Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Integr Plant Biol ; 66(8): 1703-1717, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38953746

RESUMEN

Aporphine alkaloids have diverse pharmacological activities; however, our understanding of their biosynthesis is relatively limited. Previous studies have classified aporphine alkaloids into two categories based on the configuration and number of substituents of the D-ring and have proposed preliminary biosynthetic pathways for each category. In this study, we identified two specific cytochrome P450 enzymes (CYP80G6 and CYP80Q5) with distinct activities toward (S)-configured and (R)-configured substrates from the herbaceous perennial vine Stephania tetrandra, shedding light on the biosynthetic mechanisms and stereochemical features of these two aporphine alkaloid categories. Additionally, we characterized two CYP719C enzymes (CYP719C3 and CYP719C4) that catalyzed the formation of the methylenedioxy bridge, an essential pharmacophoric group, on the A- and D-rings, respectively, of aporphine alkaloids. Leveraging the functional characterization of these crucial cytochrome P450 enzymes, we reconstructed the biosynthetic pathways for the two types of aporphine alkaloids in budding yeast (Saccharomyces cerevisiae) for the de novo production of compounds such as (R)-glaziovine, (S)-glaziovine, and magnoflorine. This study provides key insight into the biosynthesis of aporphine alkaloids and lays a foundation for producing these valuable compounds through synthetic biology.


Asunto(s)
Aporfinas , Sistema Enzimático del Citocromo P-450 , Saccharomyces cerevisiae , Aporfinas/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Saccharomyces cerevisiae/metabolismo , Stephania/metabolismo , Stephania/química , Alcaloides/biosíntesis , Alcaloides/metabolismo , Vías Biosintéticas
2.
Plant J ; 118(5): 1439-1454, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38379355

RESUMEN

Aporphine alkaloids are a large group of natural compounds with extensive pharmaceutical application prospects. The biosynthesis of aporphine alkaloids has been paid attentions in the past decades. Here, we determined the contents of four 1-benzylisoquinoline alkaloids and five aporphine alkaloids in root, stem, leaf, and flower of Aristolochia contorta Bunge, which belongs to magnoliids. Two CYP80 enzymes were identified and characterized from A. contorta. Both of them catalyze the unusual C-C phenol coupling reactions and directly form the aporphine alkaloid skeleton. AcCYP80G7 catalyzed the formation of hexacyclic aporphine corytuberine. AcCYP80Q8 catalyzed the formation of pentacyclic proaporphine glaziovine. Kingdom-wide phylogenetic analysis of the CYP80 family suggested that CYP80 first appeared in Nymphaeales. The functional divergence of hydroxylation and C-C (or C-O) phenol coupling preceded the divergence of magnoliids and eudicots. Probable crucial residues of AcCYP80Q8 were selected through sequence alignment and molecular docking. Site-directed mutagenesis revealed two crucial residues E284 and Y106 for the catalytic reaction. Identification and characterization of two aporphine skeleton-forming enzymes provide insights into the biosynthesis of aporphine alkaloids.


Asunto(s)
Alcaloides , Aporfinas , Aristolochia , Sistema Enzimático del Citocromo P-450 , Filogenia , Proteínas de Plantas , Aporfinas/metabolismo , Aristolochia/enzimología , Aristolochia/metabolismo , Aristolochia/genética , Aristolochia/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Alcaloides/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/enzimología , Raíces de Plantas/metabolismo , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Flores/enzimología , Flores/genética , Flores/metabolismo , Tallos de la Planta/metabolismo , Tallos de la Planta/enzimología , Tallos de la Planta/genética
3.
J Ethnopharmacol ; 323: 117693, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38176669

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Aconitum carmichaelii is widely used in traditional Chinese medicine clinics as a bulk medicinal material. It has been used in China for more than two thousand years. Nevertheless, the stems and leaves of this plant are usually discarded as non-medicinal parts, even though they have a large biomass and exhibit therapeutic properties. Thus, it is crucial to investigate metabolites of different parts of Aconitum carmichaelii and explore the relationship between metabolites and toxicity to unleash the utilization potential of the stems and leaves. AIM OF THE STUDY: Using plant metabolomics, we aim to correlate different metabolites in various parts of Aconitum carmichaelii with toxicity, thereby screening for toxicity markers. This endeavor seeks to offer valuable insights for the development of Aconitum carmichaelii stem and leaf-based applications. MATERIALS AND METHODS: UHPLC-Q-Orbitrap MS/MS-based plant metabolomics was employed to analyze metabolites of the different parts of Aconitum carmichaelii. The cardiotoxicity and hepatotoxicity of the extracts from different parts of Aconitum carmichaelii were also investigated using zebrafish as animal model. Toxicity markers were subsequently identified by correlating toxicity with metabolites. RESULTS: A total of 113 alkaloids were identified from the extracts of various parts of Aconitum carmichaelii, with 64 different metabolites in stems and leaves compared to daughter root (Fuzi), and 21 different metabolites in stems and leaves compared to mother root (Wutou). The content of aporphine alkaloids in the stems and leaves of Aconitum carmichaelii is higher than that in the medicinal parts, while the content of the diester-diterpenoid alkaloids is lower. Additionally, the medicinal parts of Aconitum carmichaelii exhibited cardiotoxicity and hepatotoxicity, while the stems and leaves have no obvious toxicity. Finally, through correlation analysis and animal experimental verification, mesaconitine, deoxyaconitine, and hypaconitine were used as toxicity markers. CONCLUSION: Given the low toxicity of the stems and leaves and the potential efficacy of aporphine alkaloids, the stems and leaves of Aconitum carmichaelii hold promise as a valuable medicinal resource warranting further development.


Asunto(s)
Aconitum , Medicamentos Herbarios Chinos , Animales , Aconitum/toxicidad , Alcaloides/metabolismo , Aporfinas/metabolismo , Cardiotoxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas , Diterpenos/metabolismo , Medicamentos Herbarios Chinos/toxicidad , Medicamentos Herbarios Chinos/metabolismo , Hojas de la Planta , Raíces de Plantas , Espectrometría de Masas en Tándem , Pez Cebra
4.
Eur J Med Chem ; 256: 115414, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37172474

RESUMEN

Aporphine alkaloids embedded in 4H-dibenzo[de,g]quinoline four-ring structures belong to one of the largest subclasses of isoquinoline alkaloids. Aporphine is a privileged scaffold in the field of organic synthesis and medicinal chemistry for the discovery of new therapeutic agents for central nervous system (CNS) diseases, cancer, metabolic syndrome, and other diseases. In the past few decades, aporphine has attracted continuing interest to be widely used to develop selective or multitarget directed ligands (MTDLs) targeting the CNS (e.g., dopamine D1/2/5, serotonin 5-HT1A/2A/2C and 5-HT7, adrenergic α/ß receptors, and cholinesterase enzymes), thereby serving as valuable pharmacological probes for mechanism studies or as potential leads for CNS drug discovery. The aims of the present review are to highlight the diverse CNS activities of aporphines, discuss their SAR, and briefly summarize general synthetic routes, which will pave the way for the design and development of new aporphine derivatives as promising CNS active drugs in the future.


Asunto(s)
Alcaloides , Aporfinas , Relación Estructura-Actividad , Serotonina , Aporfinas/farmacología , Aporfinas/química , Aporfinas/metabolismo , Alcaloides/química , Fármacos del Sistema Nervioso Central/farmacología , Descubrimiento de Drogas
5.
Physiol Genomics ; 55(7): 297-313, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37125768

RESUMEN

Spinal cord injury (SCI) results in rapid muscle loss. Exogenous molecular interventions to slow muscle atrophy after SCI have been relatively ineffective and require the search for novel therapeutic targets. Connexin hemichannels (CxHCs) allow nonselective passage of small molecules into and out of the cell. Boldine, a CxHC-inhibiting aporphine found in the boldo tree (Peumus boldus), has shown promising preclinical results in slowing atrophy during sepsis and restoring muscle function in dysferlinopathy. We administered 50 mg/kg/day of boldine to spinal cord transected mice beginning 3 days post-injury. Tissue was collected 7 and 28 days post-SCI and the gastrocnemius was used for multiomics profiling. Boldine did not prevent body or muscle mass loss but attenuated SCI-induced changes in the abundance of the amino acids proline, phenylalanine, leucine and isoleucine, as well as glucose, 7 days post-SCI. SCI resulted in the differential expression of ∼7,700 and ∼2,000 genes at 7 and 28 days, respectively, compared with Sham controls. Pathway enrichment of these genes highlighted ribosome biogenesis at 7 days and translation and oxidative phosphorylation at both timepoints. Boldine altered the expression of ∼150 genes at 7 days and ∼110 genes at 28 days post-SCI. Pathway enrichment of these genes indicated a potential role for boldine in suppressing protein ubiquitination and degradation at the 7-day timepoint. Methylation analyses showed minimal differences between groups. Taken together, boldine is not an efficacious therapy to preserve body and muscle mass after complete SCI, though it attenuated some SCI-induced changes across the metabolome and transcriptome.NEW & NOTEWORTHY This is the first study to describe the multiome of skeletal muscle paralyzed by a spinal cord injury (SCI) in mice across the acute and subacute timeframe after injury. We show large-scale changes in the metabolome and transcriptome at 7 days post-injury compared with 28 days. Furthermore, we show that the alkaloid boldine was able to prevent SCI-induced changes in muscle glucose and free amino acid levels at 7 days, but not 28 days, after SCI.


Asunto(s)
Aporfinas , Traumatismos de la Médula Espinal , Ratones , Animales , Multiómica , Músculo Esquelético/metabolismo , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/metabolismo , Aporfinas/metabolismo , Aporfinas/farmacología , Glucosa/metabolismo
6.
Inflammopharmacology ; 30(4): 1369-1382, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35831735

RESUMEN

Plant-derived medicinal compounds are increasingly being used to treat acute and chronic inflammatory diseases, which are generally caused by aberrant inflammatory responses. Stephania pierrei Diels, also known as Sabu-lueat in Thai, is a traditional medicinal plant that is used as a remedy for several inflammatory disorders. Since aporphine alkaloids isolated from S. pierrei tubers exhibit diverse pharmacological characteristics, we aimed to determine the anti-inflammatory effects of crude extracts and alkaloids isolated from S. pierrei tubers against lipopolysaccharide (LPS)-activated RAW264.7 macrophages. Notably, the n-hexane extract strongly suppressed nitric oxide (NO) while exhibiting reduced cytotoxicity. Among the five alkaloids isolated from the n-hexane extract, the aporphine alkaloid oxocrebanine exerted considerable anti-inflammatory effects by inhibiting NO secretion. Oxocrebanine also significantly suppressed prostaglandin E2, tumour necrosis factor-α, interleukin (IL)-1ß, IL-6, inducible nitric oxide synthase, and cyclooxygenase (COX)-2 protein expression by inactivating the nuclear factor κB, c-Jun NH2-terminal kinase, extracellular signal-regulated kinase 1/2, and phosphatidylinositol 3-kinase/Akt inflammatory signalling pathways. Molecular docking analysis further revealed that oxocrebanine has a higher affinity for toll-like receptor 4/myeloid differentiation primary response 88 signalling targets and the COX-2 protein than native ligands. Thus, our findings highlight the potential anti-inflammatory effects of oxocrebanine and suggest that certain alkaloids of S. pierrei could be used to treat inflammatory diseases.


Asunto(s)
Aporfinas , Stephania , Antiinflamatorios/metabolismo , Antiinflamatorios/farmacología , Aporfinas/metabolismo , Aporfinas/farmacología , Ciclooxigenasa 2/metabolismo , Lipopolisacáridos/farmacología , Macrófagos , Simulación del Acoplamiento Molecular , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Stephania/metabolismo
7.
Nutrients ; 14(9)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35565866

RESUMEN

Nuciferine (Nuci), the main aporphine alkaloid component in lotus leaf, was reported to reduce lipid accumulation in vitro. Herein we investigated whether Nuci prevents obesity in high fat diet (HFD)-fed mice and the underlying mechanism in liver/HepG2 hepatocytes and epididymal white adipose tissue (eWAT) /adipocytes. Male C57BL/6J mice were fed with HFD supplemented with Nuci (0.10%) for 12 weeks. We found that Nuci significantly reduced body weight and fat mass, improved glycolipid profiles, and enhanced energy expenditure in HFD-fed mice. Nuci also ameliorated hepatic steatosis and decreased the size of adipocytes. Furthermore, Nuci remarkably promoted the phosphorylation of AMPK, suppressed lipogenesis (SREBP1, FAS, ACC), promoted lipolysis (HSL, ATGL), and increased the expressions of adipokines (FGF21, ZAG) in liver and eWAT. Besides, fatty acid oxidation in liver and thermogenesis in eWAT were also activated by Nuci. Similar results were further observed at cellular level, and these beneficial effects of Nuci in cells were abolished by an effective AMPK inhibitor compound C. In conclusion, Nuci supplementation prevented HFD-induced obesity, attenuated hepatic steatosis, and reduced lipid accumulation in liver/hepatocytes and eWAT/adipocytes through regulating AMPK-mediated FAS/HSL pathway. Our findings provide novel insight into the clinical application of Nuci in treating obesity and related complications.


Asunto(s)
Aporfinas , Hígado Graso , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Aporfinas/efectos adversos , Aporfinas/metabolismo , Dieta Alta en Grasa/efectos adversos , Hígado Graso/tratamiento farmacológico , Hígado Graso/etiología , Hígado Graso/prevención & control , Lípidos/farmacología , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/complicaciones , Obesidad/etiología
8.
Bioorg Med Chem ; 28(15): 115578, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32631561

RESUMEN

Aporphine alkaloids containing a C10 nitrogen motif were synthesized and evaluated for affinity at 5-HT1AR, 5-HT2AR, 5-HT6R and 5-HT7AR. Three series of racemic aporphines were investigated: 1,2,10-trisubstituted, C10 N-monosubstituted and compounds containing a C10 benzofused aminothiazole moiety. The 1,2,10-trisubstituted series of compounds as a group displayed modest selectivity for 5-HT7AR and also had moderate 5-HT7AR affinity. Compounds from the C10 N-monosubstituted series generally lacked affinity for 5-HT2AR and 5-HT6R and showed strong affinity for 5-HT1A or 5-HT7AR. Compounds in this series that contained an N6-methyl group were up to 27-fold selective for 5-HT7AR over 5-HT1AR, whereas compounds with an N6-propyl substituent showed a reversal in this selectivity. The C10 benzofused aminothiazole analogues showed a similar binding profile as the C10 N-monosubstituted series i.e. strong affinity for 5-HT1AR or 5-HT7AR, with selectivity between the two receptors being similarly influenced by N6-methyl or N6-propyl substituents. Compounds 29 and 34a exhibit high 5-HT7AR affinity, excellent selectivity versus dopamine receptors and function as antagonists in 5-HT7AR cAMP-based assays. Compounds 29 and 34a have been identified as new lead molecules for further tool and pharmaceutical optimization.


Asunto(s)
Aporfinas/farmacología , Receptores de Serotonina/metabolismo , Antagonistas de la Serotonina/farmacología , Aporfinas/síntesis química , Aporfinas/metabolismo , Línea Celular , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Estructura Molecular , Receptores de Serotonina/química , Antagonistas de la Serotonina/síntesis química , Antagonistas de la Serotonina/metabolismo , Relación Estructura-Actividad
9.
Artículo en Inglés | MEDLINE | ID: mdl-32145638

RESUMEN

Berberidis cortex, the dry bark of Berberis L., is used to treat diabetes and contains at least three bioactive components: berberine (BBR), berbamine (BBM) and magnoflorine (MGF). BBR in turn is metabolized into berberrubine (BRB). Although it is possible to quantify each of these components individually in serum, there are currently no methods for simultaneously quantifying all four. Here, we developed a specific and rapid method for simultaneously quantifying BBR, BBM, MGF and BRB in mouse serum using ultra high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Samples were pretreated by protein precipitation, separated using an ACQUITY UPLC® BEH C18 column and detected by a triple quadrupole mass spectrometer with electrospray ionization. The compound [9,10-(OC2H3)2]-BBR (d6-BBR) was used as internal standard for BBR and BRB, boldine (BOL) for MGF and tetrandrine (TET) for BBM. The m/z transitions for precursor/product ion pairs were 336.1/320.2 for BBR, 305.2/566.3 for BBM, 342.0/297.1 for MGF, 322.1/307.2 for BRB, 342.2/294.3 for d6-BBR, 312.2/580.3 for TET and 328.1/265.2 for BOL. We validated our method in terms of selectivity, linearity and lower limit of quantification, accuracy, precision, matrix effect and recovery, dilution integrity and stability. This method showed good linearity from 0.1 to 40 ng/mL for BBR, 8 to 3200 ng/mL for BBM, 5 to 2000 ng/mL for MGF and 0.2 to 80 ng/mL for BRB. The chromatographic run time was 3.9 min, and sample preparation took approximately 15 min per batch. Finally, we used our method to measure BBR, BBM, MGF and BRB in serum from diabetic mice after gavage administration of BBR hydrochloride, BBM hydrochloride, and MGF. This method is precise, accurate and suitable for high-throughput sample analysis.


Asunto(s)
Antiinflamatorios no Esteroideos/sangre , Aporfinas/sangre , Bencilisoquinolinas/sangre , Berberina/sangre , Animales , Antiinflamatorios no Esteroideos/metabolismo , Aporfinas/análisis , Aporfinas/metabolismo , Bencilisoquinolinas/análisis , Bencilisoquinolinas/metabolismo , Berberina/análogos & derivados , Berberina/metabolismo , Cromatografía Líquida de Alta Presión , Diabetes Mellitus Experimental , Límite de Detección , Ratones , Estándares de Referencia , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Espectrometría de Masas en Tándem
10.
BMC Plant Biol ; 19(1): 560, 2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31852435

RESUMEN

BACKGROUND: Croton draco is an arboreal species and its latex as well as some other parts of the plant, are traditionally used in the treatment of a wide range of ailments and diseases. Alkaloids, such as magnoflorine, prevent early atherosclerosis progression while taspine, an abundant constituent of latex, has been described as a wound-healer and antitumor-agent. Despite the great interest for these and other secondary metabolites, no omics resources existed for the species and the biosynthetic pathways of these alkaloids remain largely unknown. RESULTS: To gain insights into the pathways involved in magnoflorine and taspine biosynthesis by C. draco and identify the key enzymes in these processes, we performed an integrated analysis of the transcriptome and metabolome in the major organs (roots, stem, leaves, inflorescences, and flowers) of this species. Transcript profiles were generated through high-throughput RNA-sequencing analysis while targeted and high resolution untargeted metabolomic profiling was also performed. The biosynthesis of these compounds appears to occur in the plant organs examined, but intermediaries may be translocated from the cells in which they are produced to other cells in which they accumulate. CONCLUSIONS: Our results provide a framework to better understand magnoflorine and taspine biosynthesis in C. draco. In addition, we demonstrate the potential of multi-omics approaches to identify candidate genes involved in the biosynthetic pathways of interest.


Asunto(s)
Alcaloides/biosíntesis , Aporfinas/metabolismo , Croton/metabolismo , Metaboloma , Transcriptoma , Vías Biosintéticas
11.
J Nat Prod ; 82(4): 1014-1018, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-30840451

RESUMEN

Casein kinase 2 (CK2) is an anti-apoptotic cancer-sustaining protein kinase. Its crystallographic structures with the natural compounds coumestrol, a phytoestrogen, and boldine, an alkaloid, are reported. Coumestrol shows different inhibitory activity against the isolated catalytic α-subunit and the α2ß2 holoenzyme and is able to discriminate between two conformations of the hinge/αD region, whose intrinsic flexibility is a relevant selectivity determinant among kinases. Boldine explores a small cavity at the bottom of the ATP-binding pocket through a local deviation from planarity, a unique case among CK2 inhibitors. The two compounds have different impacts on protein flexibility, which correlate with their different properties.


Asunto(s)
Adenosina Trifosfato/metabolismo , Aporfinas/metabolismo , Quinasa de la Caseína II/metabolismo , Cumestrol/metabolismo , Estructura Molecular
12.
Chem Biol Drug Des ; 93(2): 132-138, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30216681

RESUMEN

Compounds with activity at serotonin (5-hydroxytryptamine) 5-HT2 and α1 adrenergic receptors have potential for the treatment of central nervous system disorders, drug addiction or overdose. Isolaureline, dicentrine and glaucine enantiomers were synthesized, and their in vitro functional activities at human 5-HT2 and adrenergic α1 receptor subtypes were evaluated. The enantiomers of isolaureline and dicentrine acted as antagonists at 5-HT2 and α1 receptors with (R)-isolaureline showing the greatest potency (pKb  = 8.14 at the 5-HT2C receptor). Both (R)- and (S)-glaucine also antagonized α1 receptors, but they behaved very differently to the other compounds at 5-HT2 receptors: (S)-glaucine acted as a partial agonist at all three 5-HT2 receptor subtypes, whereas (R)-glaucine appeared to act as a positive allosteric modulator at the 5-HT2A receptor.


Asunto(s)
Aporfinas/química , Receptor de Serotonina 5-HT2A/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Serotonina/química , Agonistas de Receptores Adrenérgicos alfa 1/química , Agonistas de Receptores Adrenérgicos alfa 1/metabolismo , Aporfinas/metabolismo , Sitios de Unión , Células HEK293 , Humanos , Cinética , Simulación del Acoplamiento Molecular , Estructura Terciaria de Proteína , Receptor de Serotonina 5-HT2A/química , Receptor de Serotonina 5-HT2A/genética , Receptores Adrenérgicos alfa 1/química , Receptores Adrenérgicos alfa 1/genética , Serotonina/metabolismo , Agonistas del Receptor de Serotonina 5-HT2/química , Agonistas del Receptor de Serotonina 5-HT2/metabolismo , Estereoisomerismo , Relación Estructura-Actividad
13.
Planta Med ; 84(2): 83-90, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28817840

RESUMEN

This study aimed to elucidate the mechanisms of nuciferine (a main aporphine alkaloid of lotus leaf extract), which can induce relaxation in contracted tracheal rings. Under Ca2+-free and 2 mM Ca2+ conditions, we found that nuciferine had no effect on the resting muscle tone of tracheal rings. In contrast, nuciferine relaxed high K+-contracted mouse tracheal rings in a dose-dependent manner and inhibited both Ca2+ influx and voltage-dependent L-type Ca2+ channel currents induced by high K+. Similarly, nuciferine also inhibited acetylcholine-induced contractions in mouse tracheal rings in a dose-dependent manner. Meanwhile, both acetylcholine-induced intracellular Ca2+ influx and whole-cell currents of nonselective cation channels were blocked by nuciferine. Together, the results indicate that nuciferine-induced relaxation in tracheal rings mainly occurred due to the inhibition of extracellular Ca2+ influx through the blockade of voltage-dependent L-type Ca2+ channels and/or nonselective cation channels. These results suggest that nuciferine has a therapeutic effect on respiratory diseases associated with the aberrant contraction of airway smooth muscles and/or bronchospasm.


Asunto(s)
Aporfinas/farmacología , Medicamentos Herbarios Chinos/farmacología , Relajación Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Nelumbo/química , Parasimpatolíticos/farmacología , Tráquea/efectos de los fármacos , Acetilcolina/metabolismo , Animales , Aporfinas/química , Aporfinas/metabolismo , Calcio/metabolismo , Canales de Calcio/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Estructura Molecular , Músculo Liso/metabolismo
14.
J Biosci Bioeng ; 124(5): 493-497, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28619612

RESUMEN

Illigera henryi, an endemic traditional Chinese medicine, contains abundant aporphine alkaloids that possess various bioactivities. In the present study, tubers of I. henryi were fermented by several fungi, and the acetylcholinesterase (AChE) inhibitory activities of non-fermented and fermented I. henryi were measured. The results showed that the fermentation of I. henryi with Clonostachys rogersoniana 828H2 is effective for improving the AChE inhibitory activity. A key biotransformation was found during the C. rogersoniana fermentation for clarifying the improvement of the AChE inhibitory activity of I. henryi: (S)-actinodaphnine (1) was converted to a new 4-hydroxyaporphine alkaloid (4R,6aS)-4-hydroxyactinodaphnine (2) that possessed a stronger AChE inhibitory activity, with an IC50 value of 17.66±0.06 µM. This paper is the first to report that the pure strain fermentation processing of I. henryi and indicated C. rogersoniana fermentation might be a potential processing method for I. henryi.


Asunto(s)
Acetilcolinesterasa/metabolismo , Aporfinas/farmacología , Inhibidores de la Colinesterasa/farmacología , Fermentación , Hernandiaceae/química , Hypocreales/metabolismo , Medicina Tradicional China , Extractos Vegetales/farmacología , Aporfinas/metabolismo , Inhibidores de la Colinesterasa/metabolismo , Dioxolanos/metabolismo , Hernandiaceae/metabolismo , Concentración 50 Inhibidora , Extractos Vegetales/metabolismo
15.
Drug Deliv ; 24(1): 443-451, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28165858

RESUMEN

This article reports a promising approach to enhance the oral delivery of nuciferine (NUC), improve its aqueous solubility and bioavailability, and allow its controlled release as well as inhibiting lipid accumulation. NUC-loaded poly lactic-co-glycolic acid nanoparticles (NUC-PLGA-NPs) were prepared according to a solid/oil/water (s/o/w) emulsion technique due to the water-insolubility of NUC. PLGA exhibited excellent loading capacity for NUC with adjustable dosing ratios. The drug loading and encapsulation efficiency of optimized formulation were 8.89 ± 0.71 and 88.54 ± 7.08%, respectively. NUC-PLGA-NPs exhibited a spherical morphology with average size of 150.83 ± 5.72 nm and negative charge of -22.73 ± 1.63 mV, which are suitable for oral administration. A sustained NUC released from NUC-PLGA-NPs with an initial exponential release owing to the surface associated drug followed by a slower release of NUC, which was entrapped in the core. In addition, ∼77 ± 6.67% was released in simulating intestinal juice, while only about 45.95 ± 5.2% in simulating gastric juice. NUC-PLGA-NPs are more efficient against oleic acid (OA)-induced hepatic steatosis in HepG2 cells when compared to naked NUC (n-NUC, *p < 0.05). The oral bioavailability of NUC-PLGA-NPs group was significantly higher (**p < 0.01) and a significantly decreased serum levels of total cholesterol (TC), triglycerides (TG) and low-density lipoprotein cholesterol (LDL-C), as well as a higher concentration of high-density lipoprotein cholesterol (HDL-C) was observed, compared with that of n-NUC treated group. These findings suggest that NUC-PLGA-NPs hold great promise for sustained and controlled drug delivery with improved bioavailability to alleviating lipogenesis.


Asunto(s)
Aporfinas/síntesis química , Sistemas de Liberación de Medicamentos/métodos , Hígado Graso/tratamiento farmacológico , Ácido Láctico/síntesis química , Nanopartículas/química , Ácido Poliglicólico/síntesis química , Administración Oral , Animales , Aporfinas/administración & dosificación , Aporfinas/metabolismo , Fenómenos Químicos , Hígado Graso/metabolismo , Células Hep G2 , Humanos , Ácido Láctico/administración & dosificación , Ácido Láctico/metabolismo , Masculino , Nanopartículas/administración & dosificación , Nanopartículas/metabolismo , Ácido Poliglicólico/administración & dosificación , Ácido Poliglicólico/metabolismo , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley
16.
J Biol Chem ; 291(45): 23416-23427, 2016 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-27634038

RESUMEN

Benzylisoquinoline alkaloids are a large group of plant-specialized metabolites displaying an array of biological and pharmacological properties associated with numerous structural scaffolds and diverse functional group modification. N-Methylation is one of the most common tailoring reactions, yielding tertiary and quaternary pathway intermediates and products. Two N-methyltransferases accepting (i) early 1-benzylisoquinoline intermediates possessing a secondary amine and leading to the key branch-point intermediate (S)-reticuline and (ii) downstream protoberberines containing a tertiary amine and forming quaternary intermediates destined for phthalideisoquinolines and antimicrobial benzo[c]phenanthridines were previously characterized. We report the isolation and characterization of a phylogenetically related yet functionally distinct N-methyltransferase (NMT) from opium poppy (Papaver somniferum) that primarily accepts 1-benzylisoquinoline and aporphine substrates possessing a tertiary amine. The preferred substrates were the R and S conformers of reticuline and the aporphine (S)-corytuberine, which are proposed intermediates in the biosynthesis of magnoflorine, a quaternary aporphine alkaloid common in plants. Suppression of the gene encoding reticuline N-methyltransferase (RNMT) using virus-induced gene silencing in opium poppy resulted in a significant decrease in magnoflorine accumulation and a concomitant increase in corytuberine levels in roots. RNMT transcript levels were also most abundant in roots, in contrast to the distribution of transcripts encoding other NMTs, which occur predominantly in aerial plant organs. The characterization of a third functionally unique NMT involved in benzylisoquinoline alkaloid metabolism will facilitate the establishment of structure-function relationships among a large group of related enzymes.


Asunto(s)
Aporfinas/metabolismo , Bencilisoquinolinas/metabolismo , Metiltransferasas/metabolismo , Papaver/enzimología , Secuencia de Aminoácidos , Vías Biosintéticas , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Metiltransferasas/química , Metiltransferasas/genética , Metiltransferasas/aislamiento & purificación , Papaver/química , Papaver/genética , Papaver/metabolismo , Filogenia , Alineación de Secuencia
17.
Angew Chem Int Ed Engl ; 55(30): 8661-5, 2016 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-27244650

RESUMEN

G-protein-coupled receptors (GPCRs) are involved in a wide range of physiological processes, and they have attracted considerable attention as important targets for developing new medicines. A central and largely unresolved question in drug discovery, which is especially relevant to GPCRs, concerns ligand selectivity: Why do certain molecules act as activators (agonists) whereas others, with nearly identical structures, act as blockers (antagonists) of GPCRs? To address this question, we employed all-atom, long-timescale molecular dynamics simulations to investigate how two diastereomers (epimers) of dihydrofuroaporphine bind to the serotonin 5-HT1A receptor and exert opposite effects. By using molecular interaction fingerprints, we discovered that the agonist could mobilize nearby amino acid residues to act as molecular switches for the formation of a continuous water channel. In contrast, the antagonist epimer remained firmly stabilized in the binding pocket.


Asunto(s)
Receptor de Serotonina 5-HT1A/metabolismo , Aporfinas/química , Aporfinas/metabolismo , Sitios de Unión , Ligandos , Simulación de Dinámica Molecular , Unión Proteica , Estructura Terciaria de Proteína , Receptor de Serotonina 5-HT1A/química , Agonistas del Receptor de Serotonina 5-HT1/química , Agonistas del Receptor de Serotonina 5-HT1/metabolismo , Antagonistas del Receptor de Serotonina 5-HT1/química , Antagonistas del Receptor de Serotonina 5-HT1/metabolismo , Estereoisomerismo , Agua/química , Agua/metabolismo
18.
Biomed Chromatogr ; 30(8): 1216-22, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26682724

RESUMEN

Nuciferine (NF) is one of the main aporphine alkaloids existing in the traditional Chinese medicine Folium Nelumbinis (lotus leaves). Modern pharmacological studies have demonstrated that NF has a broad spectrum of bioactivities, such as anti-HIV and anti-hyperlipidemic effects, and has been recommended as a leading compound for new drug development. However, the metabolites and biotransformation pathway of NF in vivo have not yet been comprehensively investigated. The present study was performed to identify the metabolites of NF for exploring in vivo fates. Rat plasma and urine samples were collected after oral administration and prepared by liquid-liquid extraction with ethyl acetate. A method based on ultrafast liquid chromatography with tandem mass spectrometry was applied to identify the metabolites. Q1 (first quadrupole) full scan combined with a multiple reaction monitoring (MRM) survey scan were used for the detection of metabolites. MRM-information-dependent acquisition of enhanced product ions was used for the structural identification of detected metabolites. A total of 10 metabolites were identified, including phase I (demethylation, oxidation and dehydrogenation) and phase II (glucuronidation, sulfation and glutathione) biotransformation products. Demethylation is the main metabolic pathway of NF in the body. These results can help in improving understanding of the disposition and pharmacological mechanism of NF in the body. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Aporfinas/metabolismo , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Animales , Aporfinas/sangre , Aporfinas/orina , Masculino , Ratas , Ratas Sprague-Dawley
19.
Plant Physiol ; 169(2): 1127-40, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26297140

RESUMEN

Transcriptome resources for the medicinal plant Glaucium flavum were searched for orthologs showing identity with characterized O-methyltransferases (OMTs) involved in benzylisoquinoline alkaloid biosynthesis. Seven recombinant proteins were functionally tested using the signature alkaloid substrates for six OMTs: norlaudanosoline 6-OMT, 6-O-methyllaudanosoline 4'-OMT, reticuline 7-OMT, norreticuline 7-OMT, scoulerine 9-OMT, and tetrahydrocolumbamine OMT. A notable alkaloid in yellow horned poppy (G. flavum [GFL]) is the aporphine alkaloid glaucine, which displays C8-C6' coupling and four O-methyl groups at C6, C7, C3', and C4' as numbered on the 1-benzylisoquinoline scaffold. Three recombinant enzymes accepted 1-benzylisoquinolines with differential substrate and regiospecificity. GFLOMT2 displayed the highest amino acid sequence identity with norlaudanosoline 6-OMT, showed a preference for the 6-O-methylation of norlaudanosoline, and O-methylated the 3' and 4' hydroxyl groups of certain alkaloids. GFLOMT1 showed the highest sequence identity with 6-O-methyllaudanosoline 4'OMT and catalyzed the 6-O-methylation of norlaudanosoline, but more efficiently 4'-O-methylated the GFLOMT2 reaction product 6-O-methylnorlaudanosoline and its N-methylated derivative 6-O-methyllaudanosoline. GFLOMT1 also effectively 3'-O-methylated both reticuline and norreticuline. GFLOMT6 was most similar to scoulerine 9-OMT and efficiently catalyzed both 3'- and 7'-O-methylations of several 1-benzylisoquinolines, with a preference for N-methylated substrates. All active enzymes accepted scoulerine and tetrahydrocolumbamine. Exogenous norlaudanosoline was converted to tetra-O-methylated laudanosine using combinations of Escherichia coli producing (1) GFLOMT1, (2) either GFLOMT2 or GFLOMT6, and (3) coclaurine N-methyltransferase from Coptis japonica. Expression profiles of GFLOMT1, GFLOMT2, and GFLOMT6 in different plant organs were in agreement with the O-methylation patterns of alkaloids in G. flavum determined by high-resolution, Fourier-transform mass spectrometry.


Asunto(s)
Aporfinas/metabolismo , Metiltransferasas/metabolismo , Papaveraceae/metabolismo , Proteínas de Plantas/metabolismo , Bencilisoquinolinas/metabolismo , Alcaloides de Berberina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación de la Expresión Génica de las Plantas , Isoquinolinas/metabolismo , Metiltransferasas/genética , Metiltransferasas/aislamiento & purificación , Papaveraceae/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/aislamiento & purificación , Raíces de Plantas/metabolismo , Plantas Medicinales/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Tetrahidropapaverolina/metabolismo
20.
Toxicol Appl Pharmacol ; 285(1): 12-22, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25771127

RESUMEN

Boldine, the major alkaloid from the Chilean Boldo tree, is used in traditional medicine to support bile production, but evidence to support this function is controversial. We analyzed the choleretic potential of boldine, including its molecular background. The acute- and long-term effects of boldine were evaluated in rats either during intravenous infusion or after 28-day oral treatment. Infusion of boldine instantly increased the bile flow 1.4-fold in healthy rats as well as in animals with Mrp2 deficiency or ethinylestradiol induced cholestasis. This effect was not associated with a corresponding increase in bile acid or glutathione biliary excretion, indicating that the effect is not related to stimulation of either bile acid dependent or independent mechanisms of bile formation and points to the osmotic activity of boldine itself. We subsequently analyzed bile production under conditions of changing biliary excretion of boldine after bolus intravenous administration and found strong correlations between both parameters. HPLC analysis showed that bile concentrations of boldine above 10 µM were required for induction of choleresis. Importantly, long-term pretreatment, when the bile collection study was performed 24-h after the last administration of boldine, also accelerated bile formation despite undetectable levels of the compound in bile. The effect paralleled upregulation of the Bsep transporter and increased biliary clearance of its substrates, bile acids. We consequently confirmed the ability of boldine to stimulate the Bsep transcriptional regulator, FXR receptor. In conclusion, our study clarified the mechanisms and circumstances surrounding the choleretic activity of boldine.


Asunto(s)
Aporfinas/farmacología , Bilis/metabolismo , Colagogos y Coleréticos/farmacología , Hígado/efectos de los fármacos , Receptores Citoplasmáticos y Nucleares/agonistas , Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP , Transportadoras de Casetes de Unión a ATP/deficiencia , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Administración Oral , Animales , Aporfinas/administración & dosificación , Aporfinas/metabolismo , Colagogos y Coleréticos/administración & dosificación , Colagogos y Coleréticos/metabolismo , Perros , Etinilestradiol/farmacología , Femenino , Glutatión/metabolismo , Células Hep G2 , Eliminación Hepatobiliar , Humanos , Infusiones Intravenosas , Cinética , Hígado/metabolismo , Células de Riñón Canino Madin Darby , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Ósmosis , Ratas Endogámicas Lew , Ratas Transgénicas , Ratas Wistar , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Transfección , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...