Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.278
Filtrar
1.
J Plant Physiol ; 297: 154236, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38621330

RESUMEN

Germline cells are critical for transmitting genetic information to subsequent generations in biological organisms. While their differentiation from somatic cells during embryonic development is well-documented in most animals, the regulatory mechanisms initiating plant germline cells are not well understood. To thoroughly investigate the complex morphological transformations of their ultrastructure over developmental time, nanoscale 3D reconstruction of entire plant tissues is necessary, achievable exclusively through electron microscopy imaging. This paper presents a full-process framework designed for reconstructing large-volume plant tissue from serial electron microscopy images. The framework ensures end-to-end direct output of reconstruction results, including topological networks and morphological analysis. The proposed 3D cell alignment, denoise, and instance segmentation pipeline (3DCADS) leverages deep learning to provide a cell instance segmentation workflow for electron microscopy image series, ensuring accurate and robust 3D cell reconstructions with high computational efficiency. The pipeline involves five stages: the registration of electron microscopy serial images; image enhancement and denoising; semantic segmentation using a Transformer-based neural network; instance segmentation through a supervoxel-based clustering algorithm; and an automated analysis and statistical assessment of the reconstruction results, with the mapping of topological connections. The 3DCADS model's precision was validated on a plant tissue ground-truth dataset, outperforming traditional baseline models and deep learning baselines in overall accuracy. The framework was applied to the reconstruction of early meiosis stages in the anthers of Arabidopsis thaliana, resulting in a topological connectivity network and analysis of morphological parameters and characteristics of cell distribution. The experiment underscores the 3DCADS model's potential for biological tissue identification and its significance in quantitative analysis of plant cell development, crucial for examining samples across different genetic phenotypes and mutations in plant development. Additionally, the paper discusses the regulatory mechanisms of Arabidopsis thaliana's germline cells and the development of stamen cells before meiosis, offering new insights into the transition from somatic to germline cell fate in plants.


Asunto(s)
Imagenología Tridimensional , Imagenología Tridimensional/métodos , Microscopía Electrónica/métodos , Arabidopsis/ultraestructura , Arabidopsis/crecimiento & desarrollo , Arabidopsis/citología , Algoritmos , Células Vegetales/ultraestructura , Procesamiento de Imagen Asistido por Computador/métodos
2.
Plant Physiol ; 195(1): 306-325, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38330164

RESUMEN

Marine photosynthetic (micro)organisms drive multiple biogeochemical cycles and display a large diversity. Among them, the bloom-forming, free-living dinoflagellate Prorocentrum cordatum CCMP 1329 (formerly P. minimum) stands out with its distinct cell biological features. Here, we obtained insights into the structural properties of the chloroplast and the photosynthetic machinery of P. cordatum using microscopic and proteogenomic approaches. High-resolution FIB/SEM analysis revealed a single large chloroplast (∼40% of total cell volume) with a continuous barrel-like structure, completely lining the inner face of the cell envelope and enclosing a single reticular mitochondrium, the Golgi apparatus, as well as diverse storage inclusions. Enriched thylakoid membrane fractions of P. cordatum were comparatively analyzed with those of the well-studied model-species Arabidopsis (Arabidopsis thaliana) using 2D BN DIGE. Strikingly, P. cordatum possessed a large photosystem-light harvesting megacomplex (>1.5 MDa), which is dominated by photosystems I and II (PSI, PSII), chloroplast complex I, and chlorophyll a-b binding light harvesting complex proteins. This finding parallels the absence of grana in its chloroplast and distinguishes from the predominant separation of PSI and PSII complexes in A. thaliana, indicating a different mode of flux balancing. Except for the core elements of the ATP synthase and the cytb6f-complex, the composition of the other complexes (PSI, PSII, and pigment-binding proteins, PBPs) of P. cordatum differed markedly from those of A. thaliana. Furthermore, a high number of PBPs was detected, accounting for a large share of the total proteomic data (∼65%) and potentially providing P. cordatum with flexible adaptation to changing light regimes.


Asunto(s)
Cloroplastos , Dinoflagelados , Complejo de Proteína del Fotosistema I , Complejo de Proteína del Fotosistema II , Proteínas Protozoarias , Cloroplastos/ultraestructura , Dinoflagelados/genética , Dinoflagelados/metabolismo , Dinoflagelados/ultraestructura , Complejo de Proteína del Fotosistema I/genética , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Microscopía Electrónica de Rastreo , Arabidopsis/metabolismo , Arabidopsis/ultraestructura , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Genoma de Protozoos/genética , Variación Genética
3.
Mol Plant Microbe Interact ; 37(4): 396-406, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38148303

RESUMEN

We used serial block-face scanning electron microscopy (SBF-SEM) to study the host-pathogen interface between Arabidopsis cotyledons and the hemibiotrophic fungus Colletotrichum higginsianum. By combining high-pressure freezing and freeze-substitution with SBF-SEM, followed by segmentation and reconstruction of the imaging volume using the freely accessible software IMOD, we created 3D models of the series of cytological events that occur during the Colletotrichum-Arabidopsis susceptible interaction. We found that the host cell membranes underwent massive expansion to accommodate the rapidly growing intracellular hypha. As the fungal infection proceeded from the biotrophic to the necrotrophic stage, the host cell membranes went through increasing levels of disintegration culminating in host cell death. Intriguingly, we documented autophagosomes in proximity to biotrophic hyphae using transmission electron microscopy (TEM) and a concurrent increase in autophagic flux between early to mid/late biotrophic phase of the infection process. Occasionally, we observed osmiophilic bodies in the vicinity of biotrophic hyphae using TEM only and near necrotrophic hyphae under both TEM and SBF-SEM. Overall, we established a method for obtaining serial SBF-SEM images, each with a lateral (x-y) pixel resolution of 10 nm and an axial (z) resolution of 40 nm, that can be reconstructed into interactive 3D models using the IMOD. Application of this method to the Colletotrichum-Arabidopsis pathosystem allowed us to more fully understand the spatial arrangement and morphological architecture of the fungal hyphae after they penetrate epidermal cells of Arabidopsis cotyledons and the cytological changes the host cell undergoes as the infection progresses toward necrotrophy. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Asunto(s)
Arabidopsis , Colletotrichum , Cotiledón , Microscopía Electrónica de Rastreo , Enfermedades de las Plantas , Colletotrichum/fisiología , Colletotrichum/ultraestructura , Colletotrichum/patogenicidad , Arabidopsis/microbiología , Arabidopsis/ultraestructura , Cotiledón/microbiología , Cotiledón/ultraestructura , Enfermedades de las Plantas/microbiología , Interacciones Huésped-Patógeno , Hifa/ultraestructura , Imagenología Tridimensional , Microscopía Electrónica de Transmisión
4.
Nature ; 609(7927): 616-621, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35917926

RESUMEN

The PIN-FORMED (PIN) protein family of auxin transporters mediates polar auxin transport and has crucial roles in plant growth and development1,2. Here we present cryo-electron microscopy structures of PIN3 from Arabidopsis thaliana in the apo state and in complex with its substrate indole-3-acetic acid and the inhibitor N-1-naphthylphthalamic acid (NPA). A. thaliana PIN3 exists as a homodimer, and its transmembrane helices 1, 2 and 7 in the scaffold domain are involved in dimerization. The dimeric PIN3 forms a large, joint extracellular-facing cavity at the dimer interface while each subunit adopts an inward-facing conformation. The structural and functional analyses, along with computational studies, reveal the structural basis for the recognition of indole-3-acetic acid and NPA and elucidate the molecular mechanism of NPA inhibition on PIN-mediated auxin transport. The PIN3 structures support an elevator-like model for the transport of auxin, whereby the transport domains undergo up-down rigid-body motions and the dimerized scaffold domains remain static.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos , Apoproteínas/química , Apoproteínas/metabolismo , Apoproteínas/ultraestructura , Arabidopsis/química , Arabidopsis/metabolismo , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/antagonistas & inhibidores , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/ultraestructura , Transporte Biológico/efectos de los fármacos , Microscopía por Crioelectrón , Ácidos Indolacéticos/química , Ácidos Indolacéticos/metabolismo , Ftalimidas/química , Ftalimidas/farmacología , Dominios Proteicos , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo
5.
Plant Physiol ; 189(3): 1278-1295, 2022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35348744

RESUMEN

A fundamental question in biology concerns how molecular and cellular processes become integrated during morphogenesis. In plants, characterization of 3D digital representations of organs at single-cell resolution represents a promising approach to addressing this problem. A major challenge is to provide organ-centric spatial context to cells of an organ. We developed several general rules for the annotation of cell position and embodied them in 3DCoordX, a user-interactive computer toolbox implemented in the open-source software MorphoGraphX. 3DCoordX enables rapid spatial annotation of cells even in highly curved biological shapes. Using 3DCoordX, we analyzed cellular growth patterns in organs of several species. For example, the data indicated the presence of a basal cell proliferation zone in the ovule primordium of Arabidopsis (Arabidopsis thaliana). Proof-of-concept analyses suggested a preferential increase in cell length associated with neck elongation in the archegonium of Marchantia (Marchantia polymorpha) and variations in cell volume linked to central morphogenetic features of a trap of the carnivorous plant Utricularia (Utricularia gibba). Our work demonstrates the broad applicability of the developed strategies as they provide organ-centric spatial context to cellular features in plant organs of diverse shape complexity.


Asunto(s)
Imagenología Tridimensional , Células Vegetales , Arabidopsis/ultraestructura , Lamiales/ultraestructura , Marchantia/ultraestructura , Morfogénesis , Células Vegetales/ultraestructura , Programas Informáticos
6.
Plant Physiol ; 188(1): 44-55, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34687300

RESUMEN

Despite recent progress in our understanding of graft union formation, we still know little about the cellular events underlying the grafting process. This is partially due to the difficulty of reliably targeting the graft interface in electron microscopy to study its ultrastructure and three-dimensional architecture. To overcome this technological bottleneck, we developed a correlative light electron microscopy (CLEM) approach to study the graft interface with high ultrastructural resolution. Grafting hypocotyls of Arabidopsis thaliana lines expressing yellow FP or monomeric red FP in the endoplasmic reticulum (ER) allowed efficient targeting of the grafting interface for examination under light and electron microscopy. To explore the potential of our method to study sub-cellular events at the graft interface, we focused on the formation of secondary plasmodesmata (PD) between the grafted partners. We showed that four classes of PD were formed at the interface and that PD introgression into the cell wall was initiated equally by both partners. Moreover, the success of PD formation appeared not systematic with a third of PD not spanning the cell wall entirely. Characterizing the ultrastructural characteristics of these incomplete PD gives us insights into the process of secondary PD biogenesis. We found that the establishment of successful symplastic connections between the scion and rootstock occurred predominantly in the presence of thin cell walls and ER-plasma membrane tethering. The resolution reached in this work shows that our CLEM method advances the study of biological processes requiring the combination of light and electron microscopy.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/ultraestructura , Hipocótilo/crecimiento & desarrollo , Hipocótilo/ultraestructura , Microscopía Electrónica/métodos , Microscopía/métodos , Trasplante de Órganos , Plasmodesmos/ultraestructura
7.
Plant Physiol ; 188(1): 56-69, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34718789

RESUMEN

Studying the developmental genetics of plant organs requires following gene expression in specific tissues. To facilitate this, we have developed dual expression anatomy lines, which incorporate a red plasma membrane marker alongside a fluorescent reporter for a gene of interest in the same vector. Here, we adapted the GreenGate cloning vectors to create two destination vectors showing strong marking of cell membranes in either the whole root or specifically in the lateral roots. This system can also be used in both embryos and whole seedlings. As proof of concept, we follow both gene expression and anatomy in Arabidopsis (Arabidopsis thaliana) during lateral root organogenesis for a period of over 24 h. Coupled with the development of a flow cell and perfusion system, we follow changes in activity of the DII auxin sensor following application of auxin.


Asunto(s)
Arabidopsis/genética , Arabidopsis/ultraestructura , Membrana Celular/ultraestructura , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/ultraestructura , Ultrasonografía/métodos , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genes Reporteros
8.
BMC Plant Biol ; 21(1): 590, 2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34903166

RESUMEN

BACKGROUND: Arabinogalactan-proteins (AGPs) are structurally complex hydroxyproline-rich cell wall glycoproteins ubiquitous in the plant kingdom. AGPs biosynthesis involves a series of post-translational modifications including the addition of type II arabinogalactans to non-contiguous Hyp residues. To date, eight Hyp-galactosyltransferases (Hyp-GALTs; GALT2-GALT9) belonging to CAZy GT31, are known to catalyze the addition of the first galactose residues to AGP protein backbones and enable subsequent AGP glycosylation. The extent of genetic redundancy, however, remains to be elucidated for the Hyp-GALT gene family. RESULTS: To examine their gene redundancy and functions, we generated various multiple gene knock-outs, including a triple mutant (galt5 galt8 galt9), two quadruple mutants (galt2 galt5 galt7 galt8, galt2 galt5 galt7 galt9), and one quintuple mutant (galt2 galt5 galt7 galt8 galt9), and comprehensively examined their biochemical and physiological phenotypes. The key findings include: AGP precipitations with ß-Yariv reagent showed that GALT2, GALT5, GALT7, GALT8 and GALT9 act redundantly with respect to AGP glycosylation in cauline and rosette leaves, while the activity of GALT7, GALT8 and GALT9 dominate in the stem, silique and flowers. Monosaccharide composition analysis showed that galactose was decreased in the silique and root AGPs of the Hyp-GALT mutants. TEM analysis of 25789 quintuple mutant stems indicated cell wall defects coincident with the observed developmental and growth impairment in these Hyp-GALT mutants. Correlated with expression patterns, galt2, galt5, galt7, galt8, and galt9 display equal additive effects on insensitivity to ß-Yariv-induced growth inhibition, silique length, plant height, and pollen viability. Interestingly, galt7, galt8, and galt9 contributed more to primary root growth and root tip swelling under salt stress, whereas galt2 and galt5 played more important roles in seed morphology, germination defects and seed set. Pollen defects likely contributed to the reduced seed set in these mutants. CONCLUSION: Additive and pleiotropic effects of GALT2, GALT5, GALT7, GALT8 and GALT9 on vegetative and reproductive growth phenotypes were teased apart via generation of different combinations of Hyp-GALT knock-out mutants. Taken together, the generation of higher order Hyp-GALT mutants demonstrate the functional importance of AG polysaccharides decorating the AGPs with respect to various aspects of plant growth and development.


Asunto(s)
Arabidopsis/genética , Galactanos/metabolismo , Galactosiltransferasas/metabolismo , Mucoproteínas/metabolismo , Arabidopsis/enzimología , Arabidopsis/fisiología , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Flores/enzimología , Flores/genética , Flores/fisiología , Flores/ultraestructura , Galactosiltransferasas/genética , Pleiotropía Genética , Germinación , Glucósidos/química , Glicosilación , Hidroxiprolina/metabolismo , Meristema/enzimología , Meristema/genética , Meristema/fisiología , Meristema/ultraestructura , Mucoproteínas/genética , Mutación , Especificidad de Órganos , Floroglucinol/análogos & derivados , Floroglucinol/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tallos de la Planta/enzimología , Tallos de la Planta/genética , Tallos de la Planta/fisiología , Tallos de la Planta/ultraestructura , Biosíntesis de Proteínas , Estrés Salino , Semillas/enzimología , Semillas/genética , Semillas/fisiología , Semillas/ultraestructura
9.
Plant Physiol ; 187(4): 2393-2404, 2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34890458

RESUMEN

Formation of pollen wall exine is preceded by the development of several transient layers of extracellular materials deposited on the surface of developing pollen grains. One such layer is primexine (PE), a thin, ephemeral structure that is present only for a short period of time and is difficult to visualize and study. Recent genetic studies suggested that PE is a key factor in the formation of exine, making it critical to understand its composition and the dynamics of its formation. In this study, we used high-pressure frozen/freeze-substituted samples of developing Arabidopsis (Arabidopsis thaliana) pollen for a detailed transmission electron microscopy analysis of the PE ultrastructure throughout the tetrad stage of pollen development. We also analyzed anthers from wild-type Arabidopsis and three mutants defective in PE formation by immunofluorescence, carefully tracing several carbohydrate epitopes in PE and nearby anther tissues during the tetrad and the early free-microspore stages. Our analyses revealed likely sites where these carbohydrates are produced and showed that the distribution of these carbohydrates in PE changes significantly during the tetrad stage. We also identified tools for staging tetrads and demonstrate that components of PE undergo changes resembling phase separation. Our results indicate that PE behaves like a much more dynamic structure than has been previously appreciated and clearly show that Arabidopsis PE creates a scaffolding pattern for formation of reticulate exine.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Polen/crecimiento & desarrollo , Arabidopsis/ultraestructura , Microscopía Electrónica de Transmisión , Polen/ultraestructura
10.
Int J Mol Sci ; 22(22)2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34830250

RESUMEN

The plant nucleus plays an irreplaceable role in cellular control and regulation by auxin (indole-3-acetic acid, IAA) mainly because canonical auxin signaling takes place here. Auxin can enter the nucleus from either the endoplasmic reticulum or cytosol. Therefore, new information about the auxin metabolome (auxinome) in the nucleus can illuminate our understanding of subcellular auxin homeostasis. Different methods of nuclear isolation from various plant tissues have been described previously, but information about auxin metabolite levels in nuclei is still fragmented and insufficient. Herein, we tested several published nucleus isolation protocols based on differential centrifugation or flow cytometry. The optimized sorting protocol leading to promising yield, intactness, and purity was then combined with an ultra-sensitive mass spectrometry analysis. Using this approach, we can present the first complex report on the auxinome of isolated nuclei from cell cultures of Arabidopsis and tobacco. Moreover, our results show dynamic changes in auxin homeostasis at the intranuclear level after treatment of protoplasts with free IAA, or indole as a precursor of auxin biosynthesis. Finally, we can conclude that the methodological procedure combining flow cytometry and mass spectrometry offers new horizons for the study of auxin homeostasis at the subcellular level.


Asunto(s)
Arabidopsis/metabolismo , Fraccionamiento Celular/métodos , Núcleo Celular/metabolismo , Ácidos Indolacéticos/metabolismo , Indoles/metabolismo , Nicotiana/metabolismo , Células Vegetales/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/ultraestructura , Técnicas de Cultivo de Célula , Fraccionamiento Celular/instrumentación , Núcleo Celular/efectos de los fármacos , Núcleo Celular/ultraestructura , Centrifugación/métodos , Citometría de Flujo , Homeostasis/fisiología , Indoles/farmacología , Espectrometría de Masas , Células Vegetales/efectos de los fármacos , Células Vegetales/ultraestructura , Reguladores del Crecimiento de las Plantas/metabolismo , Protoplastos/química , Nicotiana/efectos de los fármacos , Nicotiana/ultraestructura
11.
Science ; 374(6569): eabi7489, 2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34762468

RESUMEN

Centromeres attach chromosomes to spindle microtubules during cell division and, despite this conserved role, show paradoxically rapid evolution and are typified by complex repeats. We used long-read sequencing to generate the Col-CEN Arabidopsis thaliana genome assembly that resolves all five centromeres. The centromeres consist of megabase-scale tandemly repeated satellite arrays, which support CENTROMERE SPECIFIC HISTONE H3 (CENH3) occupancy and are densely DNA methylated, with satellite variants private to each chromosome. CENH3 preferentially occupies satellites that show the least amount of divergence and occur in higher-order repeats. The centromeres are invaded by ATHILA retrotransposons, which disrupt genetic and epigenetic organization. Centromeric crossover recombination is suppressed, yet low levels of meiotic DNA double-strand breaks occur that are regulated by DNA methylation. We propose that Arabidopsis centromeres are evolving through cycles of satellite homogenization and retrotransposon-driven diversification.


Asunto(s)
Arabidopsis/genética , Centrómero/genética , Cromosomas de las Plantas/genética , Epigénesis Genética , Arabidopsis/ultraestructura , Centrómero/química , Metilación de ADN , ADN Satélite , Evolución Molecular , Genoma de Planta , Histonas/análisis , Meiosis , Recombinación Genética , Retroelementos , Análisis de Secuencia de ADN
12.
Cells ; 10(10)2021 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-34685758

RESUMEN

The lipid matrix in cell membranes is a dynamic, bidimensional array of amphipathic molecules exhibiting mesomorphism, which contributes to the membrane fluidity changes in response to temperature fluctuation. As sessile organisms, plants must rapidly and accurately respond to environmental thermal variations. However, mechanisms underlying temperature perception in plants are poorly understood. We studied the thermal plasticity of membrane fluidity using three fluorescent probes across a temperature range of -5 to 41 °C in isolated microsomal fraction (MF), vacuolar membrane (VM), and plasma membrane (PM) vesicles from Arabidopsis plants. Results showed that PM were highly fluid and exhibited more phase transitions and hysteresis, while VM and MF lacked such attributes. These findings suggest that PM is an important cell hub with the capacity to rapidly undergo fluidity modifications in response to small changes of temperatures in ranges spanning those experienced in natural habitats. PM fluidity behaves as an ideal temperature detector: it is always present, covers the whole cell, responds quickly and with sensitivity to temperature variations, functions with a cell free-energy cost, and it is physically connected with potential thermal signal transducers to elicit a cell response. It is an optimal alternative for temperature detection selected for the plant kingdom.


Asunto(s)
Arabidopsis/fisiología , Membrana Celular/fisiología , Fluidez de la Membrana/fisiología , Arabidopsis/ultraestructura , Membrana Celular/ultraestructura , Colorantes Fluorescentes/metabolismo , Temperatura , Vacuolas/metabolismo , Vacuolas/ultraestructura
13.
Plant Sci ; 311: 110986, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34482923

RESUMEN

In recent years, the plant morphology has been well studied by multiple approaches at cellular and subcellular levels. Two-dimensional (2D) microscopy techniques offer imaging of plant structures on a wide range of magnifications for researchers. However, subcellular imaging is still challenging in plant tissues like roots and seeds. Here we use a three-dimensional (3D) imaging technology based on the X-ray microscope (XRM) and analyze several plant tissues from different plant species. The XRM provides new insights into plant structures using non-destructive imaging at high-resolution and high contrast. We also utilized a workflow aiming to acquire accurate and high-quality images in the context of the whole specimen. Multiple plant samples including rice, tobacco, Arabidopsis and maize were used to display the differences of phenotypes. Our work indicates that the XRM is a powerful tool to investigate plant microstructure in high-resolution scale. Our work also provides evidence that evaluate and quantify tissue specific differences for a range of plant species. We also characterize novel plant tissue phenotypes by the XRM, such as seeds in Arabidopsis, and utilize them for novel observation measurement. Our work represents an evaluated spatial and temporal resolution solution on seed observation and screening.


Asunto(s)
Arabidopsis/ultraestructura , Imagenología Tridimensional , Nicotiana/ultraestructura , Orgánulos/ultraestructura , Oryza/ultraestructura , Semillas/ultraestructura , Zea mays/ultraestructura , Oryza/anatomía & histología , Tomografía Computarizada por Rayos X
14.
Plant J ; 108(4): 992-1004, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34496091

RESUMEN

SMALLER TRICHOMES WITH VARIABLE BRANCHES (SVB) is an emerging plant growth regulator in trichome development, endoplasmic reticulum stress response, and phosphoinositide signaling, and belongs to the land plant-specific DUF538 domain-containing protein family. Despite its multifaceted roles, the functions of this protein family are poorly understood in plant growth and development. Here, we report that SVB-like (SVBL), the closest homolog of SVB, modulates plant growth and trichome development with SVB in Arabidopsis thaliana. Although none of the single mutants showed an obvious growth defect, the double mutants of svb svbl exhibited dwarfed plant growth. In trichome development, the defects in svb mutant were greatly enhanced by the additional mutation in SVBL, despite the single knockout of SVBL showing the mild defects. The double mutation reduced the transcript level of one of the central hub genes for trichome development, GLABRA1 (GL1), which in turn affects the other downstream genes, GLABRA2 (GL2), TRANSPARENT TESTA GLABRA2 (TTG2), TRIPTYCHON (TRY), CAPRICE (CPC), and ENHANCER OF TRY AND CPC1 (ETC1). In situ translational reporter assays showed that SVB and SVBL share highly similar localization patterns both at tissue and subcellular levels. The present study suggests that SVB and SVBL play a pivotal role in plant growth and trichome development by affecting a specific subset of known trichome developmental regulators, highlighting the importance of the DUF538 protein family in higher plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Unión al ADN/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Genes Reporteros , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Mutación , Especificidad de Órganos , Fenotipo , Filogenia , Tricomas/genética , Tricomas/crecimiento & desarrollo , Tricomas/ultraestructura
15.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34576106

RESUMEN

We investigated low-temperature plasma effects on two Brassicaceae seeds (A. thaliana and C. sativa) using dielectric barrier discharge in air. Comparisons of plasma treatments on seeds showed distinct responses on germination rate and speed. Optimal treatment time giving optimal germination is 15 min for A. thaliana with 85% increase compared to control after 48 h of germination and 1 min for C. sativa with 75% increase compared to control after 32 h of germination. Such germination increases are associated with morphological changes shown by SEM of seed surface. For better understanding at the biochemical level, seed surfaces were analyzed using gas chromatography-mass spectrometry which underlined changes of lipidic composition. For both treated seeds, there is a decrease of saturated (palmitic and stearic) fatty acids while treated C. sativa showed a decrease of unsaturated (oleic and linoleic) acids and treated A. thaliana an increase of unsaturated ones. Such lipid changes, specifically a decrease of hydrophobic saturated fatty acids, are coherent with the other analyses (SEM, water uptake and contact angle). Moreover, an increase in A. thaliana of unsaturated acids (very reactive) probably neutralizes plasma RONS effects thus needing longer plasma exposure time (15 min) to reach optimal germination. For C. sativa, 1 min is enough because unsaturated linoleic acid becomes lower in treated C. sativa (1.2 × 107) compared to treated A. thaliana (3.7 × 107).


Asunto(s)
Aire , Arabidopsis/fisiología , Brassicaceae/fisiología , Electricidad , Gases em Plasma/farmacología , Semillas/efectos de los fármacos , Arabidopsis/efectos de los fármacos , Arabidopsis/ultraestructura , Brassicaceae/efectos de los fármacos , Brassicaceae/ultraestructura , Ácidos Grasos/metabolismo , Germinación/efectos de los fármacos , Lipidómica , Permeabilidad , Semillas/anatomía & histología , Semillas/ultraestructura , Factores de Tiempo , Agua , Humectabilidad
16.
Genes (Basel) ; 12(8)2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34440362

RESUMEN

Seed development is under the control of complex and coordinated molecular networks required for the formation of its different components. The seed coat development largely determines final seed size and shape, in addition to playing a crucial role in protecting the embryo and promoting germination. In this study, we investigated the role of three transcription factors known to be active during seed development in Arabidopsis thaliana: SEEDSTICK (STK) and GORDITA (GOA), two MADS-domain proteins, and AUXIN RESPONSE FACTOR 2 (ARF2), belonging to the ARF family. Through a reverse genetic approach, we characterized the seed phenotypes of all the single, double and triple loss-of-function mutants in relation to seed size/shape and the effects on metabolic pathways occurring in the seed coat. This approach revealed that dynamic networks involving these TFs are active throughout ovule and seed development, affecting the formation of the seed coat. Notably, while the genetic interaction among these genes results in synergies that control the promotion of cell expansion in the seed coat upon pollination and production of proanthocyanidins, functional antagonists arise in the control of cell proliferation and release of mucilage.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Dominio MADS , Proteínas Represoras , Semillas , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/fisiología , Proliferación Celular/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/fisiología , Mucílago de Planta/metabolismo , Proteínas Represoras/fisiología , Semillas/crecimiento & desarrollo , Semillas/ultraestructura , Factores de Transcripción/fisiología
17.
Science ; 373(6554): 586-590, 2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34326243

RESUMEN

In animals, PIEZOs are plasma membrane-localized cation channels involved in diverse mechanosensory processes. We investigated PIEZO function in tip-growing cells in the moss Physcomitrium patens and the flowering plant Arabidopsis thaliana PpPIEZO1 and PpPIEZO2 redundantly contribute to the normal growth, size, and cytoplasmic calcium oscillations of caulonemal cells. Both PpPIEZO1 and PpPIEZO2 localized to vacuolar membranes. Loss-of-function, gain-of-function, and overexpression mutants revealed that moss PIEZO homologs promote increased complexity of vacuolar membranes through tubulation, internalization, and/or fission. Arabidopsis PIEZO1 also localized to the tonoplast and is required for vacuole tubulation in the tips of pollen tubes. We propose that in plant cells the tonoplast has more freedom of movement than the plasma membrane, making it a more effective location for mechanosensory proteins.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Bryopsida/metabolismo , Canales Iónicos/metabolismo , Proteínas de Plantas/metabolismo , Vacuolas/ultraestructura , Arabidopsis/crecimiento & desarrollo , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Bryopsida/crecimiento & desarrollo , Bryopsida/ultraestructura , Calcio/metabolismo , Señalización del Calcio , Citoplasma/metabolismo , Membranas Intracelulares/metabolismo , Canales Iónicos/genética , Proteínas de Plantas/genética , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/metabolismo , Tubo Polínico/ultraestructura , Vacuolas/metabolismo
18.
Int J Mol Sci ; 22(12)2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34208611

RESUMEN

Transcription factors are proteins that directly bind to regulatory sequences of genes to modulate and adjust plants' responses to different stimuli including biotic and abiotic stresses. Sedentary plant parasitic nematodes, such as beet cyst nematode, Heterodera schachtii, have developed molecular tools to reprogram plant cell metabolism via the sophisticated manipulation of genes expression, to allow root invasion and the induction of a sequence of structural and physiological changes in plant tissues, leading to the formation of permanent feeding sites composed of modified plant cells (commonly called a syncytium). Here, we report on the AtMYB59 gene encoding putative MYB transcription factor that is downregulated in syncytia, as confirmed by RT-PCR and a promoter pMyb59::GUS activity assays. The constitutive overexpression of AtMYB59 led to the reduction in A. thaliana susceptibility, as indicated by decreased numbers of developed females, and to the disturbed development of nematode-induced syncytia. In contrast, mutant lines with a silenced expression of AtMYB59 were more susceptible to this parasite. The involvement of ABA in the modulation of AtMYB59 gene transcription appears feasible by several ABA-responsive cis regulatory elements, which were identified in silico in the gene promoter sequence, and experimental assays showed the induction of AtMYB59 transcription after ABA treatment. Based on these results, we suggest that AtMYB59 plays an important role in the successful parasitism of H. schachtii on A. thaliana roots.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/parasitología , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Factores de Transcripción/genética , Tylenchoidea/fisiología , Animales , Arabidopsis/ultraestructura , Resistencia a la Enfermedad/genética , Interacciones Huésped-Parásitos , Fenotipo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/parasitología , Raíces de Plantas/ultraestructura , Regiones Promotoras Genéticas
19.
Sci Rep ; 11(1): 12149, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34234174

RESUMEN

Pteris vittata is an arsenic (As) hyperaccumulator plant that accumulates a large amount of As into fronds and rhizomes (around 16,000 mg/kg in both after 16 weeks hydroponic cultivation with 30 mg/L arsenate). However, the sequence of long-distance transport of As in this hyperaccumulator plant is unclear. In this study, we used a positron-emitting tracer imaging system (PETIS) for the first time to obtain noninvasive serial images of As behavior in living plants with positron-emitting 74As-labeled tracer. We found that As kept accumulating in rhizomes as in fronds of P. vittata, whereas As was retained in roots of a non-accumulator plant Arabidopsis thaliana. Autoradiograph results of As distribution in P. vittata showed that with low As exposure, As was predominantly accumulated in young fronds and the midrib and rachis of mature fronds. Under high As exposure, As accumulation shifted from young fronds to mature fronds, especially in the margin of pinna, which resulted in necrotic symptoms, turning the marginal color to gray and then brown. Our results indicated that the function of rhizomes in P. vittata was As accumulation and the regulation of As translocation to the mature fronds to protect the young fronds under high As exposure.


Asunto(s)
Arsénico/metabolismo , Flores/metabolismo , Raíces de Plantas/metabolismo , Pteris/metabolismo , Contaminantes del Suelo/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Arabidopsis/ultraestructura , Autorradiografía , Biodegradación Ambiental , Transporte Biológico , Flores/crecimiento & desarrollo , Flores/ultraestructura , Hidroponía/métodos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/ultraestructura , Tomografía de Emisión de Positrones , Pteris/crecimiento & desarrollo , Pteris/ultraestructura
20.
Cell ; 184(16): 4284-4298.e27, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34233164

RESUMEN

Many organisms evolved strategies to survive desiccation. Plant seeds protect dehydrated embryos from various stressors and can lay dormant for millennia. Hydration is the key trigger to initiate germination, but the mechanism by which seeds sense water remains unresolved. We identified an uncharacterized Arabidopsis thaliana prion-like protein we named FLOE1, which phase separates upon hydration and allows the embryo to sense water stress. We demonstrate that biophysical states of FLOE1 condensates modulate its biological function in vivo in suppressing seed germination under unfavorable environments. We find intragenic, intraspecific, and interspecific natural variation in FLOE1 expression and phase separation and show that intragenic variation is associated with adaptive germination strategies in natural populations. This combination of molecular, organismal, and ecological studies uncovers FLOE1 as a tunable environmental sensor with direct implications for the design of drought-resistant crops, in the face of climate change.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Germinación , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Priones/metabolismo , Semillas/crecimiento & desarrollo , Agua/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/ultraestructura , Deshidratación , Imagenología Tridimensional , Péptidos y Proteínas de Señalización Intercelular/química , Mutación/genética , Latencia en las Plantas , Plantas Modificadas Genéticamente , Dominios Proteicos , Isoformas de Proteínas/metabolismo , Semillas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA