterapia , Osteoporosis/terapia , Osteoporosis/metabolismo , Osteoporosis/patología
11.
Int J Radiat Biol ; 100(5): 715-723, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38421209

RESUMEN

PURPOSE: DNA damage response (DDR) is the principal mechanism regulating genomic stability and cell cycle checkpoint activation by coordinating DNA repair and apoptotic pathways. Ataxia telangiectasia and Rad3-related protein (ATR) play a significant role in the DDR due to its capability to detect a wide spectrum of DNA damage. Therefore, targeting DDR, specifically ATR, is a promising therapeutic strategy in cancer treatment. Furthermore, the inhibition of ATR sensitizes cancer cells to radiotherapy (RT). Herein, we, for the first time, investigated the synergistic effects of Elimusertib (BAY-1895344) as a highly potent selective ATR inhibitor with RT combination in triple-negative breast cancer (TNBC), in vitro. METHODS: MDA-MB-231 TNBC cells were firstly treated with different concentrations of Elimusertib for 24 h and then exposed to 4 and 8 Gy of X-ray irradiation. After post-irradiation for 72 h, WST-1, Annexin V, cell cycle, acridine orange/propidium iodide, mitochondria staining and western blot analysis were conducted. RESULTS: Our findings showed that 4 Gy irradiation and lower doses (especially 2 and 4 nM) of Elimusertib combination exerted a considerable anticancer activity at 72 h post-irradiation through apoptotic cell death, marked nuclear and mitochondrial damages and the suppression of ATR-Chk1 based DDR mechanism. CONCLUSION: ATR inhibition by Elimusertib in combination with RT may be a promising new treatment strategy in the treatment of TNBC. However, further experiments should be performed to elucidate the underlying molecular mechanisms of the therapeutic efficacy of this combination treatment and its association with DNS repair mechanisms in TNBC, in vitro and in vivo.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Tolerancia a Radiación , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/radioterapia , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular Tumoral , Tolerancia a Radiación/efectos de los fármacos , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Femenino , Daño del ADN
12.
J Pharmacol Exp Ther ; 388(2): 624-636, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38182415

RESUMEN

The primary response of proliferating bovine pulmonary artery endothelial cells (BPAECs) after X-ray irradiation [≤10 gray (Gy)] is shown to be transient cell-cycle arrest. Accompanying oxidant-linked functional changes within the mitochondria are readily measured, but increased autophagy is not. Radiation-induced apoptosis is negligible in this line-important because cells undergoing apoptosis release oxygen-derived species that can overwhelm/mask the radiation-associated species and their effects that we wish to investigate. Cells irradiated and cultured at 3% oxygen exhibited delayed cell-cycle arrest (6-8 hours after 10 Gy irradiation) compared with those maintained at 20% oxygen (2-4 hours after 10 Gy irradiation). At 3% oxygen, either only during or only after irradiation, results intermediate between 20% and 3% oxygen throughout were obtained. No variability in cell-cycle distribution was observed for unirradiated cells cultured under different prevailing oxygen levels. Mitochondrially localized manganese superoxide dismutase delayed the X-ray-induced cell-cycle changes when over-expressed in BPAEC, indicating superoxide to be one of the key oxygen-derived cytotoxic species involved in the radiobiological response. Also, the peroxynitrite biomarker 3-nitrotyrosine was elevated, whereas hydrogen peroxide levels were not. Lastly, the utility of the BPAEC for screening potential countermeasures to ionizing radiation is demonstrated with some quinoline derivatives. Three of the five compounds appeared mitigative, and all were protective. It is suggested that the oxidation-reduction chemistry of these compounds probably offers a reasonable explanation for their observed ameliorative properties. Furthermore, the results suggest a promising new direction in the search for lead compounds as countermeasures to the effects of ionizing radiation. SIGNIFICANCE STATEMENT: The primary radiological response of proliferating bovine pulmonary artery endothelial cells is cell-cycle arrest, starting soon after X-ray irradiation (1-10 Gy) at 20% O2 but delayed by 4 hours at systemic (3%) O2. Oxygen/superoxide is found to be radio-sensitizing in at least two distinct time windows, during and after the irradiation, with both responses antagonized by various hydroxyquinoline derivatives. Similar responses in many other cell lines are likely to be masked by elevated oxidants associated with apoptosis.


Asunto(s)
Células Endoteliales , Oxidantes , Animales , Bovinos , Rayos X , Oxidantes/farmacología , Superóxidos , Apoptosis/efectos de la radiación , Oxígeno
13.
Radiat Res ; 201(5): 429-439, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38253061

RESUMEN

The current geopolitical context has brought the radiological nuclear risk to the forefront of concerns. High-dose localized radiation exposure leads to the development of a musculocutaneous radiation syndrome affecting the skin and subcutaneous muscles. Despite the implementation of a gold standard treatment based on an invasive surgical procedure coupled with autologous cell therapy, a muscular defect frequently persists. Targeting the modulation of the Hedgehog (Hh) signaling pathway appears to be a promising therapeutic approach. Activation of this pathway enhances cell survival and promotes proliferation after irradiation, while inhibition by Cyclopamine facilitates differentiation. In this study, we compared the effects of three antagonists of Hh, Cyclopamine (CA), Vismodegib (VDG) and Sonidegib (SDG) on differentiation. A stable cell line of murine myoblasts, C2C12, was exposed to X-ray radiation (5 Gy) and treated with CA, VDG or SDG. Analysis of proliferation, survival (apoptosis), morphology, myogenesis genes expression and proteins production were performed. According to the results, VDG does not have a significant impact on C2C12 cells. SDG increases the expression/production of differentiation markers to a similar extent as CA, while morphologically, SDG proves to be more effective than CA. To conclude, SDG can be used in the same way as CA but already has a marketing authorization with an indication against basal cell cancers, facilitating their use in vivo. This proof of concept demonstrates that SDG represents a promising alternative to CA to promotes differentiation of murine myoblasts. Future studies on isolated and cultured satellite cells and in vivo will test this proof of concept.


Asunto(s)
Proteínas Hedgehog , Músculo Esquelético , Regeneración , Transducción de Señal , Animales , Ratones , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/antagonistas & inhibidores , Músculo Esquelético/efectos de la radiación , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/citología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación , Línea Celular , Regeneración/efectos de los fármacos , Regeneración/efectos de la radiación , Piridinas/farmacología , Alcaloides de Veratrum/farmacología , Anilidas/farmacología , Compuestos de Bifenilo/farmacología , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/efectos de la radiación , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Desarrollo de Músculos/efectos de los fármacos , Desarrollo de Músculos/efectos de la radiación
14.
Nat Commun ; 15(1): 137, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167344

RESUMEN

Radiation-induced gastrointestinal syndrome is a major complication and limiting factor for radiotherapy. Tumor suppressor p53 has a protective role in radiation-induced gastrointestinal toxicity. However, its underlying mechanism remains unclear. Here we report that regulating the IL12-p40/MHC class II signaling pathway is a critical mechanism by which p53 protects against radiation-induced gastrointestinal syndrome. p53 inhibits the expression of inflammatory cytokine IL12-p40, which in turn suppresses the expression of MHC class II on intestinal epithelial cells to suppress T cell activation and inflammation post-irradiation that causes intestinal stem cell damage. Anti-IL12-p40 neutralizing antibody inhibits inflammation and rescues the defects in intestinal epithelial regeneration post-irradiation in p53-deficient mice and prolongs mouse survival. These results uncover that the IL12-p40/MHC class II signaling mediates the essential role of p53 in ensuring intestinal stem cell function and proper immune reaction in response to radiation to protect mucosal epithelium, and suggest a potential therapeutic strategy to protect against radiation-induced gastrointestinal syndrome.


Asunto(s)
Traumatismos por Radiación , Proteína p53 Supresora de Tumor , Animales , Ratones , Proteína p53 Supresora de Tumor/metabolismo , Apoptosis/efectos de la radiación , Mucosa Intestinal/metabolismo , Traumatismos por Radiación/metabolismo , Inflamación/metabolismo , Interleucina-12/metabolismo
15.
Int J Radiat Biol ; 100(2): 220-235, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37812149

RESUMEN

PURPOSE: Due to the expanding repertoire of treatment devices that use radiation, the possibility of exposure to both low-dose and high-dose radiation continues to increase. Skin is the outermost part of the body and thus directly exposed to radiation-induced damage. In particular, the skin of diabetes patients is fragile and easily damaged by external stimuli, such as radiation. However, damage and cellular responses induced by ionizing irradiation in diabetic skin have not been explored in detail. In this study, we investigated the effects of several irradiation dose on normal keratinocytes and those from type II diabetes patients, with particular focus on DNA damage. MATERIALS AND METHODS: Cellular responses to low-dose radiation (0.1 Gy) and high-dose radiation (0.5 and 2 Gy) were evaluated. Cell cycle analysis was conducted via flow cytometry and cell viability analyzed using the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay. Proteins related to the DNA damage response (DDR) and repair signaling pathways and apoptosis were detected via immunoblot analysis. Apoptosis and cell differentiation were additionally examined in 3D skin organoids using immunohistochemistry. RESULTS: Compared to respective control groups, no significant changes were observed in cell cycle, DDR and repair mechanisms, cell survival, and differentiation in response to 0.1 Gy irradiation in both normal and diabetes type II keratinocytes. On the other hand, the cell cycle showed an increase in the G2/M phase in both cell types following exposure to 2 Gy irradiation. At radiation doses 2 Gy, activation of the DDR and repair signaling pathways, apoptosis, and cell differentiation were increased and viability was decreased in both cell types. Notably, these differences were more pronounced in normal than diabetes type II keratinocytes. CONCLUSIONS: Normal keratinocytes respond more strongly to radiation-induced damage and recovery than diabetes type II keratinocytes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/radioterapia , Queratinocitos/efectos de la radiación , Radiación Ionizante , Dosis de Radiación , Supervivencia Celular/efectos de la radiación , Daño del ADN , Apoptosis/efectos de la radiación , Relación Dosis-Respuesta en la Radiación
16.
Int J Radiat Biol ; 100(3): 433-444, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37922446

RESUMEN

PURPOSE: Normal tissue radioprotectants alleviate radiation-induced damages and preserve critical organ functions. Investigating their efficacy in vivo remains challenging, especially in enclosed organs like the brain. An animal model that enables direct visualization of radiation-induced apoptosis while possessing the structural complexity of a vertebrate brain facilitates these studies in a precise and effective manner. MATERIALS AND METHODS: We employed a secA5 transgenic zebrafish expressing secreted Annexin V fused with a yellow fluorescent protein to visualize radiation-induced apoptosis in vivo. We developed a semi-automated imaging method for standardized acquisition of apoptosis signals in batches of zebrafish larvae. Using these approaches, we studied the protective effect of amifostine (WR-2721) in the irradiated zebrafish larval brain. RESULTS: Upon 2 Gy total-body 137Cs irradiation, increased apoptosis could be visualized at high resolution in the secA5 brain at 2, 24, and 48 hour post irradiation (hpi). Amifostine treatment (4 mM) during irradiation reduced apoptosis significantly at 24 hpi and preserved Wnt active cells in the larval brain. When the 2 Gy irradiation was delivered in combination with cisplatin treatment (0.1 mM), the radioprotective effect of amifostine was also observed. CONCLUSIONS: Our study reveals the radioprotective effect of amifostine in the developing zebrafish larval brain, and highlights the utility of secA5 transgenic zebrafish as a novel system for investigating normal tissue radioprotectants in vivo.


Asunto(s)
Amifostina , Protectores contra Radiación , Animales , Amifostina/farmacología , Pez Cebra , Protectores contra Radiación/farmacología , Apoptosis/efectos de la radiación , Animales Modificados Genéticamente , Encéfalo
17.
Int J Mol Sci ; 24(22)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38003379

RESUMEN

Several cell-signaling mechanisms are activated by visible light radiation in human keratinocytes, but the key regulatory proteins involved in this specific cellular response have not yet been identified. Human keratinocytes (HaCaT cells) were exposed to blue or red light at low or high irradiance for 3 days in cycles of 12 h of light and 12 h of dark. The cell viability, apoptotic rate and cell cycle progression were analyzed in all experimental conditions. The proteomic profile, oxidative stress and mitochondrial morphology were additionally evaluated in the HaCaT cells following exposure to high-irradiance blue or red light. Low-irradiance blue or red light exposure did not show an alteration in the cell viability, cell death or cell cycle progression. High-irradiance blue or red light reduced the cell viability, induced cell death and cell cycle G2/M arrest, increased the reactive oxygen species (ROS) and altered the mitochondrial density and morphology. The proteomic profile revealed a pivotal role of Cytoplasmic thioredoxin reductase 1 (TXNRD1) and Aldo-keto reductase family 1 member C3 (AKR1C3) in the response of the HaCaT cells to high-irradiance blue or red light exposure. Blue or red light exposure affected the viability of keratinocytes, activating a specific oxidative stress response and inducing mitochondrial dysfunction. Our results can help to address the targets for the therapeutic use of light and to develop adequate preventive strategies for skin damage. This in vitro study supports further in vivo investigations of the biological effects of light on human keratinocytes.


Asunto(s)
Apoptosis , Proteómica , Humanos , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas , Apoptosis/efectos de la radiación , Línea Celular Tumoral , Puntos de Control de la Fase G2 del Ciclo Celular , Queratinocitos/metabolismo , Luz , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Tiorredoxina Reductasa 1/metabolismo
18.
Int. j. morphol ; 41(5): 1527-1536, oct. 2023. ilus
Artículo en Inglés | LILACS | ID: biblio-1521022

RESUMEN

SUMMARY: The 12C6+ heavy ion beam irradiation can cause bystander effects. The inflammatory cytokines, endocrine hormones and apoptotic proteins may be involved in 12C6+ irradiation-induced bystander effects. This study characterized the protective effects and mechanisms of Huangqi decoction (HQD) against 12C6+ radiation induced bystander effects. Wistar rats were randomly divided into control, 12C6+ heavy ion irradiation model, and high-dose/medium-dose/low-dose HQD groups. HE staining assessed the pathological changes of brain and kidney. Peripheral blood chemical indicators as well as inflammatory factors and endocrine hormones were detected. Apoptosis was measured with TUNEL. Proliferating cell nuclear antigen (PCNA) expression was determined with real-time PCR and Western blot.Irradiation induced pathological damage to the brain and kidney tissues. After irradiation, the numbers of white blood cells (WBC) and monocyte, and the expression of interleukin (IL)-2, corticotropin-releasing hormone (CRH) and PCNA decreased. The damage was accompanied by increased expression of IL-1β, IL-6, corticosterone (CORT) and adrenocorticotropic hormone (ACTH) as well as increased neuronal apoptosis. These effects were indicative of radiation-induced bystander effects. Administration of HQD attenuated the pathological damage to brain and kidney tissues, and increased the numbers of WBC, neutrophils, lymphocyte and monocytes, as well as the expression of IL-2, CRH and PCNA. It also decreased the expression of IL-1β, IL-6, CORT and ACTH as well as neuronal apoptosis. HQD exhibits protective effects against 12C6+ radiation-induced bystander effects. The underlying mechanism may involve the promotion of the production of peripheral blood cells, inhibition of inflammatory factors and apoptosis, and regulation of endocrine hormones.


La irradiación con haz de iones pesados 12C6+ puede provocar efectos secundarios. Las citoquinas inflamatorias, las hormonas endocrinas y las proteínas apoptóticas pueden estar involucradas en los efectos secundarios inducidos por la irradiación 12C6+. Este estudio caracterizó los efectos y mecanismos protectores de la decocción de Huangqi (HQD) contra los efectos externos inducidos por la radiación 12C6+. Las ratas Wistar se dividieron aleatoriamente en grupos control, modelo de irradiación de iones pesados 12C6+ y grupos de dosis alta/media/baja de HQD. La tinción con HE evaluó los cambios patológicos del cerebro y el riñón. Se detectaron indicadores químicos de sangre periférica, así como factores inflamatorios y hormonas endocrinas. La apoptosis se midió con TUNEL. La expresión del antígeno nuclear de células en proliferación (PCNA) se determinó mediante PCR en tiempo real y transferencia Western blot. La irradiación indujo daños patológicos en los tejidos cerebrales y renales. Después de la irradiación, disminuyó el número de glóbulos blancos (WBC) y monocitos, y la expresión de interleucina (IL)-2, hormona liberadora de corticotropina (CRH) y PCNA. El daño estuvo acompañado por una mayor expresión de IL-1β, IL-6, corticosterona (CORT) y hormona adrenocorticotrópica (ACTH), así como un aumento de la apoptosis neuronal. Estas alteraciones fueron indicativas de efectos inducidos por la radiación. La administración de HQD atenuó el daño patológico a los tejidos cerebrales y renales, y aumentó el número de leucocitos y monocitos, así como la expresión de IL-2, CRH y PCNA. También disminuyó la expresión de IL-1β, IL-6, CORT y ACTH, así como la apoptosis neuronal. HQD exhibe mecanismos protectores contra los efectos externos inducidos por la radiación 12C6+. El mecanismo subyacente puede implicar la promoción de la producción de células sanguíneas periféricas, la inhibición de factores inflamatorios y la apoptosis y la regulación de hormonas endocrinas.


Asunto(s)
Animales , Femenino , Ratas , Medicamentos Herbarios Chinos , Sustancias Protectoras/administración & dosificación , Iones Pesados/efectos adversos , Scutellaria baicalensis/química , Encéfalo/efectos de los fármacos , Encéfalo/efectos de la radiación , Hormona Liberadora de Corticotropina , Ensayo de Inmunoadsorción Enzimática , Ratas Wistar , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Hormona Adrenocorticotrópica , Antígeno Nuclear de Célula en Proliferación , Sistema Endocrino/efectos de los fármacos , Sistema Endocrino/efectos de la radiación , Factores Inmunológicos/antagonistas & inhibidores , Riñón/efectos de los fármacos , Riñón/efectos de la radiación
19.
Int J Mol Sci ; 24(13)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37446385

RESUMEN

Lung cancer is one of the most common cancers in the population and is characterized by non-specific symptoms that delay the diagnosis and reduce the effectiveness of oncological treatment. Due to the difficult placement of the tumor, one of the main methods of lung cancer treatment is radiotherapy, which damages the DNA of cancer cells, inducing their apoptosis. However, resistance to ionizing radiation may develop during radiotherapy cycles, leading to an increase in the number of DNA points of control that protect cells from apoptosis. Cancer stem cells are essential for radioresistance, and due to their ability to undergo epithelial-mesenchymal transition, they modify the phenotype, bypassing the genotoxic effect of radiotherapy. It is therefore necessary to search for new methods that could improve the cytotoxic effect of cells through new mechanisms of action. Chinese medicine, with several thousand years of tradition, offers a wide range of possibilities in the search for compounds that could be used in conventional medicine. This review introduces the potential candidates that may present a radiosensitizing effect on lung cancer cells, breaking their radioresistance. Additionally, it includes candidates taken from conventional medicine-drugs commonly available in pharmacies, which may also be significant candidates.


Asunto(s)
Neoplasias Pulmonares , Farmacias , Humanos , Medicina Tradicional China , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patología , Tolerancia a Radiación/efectos de la radiación , Radiación Ionizante , Apoptosis/efectos de la radiación , Línea Celular Tumoral
20.
Radiat Res ; 200(2): 127-138, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37302147

RESUMEN

Heavy-ion radiation received during radiotherapy as well as the heavy-ion radiation received during space flight are equally considered harmful. Our previous study showed that TLR4 low toxic agonist, monophosphoryl lipid A (MPLA), alleviated radiation injury resulting from exposure to low-LET radiation. However, the role and mechanism of MPLA in heavy-ion-radiation injury are unclear. This study aimed to investigate the role of MPLA on radiation damage. Our data showed that MPLA treatment alleviated the heavy-ion-induced damage to microstructure and the spleen and testis indexes. The number of karyocytes in the bone marrow from the MPLA-treated group was higher than that in the irradiated group. Meanwhile, western blotting analysis of intestine proteins showed that pro-apoptotic proteins (cleaved-caspase3 and Bax) were downregulated while anti-apoptotic proteins (Bcl-2) were upregulated in the MPLA-treated group. Our in vitro study demonstrated that MPLA significantly improved cell proliferation and inhibited cell apoptosis after irradiation. Moreover, immunofluorescence staining and quantification of nucleic γ-H2AX and 53BP1 foci also suggested that MPLA significantly attenuated cellular DNA damage repair. Collectively, the above evidence supports the potential ability of MPLA to protect against heavy-ion-radiation injury by inhibiting apoptosis and alleviating DNA damage in vivo and vitro, which could be a promising medical countermeasure for the prevention of heavy-ion-radiation injury.


Asunto(s)
Traumatismos por Radiación , Receptor Toll-Like 4 , Humanos , Masculino , Apoptosis/efectos de la radiación , Daño del ADN , Reparación del ADN , Receptor Toll-Like 4/agonistas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA