Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 367
Filtrar
1.
Methods Mol Biol ; 2827: 85-98, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38985264

RESUMEN

The method of plant micropropagation is widely used to obtain genetically homogeneous and infection-free plants for the needs of various industries and agriculture. Optimization of plant growth and development conditions plays a key role in economically successful micropropagation. Computer technologies have provided researchers with new approaches for modeling and a better understanding of the role of the factors involved in plant growth in vitro. To develop new models for optimizing growth conditions, we used plants with a high speed of vegetative in vitro reproduction, such as duckweed (Wolffia arrhiza and Lemna minor). Using the development of the optimal modeling of the biological processes, we have obtained the prescriptions for an individually balanced culture medium that enabled us to obtain 1.5-2.0 times more duckweed biomass with a 1.5 times higher protein concentration in the dry mass. Thus, we have demonstrated that the method of optimization modeling of the biological processes based on solving multinomial tasks from the series of quadratic equations can be used for the optimization of trophic needs of plants, specifically for micropropagation of duckweeds in vitro.


Asunto(s)
Araceae , Biomasa , Araceae/crecimiento & desarrollo , Araceae/genética , Medios de Cultivo/química , Modelos Teóricos , Modelos Biológicos
2.
BMC Plant Biol ; 24(1): 545, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38872089

RESUMEN

The accumulation of arsenic (As) in rice (Oryza sativa L.) grain poses a significant health concern in Bangladesh. To address this, we investigated the efficacy of various organic amendments and phytoremediation techniques in reducing As buildup in O. sativa. We evaluated the impact of five doses of biochar (BC; BC0.1: 0.1%, BC0.28: 0.28%, BC0.55: 0.55%, BC0.82: 0.82% and BC1.0: 1.0%, w/w), vermicompost (VC; VC1.0: 1.0%, VC1.8: 1.8%, VC3.0: 3.0%, VC4.2: 4.2% and VC5.0: 5.0%, w/w), and floating duckweed (DW; DW100: 100, DW160: 160, DW250: 250, DW340: 340 and DW400: 400 g m- 2) on O. sativa cultivated in As-contaminated soil. Employing a three-factor five-level central composite design and response surface methodology (RSM), we optimized the application rates of BC-VC-DW. Our findings revealed that As contamination in the soil negatively impacted O. sativa growth. However, the addition of BC, VC, and DW significantly enhanced plant morphological parameters, SPAD value, and grain yield per pot. Notably, a combination of moderate BC-DW and high VC (BC0.55VC5DW250) increased grain yield by 44.4% compared to the control (BC0VC0DW0). As contamination increased root, straw, and grain As levels, and oxidative stress in O. sativa leaves. However, treatment BC0.82VC4.2DW340 significantly reduced grain As (G-As) by 56%, leaf hydrogen peroxide by 71%, and malondialdehyde by 50% compared to the control. Lower doses of BC-VC-DW (BC0.28VC1.8DW160) increased antioxidant enzyme activities, while moderate to high doses resulted in a decline in these activities. Bioconcentration and translocation factors below 1 indicated limited As uptake and translocation in plant tissues. Through RSM optimization, we determined that optimal doses of BC (0.76%), VC (4.62%), and DW (290.0 g m- 2) could maximize grain yield (32.96 g pot- 1, 44% higher than control) and minimize G-As content (0.189 mg kg- 1, 54% lower than control). These findings underscore effective strategies for enhancing yield and reducing As accumulation in grains from contaminated areas, thereby ensuring agricultural productivity, human health, and long-term sustainability. Overall, our study contributes to safer food production and improved public health in As-affected regions.


Asunto(s)
Arsénico , Biodegradación Ambiental , Carbón Orgánico , Oryza , Contaminantes del Suelo , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Arsénico/metabolismo , Contaminantes del Suelo/metabolismo , Compostaje/métodos , Araceae/metabolismo , Araceae/efectos de los fármacos , Araceae/crecimiento & desarrollo , Suelo/química
3.
PeerJ ; 12: e17322, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903884

RESUMEN

Dissolved oxygen is fundamental for chemical and biochemical processes occurring in natural waters and critical for the life of aquatic organisms. Many organisms are responsible for altering organic matter and oxygen transfers across ecosystem or habitat boundaries and, thus, engineering the oxygen balance of the system. Due to such Lemna features as small size, simple structure, vegetative reproduction and rapid growth, as well as frequent mass occurrence in the form of thick mats, they make them very effective in oxygenating water. The research was undertaken to assess the impact of various species of duckweed (L. minor and L. trisulca) on dissolved oxygen content and detritus production in water and the role of ecological factors (light, atmospheric pressure, conductivity, and temperature) in this process. For this purpose, experiments were carried out with combinations of L. minor and L. trisulca. On this basis, the content of oxygen dissolved in water was determined depending on the growth of duckweed. Linear regression models were developed to assess the dynamics of changes in oxygen content and, consequently, organic matter produced by the Lemna. The research showed that the presence of L. trisulca causes an increase in dissolved oxygen content in water. It was also shown that an increase in atmospheric pressure had a positive effect on the ability of duckweed to produce oxygen, regardless of its type. The negative correlation between conductivity and water oxygenation, obtained in conditions of limited light access, allows us to assume that higher water conductivity limits oxygen production by all combinations of duckweeds when the light supply is low. Based on the developed models, it was shown that the highest increase in organic matter would be observed in the case of mixed duckweed and the lowest in the presence of the L. minor species, regardless of light conditions. Moreover, it was shown that pleustophytes have different heat capacities, and L. trisulca has the highest ability to accumulate heat in water for the tested duckweed combinations. The provided knowledge may help determine the good habitat conditions of duckweed, indicating its role in purifying water reservoirs as an effect of producing organic matter and shaping oxygen conditions with the participation of various Lemna species.


Asunto(s)
Araceae , Oxígeno , Araceae/metabolismo , Araceae/crecimiento & desarrollo , Oxígeno/metabolismo , Ecosistema , Temperatura , Agua/metabolismo , Presión Atmosférica , Luz
4.
mBio ; 15(7): e0097224, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38904411

RESUMEN

Microbiomes often benefit plants, conferring resistance to pathogens, improving stress tolerance, or promoting plant growth. As potential plant mutualists, however, microbiomes are not a single organism but a community of species with complex interactions among microbial taxa and between microbes and their shared host. The nature of ecological interactions among microbes in the microbiome can have important consequences for the net effects of microbiomes on hosts. Here, we compared the effects of individual microbial strains and 10-strain synthetic communities on microbial productivity and host growth using the common duckweed Lemna minor and a synthetic, simplified version of its native microbiome. Except for Pseudomonas protegens, which was a mutualist when tested alone, all of the single strains we tested were commensals on hosts, benefiting from plant presence but not increasing host growth relative to uninoculated controls. However, 10-strain synthetic microbial communities increased both microbial productivity and duckweed growth more than the average single-strain inoculation and uninoculated controls, meaning that host-microbiome mutualisms can emerge from community interactions among microbes on hosts. The effects of community inoculation were sub-additive, suggesting at least some competition among microbes in the duckweed microbiome. We also investigated the relationship between L. minor fitness and that of its microbes, providing some of the first empirical estimates of broad fitness alignment between plants and members of their microbiomes; hosts grew faster with more productive microbes or microbiomes. IMPORTANCE: There is currently substantial interest in engineering synthetic microbiomes for health or agricultural applications. One key question is how multi-strain microbial communities differ from single microbial strains in their productivity and effects on hosts. We tested 20 single bacterial strains and 2 distinct 10-strain synthetic communities on plant hosts and found that 10-strain communities led to faster host growth and greater microbial productivity than the average, but not the best, single strain. Furthermore, the microbial strains or communities that achieved the greatest cell densities were also the most beneficial to their hosts, showing that both specific single strains and multi-strain synthetic communities can engage in high-quality mutualisms with their hosts. Our results suggest that ~5% of single strains, as well as multi-strain synthetic communities comprised largely of commensal microbes, can benefit hosts and result in effective host-microbe mutualisms.


Asunto(s)
Araceae , Microbiota , Simbiosis , Araceae/microbiología , Araceae/crecimiento & desarrollo , Pseudomonas/genética , Pseudomonas/fisiología , Interacciones Microbiota-Huesped , Interacciones Microbianas
5.
Molecules ; 29(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38792197

RESUMEN

The impact of fluorine on plants remains poorly understood. We examined duckweed growth in extracts of soil contaminated with fluorine leached from chicken manure. Additionally, fluorine levels were analyzed in fresh manure, outdoor-stored manure, and soil samples at varying distances from the manure pile. Fresh manure contained 37-48 mg F- × kg-1, while soil extracts contained 2.1 to 4.9 mg F- × kg-1. We evaluated the physiological effects of fluorine on duckweed cultured on soil extracts or in 50% Murashige-Skoog (MS) medium supplemented with fluorine concentrations matching those in soil samples (2.1 to 4.9 mg F- × L-1), as well as at 0, 4, and 210 mg × L-1. Duckweed exposed to fluorine displayed similar toxicity symptoms whether in soil extracts or supplemented medium. Fluoride at concentrations of 2.1 to 4.9 mg F- × L-1 reduced the intact chlorophyll content, binding the porphyrin ring at position 32 without affecting Mg2+. This reaction resulted in chlorophyll a absorption peak shifted towards shorter wavelengths and formation of a new band of the F--chlorophyll a complex at λ = 421 nm. Moreover, plants exposed to low concentrations of fluorine exhibited increased activities of aminolevulinic acid dehydratase and chlorophyllase, whereas the activities of both enzymes sharply declined when the fluoride concentration exceeded 4.9 mg × L-1. Consequently, fluorine damages chlorophyll a, disrupts the activity of chlorophyll-metabolizing enzymes, and diminishes the plant growth rate, even when the effects of these disruptions are too subtle to be discerned by the naked human eye.


Asunto(s)
Araceae , Clorofila , Fluoruros , Araceae/metabolismo , Araceae/efectos de los fármacos , Araceae/crecimiento & desarrollo , Clorofila/metabolismo , Fluoruros/análisis , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad , Suelo/química , Estiércol/análisis , Contaminación Ambiental/análisis
6.
Food Chem ; 453: 139647, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-38788644

RESUMEN

This study aimed to increase the protein content of duckweed, a promising alternative to animal proteins and a sustainable source of plant protein cultivated via soilless agriculture, by manipulating the culture medium conditions (Hoagland solution). The contribution percentages of KH2PO4 and Ca(NO3)2, pivotal macro-elements in Hoagland solution affecting duckweed protein content, were determined using Plackett-Burman factorial design as 33.06 % and 36.61 %, respectively. Additionally, optimization was conducted employing response surface methodology, incorporating pH alongside KH2PO4 and Ca(NO3)2. Under optimal conditions of 3.92 mM KH2PO4, 7.95 mM Ca(NO3)2, and 7.22 pH, the protein content of duckweed increased significantly, reaching 51.09 % from 39.81 %. The duckweed cultivated in modified Hoagland solution exhibited protein content of 41.74 %, while duckweed grown in commercial Hoagland solution displayed protein content of 33.01 %. This study showed protein content of duckweed could significantly increase according to the growth medium and showcasing its potential as a sustainable source of plant protein.


Asunto(s)
Araceae , Medios de Cultivo , Proteínas de Plantas , Proteínas de Plantas/análisis , Proteínas de Plantas/metabolismo , Araceae/química , Araceae/crecimiento & desarrollo , Araceae/metabolismo , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Concentración de Iones de Hidrógeno
7.
Plant Cell Physiol ; 65(6): 986-998, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38590126

RESUMEN

Isotope labeling coupled with mass spectrometry imaging (MSI) presents a potent strategy for elucidating the dynamics of metabolism at cellular resolution, yet its application to plant systems is scarce. It has the potential to reveal the spatio-temporal dynamics of lipid biosynthesis during plant development. In this study, we explore its application to galactolipid biosynthesis of an aquatic plant, Lemna minor, with D2O labeling. Specifically, matrix-assisted laser desorption/ionization-MSI data of two major galactolipids in L. minor, monogalactosyldiacylglycerol and digalactosyldiacylglycerol, were studied after growing in 50% D2O media over a 15-day time period. When they were partially labeled after 5 d, three distinct binomial isotopologue distributions were observed corresponding to the labeling of partial structural moieties: galactose only, galactose and a fatty acyl chain and the entire molecule. The temporal change in the relative abundance of these distributions follows the expected linear pathway of galactolipid biosynthesis. Notably, their mass spectrometry images revealed the localization of each isotopologue group to the old parent frond, the intermediate tissues and the newly grown daughter fronds. Besides, two additional labeling experiments, (i) 13CO2 labeling and (ii) backward labeling of completely 50% D2O-labeled L. minor in H2O media, confirm the observations in forward labeling. Furthermore, these experiments unveiled hidden isotopologue distributions indicative of membrane lipid restructuring. This study suggests the potential of isotope labeling using MSI to provide spatio-temporal details in lipid biosynthesis in plant development.


Asunto(s)
Araceae , Galactolípidos , Marcaje Isotópico , Galactolípidos/metabolismo , Galactolípidos/biosíntesis , Marcaje Isotópico/métodos , Araceae/metabolismo , Araceae/crecimiento & desarrollo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Óxido de Deuterio/metabolismo
8.
Environ Toxicol Pharmacol ; 108: 104437, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38609060

RESUMEN

Oxybenzone is an ultraviolet filter frequently used in Personal Care Products, plastics, furniture, etc. and is listed as an Emerging Contaminant. This report studied the acute toxicity of Oxybenzone to Lemna minor after exposure to graded concentrations of Oxybenzone for 7 days. IC50 for growth was found to be 8.53 mg L-1. The hormesis effect was reported at lower concentrations, while growth and pigments reduced from 2.5 to 12.5 mg L-1 in a concentration-related manner. The impact of Oxybenzone on protein and antioxidant enzymes- Catalase and Guaiacol Peroxidase revealed less stress up to 2.5 mg L-1 than control, increasing further from 5 to 10 mg L-1. Enzyme activity decreased over-time but always remained higher than control over a period of 7 days. Thus, our findings reveal that indiscriminate discharge of Oxybenzone could be potentially toxic to the aquatic primary producers at higher concentrations, causing an ecological imbalance in aquatic ecosystems.


Asunto(s)
Araceae , Benzofenonas , Catalasa , Peroxidasa , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/toxicidad , Benzofenonas/toxicidad , Catalasa/metabolismo , Araceae/efectos de los fármacos , Araceae/crecimiento & desarrollo , Peroxidasa/metabolismo , Pruebas de Toxicidad Aguda , Protectores Solares/toxicidad , Clorofila/metabolismo
9.
J Plant Res ; 137(3): 359-376, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38349478

RESUMEN

Lemna aequinoctialis Welw. is a widely spread species that has diverse physiological and molecular properties. Flower characteristics are important factors in deducing taxonomical status; however, owing to the rarity of flowering observations in Lemna, studying them has been a prolonged challenge. In this study, physiological and morphological analyses were conducted by inducing flowering, and molecular analysis was done based on the two chloroplast DNA loci (matK, atpF-atpH intergeneric spacer) of L. aequinoctialis sensu Landolt (1986) from 70 strains found in 70 localities in Japan, Korea, Thailand, and the US. In total, 752 flowering fronds from 13 strains were observed based on axenic conditions. Two different trends in flower organ development-protogyny and adichogamy-were detected in these strains. Their physiological traits were divided into two groups, showing different morphological features based on frond thickness, root cap, and anther sizes. Molecular analysis showed two lineages corresponding to two physiological groups. These were identified as L. aequinoctialis sensu Beppu et al. (1985) and L. aoukikusa Beppu et Murata based on the description of the nomenclature of L. aoukikusa. These were concluded as independent taxa and can be treated as different species. Furthermore, the distribution of L. aoukikusa is not only limited to Japan.


Asunto(s)
Araceae , Flores , Filogenia , Araceae/genética , Araceae/fisiología , Araceae/anatomía & histología , Araceae/crecimiento & desarrollo , Flores/anatomía & histología , Flores/genética , Flores/fisiología , Flores/crecimiento & desarrollo , ADN de Cloroplastos/genética , Japón , ADN de Plantas/genética
10.
PLoS One ; 17(1): e0254265, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34990448

RESUMEN

Plant regeneration is important for vegetative propagation, detoxification and the obtain of transgenic plant. We found that duckweed regeneration could be enhanced by regenerating callus. However, very little is known about the molecular mechanism and the release of volatile organic compounds (VOCs). To gain a global view of genes differently expression profiles in callus and regenerating callus, genetic transcript regulation has been studied. Auxin related genes have been significantly down-regulated in regenerating callus. Cytokinin signal pathway genes have been up-regulated in regenerating callus. This result suggests the modify of auxin and cytokinin balance determines the regenerating callus. Volatile organic compounds release has been analysised by gas chromatography/ mass spectrum during the stage of plant regeneration, and 11 kinds of unique volatile organic compounds in the regenerating callus were increased. Cyclohexane treatment enhanced duckweed regeneration by initiating root. Moreover, Auxin signal pathway genes were down-regulated in callus treated by cyclohexane. All together, these results indicated that cyclohexane released by regenerating callus promoted duckweed regeneration. Our results provide novel mechanistic insights into how regenerating callus promotes regeneration.


Asunto(s)
Araceae/crecimiento & desarrollo , Ciclohexanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Regeneración , Factores de Transcripción/metabolismo , Araceae/química , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Transducción de Señal , Transcriptoma
11.
PLoS One ; 16(12): e0261364, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34890418

RESUMEN

Anthurium andraeanum (Hort.) is an important ornamental in the tropical cut-flower industry. However, there is currently insufficient information to establish a clear connection between the genetic model(s) proposed and the putative genes involved in the differentiation between colors. In this study, 18 cDNA libraries related to the spathe color and developmental stages of A. andraeanum were characterized by transcriptome sequencing (RNA-seq). For the de novo transcriptome, a total of 114,334,082 primary sequence reads were obtained from the Illumina sequencer and were assembled into 151,652 unigenes. Approximately 58,476 transcripts were generated and used for comparative transcriptome analysis between three cultivars that differ in spathe color ('Sasha' (white), 'Honduras' (red), and 'Rapido' (purple)). A large number of differentially expressed genes (8,324), potentially involved in multiple biological and metabolic pathways, were identified, including genes in the flavonoid and anthocyanin biosynthetic pathways. Our results showed that the chalcone isomerase (CHI) gene presented the strongest evidence for an association with differences in color and the highest correlation with other key genes (flavanone 3-hydroxylase (F3H), flavonoid 3'5' hydroxylase (F3'5'H)/ flavonoid 3'-hydroxylase (F3'H), and leucoanthocyanidin dioxygenase (LDOX)) in the anthocyanin pathway. We also identified a differentially expressed cytochrome P450 gene in the late developmental stage of the purple spathe that appeared to determine the difference between the red- and purple-colored spathes. Furthermore, transcription factors related to putative MYB-domain protein that may control anthocyanin pathway were identified through a weighted gene co-expression network analysis (WGCNA). The results provided basic sequence information for future research on spathe color, which have important implications for this ornamental breeding strategies.


Asunto(s)
Araceae/metabolismo , Flores/metabolismo , Proteínas de Plantas/metabolismo , Araceae/genética , Araceae/crecimiento & desarrollo , Color , Flores/genética , Flores/crecimiento & desarrollo , Perfilación de la Expresión Génica , Filogenia , Pigmentación , Proteínas de Plantas/genética , Transcriptoma
12.
PLoS One ; 16(10): e0258253, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34634063

RESUMEN

Current knowledge on responses of aquatic clonal plants to resource availability is largely based on studies manipulating limited resource levels, which may have failed to capture the "big picture" for aquatic clonal plants in response to resource availability. In a greenhouse experiment, we grew the floating clonal plant Spirodela polyrhiza under ten nutrient levels (i.e., 1/64×, 1/32×, 1/16×, 1/8×, 1/4×, 1/2×, 1×, 2×, 4× and 8×full-strength Hoagland solution) and examined their responses in terms of clonal growth, morphology and biomass allocations. The responses of total biomass and number of ramets to nutrient availability were unimodal. A similar pattern was found for frond mass, frond length and frond width, even though area per frond and specific frond area fluctuated greatly in response to nutrient availability. In contrast, the responses of root mass and root length to nutrient availability were U-shaped. Moreover, S. polyrhiza invested more to roots under lower nutrient concentrations. These results suggest that nutrient availability may have distinct influences on roots and fronds of the aquatic clonal plant S. polyrhiza, resulting in a great influence on the whole S. polyrhiza population.


Asunto(s)
Araceae/fisiología , Nutrientes/farmacología , Hojas de la Planta/fisiología , Raíces de Plantas/fisiología , Araceae/anatomía & histología , Araceae/efectos de los fármacos , Araceae/crecimiento & desarrollo , Biomasa , Células Clonales , Hojas de la Planta/anatomía & histología , Hojas de la Planta/efectos de los fármacos , Raíces de Plantas/anatomía & histología , Raíces de Plantas/efectos de los fármacos , Brotes de la Planta/anatomía & histología , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/fisiología
13.
Cells ; 10(6)2021 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-34204703

RESUMEN

This study addresses the unique functional features of duckweed via comparison of Lemna gibba grown under controlled conditions of 50 versus 1000 µmol photons m-2 s-1 and of a L. minor population in a local pond with a nearby population of the biennial weed Malva neglecta. Principal component analysis of foliar pigment composition revealed that Malva was similar to fast-growing annuals, while Lemna was similar to slow-growing evergreens. Overall, Lemna exhibited traits reminiscent of those of its close relatives in the family Araceae, with a remarkable ability to acclimate to both deep shade and full sunlight. Specific features contributing to duckweed's shade tolerance included a foliar pigment composition indicative of large peripheral light-harvesting complexes. Conversely, features contributing to duckweed's tolerance of high light included the ability to convert a large fraction of the xanthophyll cycle pool to zeaxanthin and dissipate a large fraction of absorbed light non-photochemically. Overall, duckweed exhibited a combination of traits of fast-growing annuals and slow-growing evergreens with foliar pigment features that represented an exaggerated version of that of terrestrial perennials combined with an unusually high growth rate. Duckweed's ability to thrive under a wide range of light intensities can support success in a dynamic light environment with periodic cycles of rapid expansion.


Asunto(s)
Aclimatación/fisiología , Araceae/crecimiento & desarrollo , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Araceae/metabolismo , Luz , Pigmentos Biológicos/química , Pigmentos Biológicos/metabolismo
14.
Sci Rep ; 11(1): 10889, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34035402

RESUMEN

With growing human culture and industrialization, many pollutants are being introduced into aquatic ecosystems. In recent years, dyes have become a major water pollutant used in the manufacture of paints and other production purposes. In this research, the potential of duckweed (Lemna gibba) plant was investigated spectrophotometrically as an obvious bioagent for the biological decolorization of the organic dye C.I. Basic Green 4 (Malachite Green, BG4). Photosynthetic efficiency analysis showed that the photosynthetic apparatus of L. gibba is very tolerant to BG4. Significant induction of reactive oxygen species (ROS) scavenging enzymes was observed after 24h of biodecolorization process in L. gibba treated with 15 and 30 mg/l BG4. The experimental results showed that L. gibba has a strong ability to extract BG4 from contaminated water and the best results were obtained at 25-30°C and pH 8.0. We conclude that duckweed L. gibba can be used as a potent decolorization organism for BG4.


Asunto(s)
Araceae/crecimiento & desarrollo , Colorantes de Rosanilina/análisis , Contaminantes Químicos del Agua/análisis , Araceae/metabolismo , Biodegradación Ambiental , Fotosíntesis , Especies Reactivas de Oxígeno/metabolismo , Espectrofotometría
15.
Int J Mol Sci ; 22(5)2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33800476

RESUMEN

Plants in the family Lemnaceae are aquatic monocots and the smallest, simplest, and fastest growing angiosperms. Their small size, the smallest family member is 0.5 mm and the largest is 2.0 cm, as well as their diverse morphologies make these plants ideal for laboratory studies. Their rapid growth rate is partially due to the family's neotenous lifestyle, where instead of maturing and producing flowers, the plants remain in a juvenile state and continuously bud asexually. Maturation and flowering in the wild are rare in most family members. To promote further research on these unique plants, we have optimized laboratory flowering protocols for 3 of the 5 genera: Spirodela; Lemna; and Wolffia in the Lemnaceae. Duckweeds were widely used in the past for research on flowering, hormone and amino acid biosynthesis, the photosynthetic apparatus, and phytoremediation due to their aqueous lifestyle and ease of aseptic culture. There is a recent renaissance in interest in growing these plants as non-lignified biomass sources for fuel production, and as a resource-efficient complete protein source. The genome sequences of several Lemnaceae family members have become available, providing a foundation for genetic improvement of these plants as crops. The protocols for maximizing flowering described herein are based on screens testing daylength, a variety of media, supplementation with salicylic acid or ethylenediamine-N,N'-bis(2-hydroxyphenylacetic acid) (EDDHA), as well as various culture vessels for effects on flowering of verified Lemnaceae strains available from the Rutgers Duckweed Stock Cooperative.


Asunto(s)
Araceae , Etilenodiaminas/farmacología , Flores , Filogenia , Semillas , Araceae/genética , Araceae/crecimiento & desarrollo , Flores/genética , Flores/crecimiento & desarrollo , Semillas/genética , Semillas/crecimiento & desarrollo
16.
Biomed Res Int ; 2021: 3123476, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33748267

RESUMEN

BACKGROUND: Clausena excavata Burum. f. has long been applied in ethnomedicine for the treatment of various disorders like rhinitis, headache, cough, wound healing, fever, and detoxification. This study is aimed at investigating the antibacterial activity against Enterococcus faecalis ATCC 49532 using AlamarBlue assay and atomic force microscopy (AFM) as well as the cytotoxicity, anticancer, and phytotoxicity of C. excavata. METHOD: Bacterial cell viability was performed by using microplate AlamarBlue assay. Atomic force microscopy was used to determine morphological changes in the surface of bacterial cells. Cytotoxicity and phytotoxicity were determined by brine shrimp lethality and Lemna minor bioassay. Caco-2 (colorectal adenocarcinoma) cell line was used for the evaluation of the anticancer effects. RESULT: Among the fractions tested, ethyl acetate (EA) fraction was found to be active with minimum inhibitory concentration (MIC) of 750 µg/mL against E. faecalis, but other fractions were found to be insensitive to bacterial growth. Microscopically, the EA fraction-treated bacteria showed highly damaged cells with their cytoplasmic content scattered all over. The LC50 value of the EA fraction against brine shrimp was more than 1000 µg/mL showing the nontoxic nature of this fraction. Chloroform (CH), EA, and methanol (MOH) fractions of C. excavata were highly herbicidal at the concentration of 1000 µg/mL. EA inhibited Caco-2 cell line with an IC50 of 20 µg/mL. CONCLUSIONS: This study is the first to reveal anti-E. faecalis property of EA fraction of C. excavata leaves, natural herbicidal, and anticancer agents thus highlight the potential compound present in its leaf which needs to be isolated and tested against multidrug-resistant E. faecalis.


Asunto(s)
Antibacterianos , Antineoplásicos Fitogénicos , Araceae/crecimiento & desarrollo , Clausena/química , Citotoxinas , Enterococcus faecalis/crecimiento & desarrollo , Herbicidas , Extractos Vegetales/farmacología , Hojas de la Planta/química , Animales , Antibacterianos/química , Antibacterianos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Artemia/crecimiento & desarrollo , Células CACO-2 , Citotoxinas/química , Citotoxinas/farmacología , Herbicidas/química , Herbicidas/farmacología , Humanos , Extractos Vegetales/química
17.
Environ Toxicol Pharmacol ; 85: 103635, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33716093

RESUMEN

Lumefantrine is used to treat uncomplicated malaria caused by pure or mixed Plasmodium falciparum infections and as a prophylactic against recrudescence following artemether therapy. However, the pharmaceutical is released into the aquatic environment from industrial effluents, hospital discharges, and human excretion. This study assessed the effects of lumefantrine on the growth and physiological responses of the microalgae Chlorella vulgaris and Raphidocelis subcapitata (formerly known as Selenastrum capricornutum and Pseudokirchneriella subcapitata) and the aquatic macrophyte Lemna minor. The microalgae and macrophyte were exposed to 200-10000 µg l-1 and 16-10000 µg l-1 lumefantrine, respectively. Lumefantrine had a variable effect on the growth of the aquatic plants investigated. There was a decline in the growth of R. subcapitata and L. minor post-exposure to the drug. Contrarily, there was stimulation in the growth of Chlorella vulgaris. All experimental plants had a significant increase in lipid peroxidation, which was accompanied by an increase in malondialdehyde content. Peroxidase activity of L. minor increased only at low lumefantrine concentrations, while the opposite occurred at higher levels of the drug. Incubation in lumefantrine contaminated medium significantly up-regulated the activity of R. subcapitata cultures. Glutathione S-transferase of L. minor exposed to lumefantrine treatments had substantially higher activities than the controls. Our findings suggest lumefantrine could have adverse but variable effects on the growth and physiology of the studied aquatic plants.


Asunto(s)
Antimaláricos/toxicidad , Araceae/efectos de los fármacos , Chlorella vulgaris/efectos de los fármacos , Chlorophyta/efectos de los fármacos , Lumefantrina/toxicidad , Microalgas/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Araceae/crecimiento & desarrollo , Araceae/metabolismo , Chlorella vulgaris/crecimiento & desarrollo , Chlorella vulgaris/metabolismo , Clorofila/metabolismo , Chlorophyta/crecimiento & desarrollo , Chlorophyta/metabolismo , Glutatión Transferasa/metabolismo , Peroxidación de Lípido , Malondialdehído/metabolismo , Microalgas/crecimiento & desarrollo , Microalgas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Peroxidasa/metabolismo , Proteínas de Plantas/metabolismo
18.
Biomolecules ; 11(1)2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33450858

RESUMEN

Recently, plant bioreactors have flourished into an exciting area of synthetic biology because of their product safety, inexpensive production cost, and easy scale-up. Duckweed is the smallest and fastest-growing aquatic plant, and has advantages including simple processing and the ability to grow high biomass in smaller areas. Therefore, duckweed could be used as a new potential bioreactor for biological products such as vaccines, antibodies, pharmaceutical proteins, and industrial enzymes. Duckweed has made a breakthrough in biosynthesis as a chassis plant and is being utilized for the production of plenty of biological products or bio-derivatives with multiple uses and high values. This review summarizes the latest progress on genetic background, genetic transformation system, and bioreactor development of duckweed, and provides insights for further exploration and application of duckweed.


Asunto(s)
Araceae/metabolismo , Reactores Biológicos , Investigación/tendencias , Araceae/genética , Araceae/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Transformación Genética
19.
Chromosoma ; 130(1): 15-25, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33443586

RESUMEN

Duckweeds represent a small, free-floating aquatic family (Lemnaceae) of the monocot order Alismatales with the fastest growth rate among flowering plants. They comprise five genera (Spirodela, Landoltia, Lemna, Wolffiella, and Wolffia) varying in genome size and chromosome number. Spirodela polyrhiza had the first sequenced duckweed genome. Cytogenetic maps are available for both species of the genus Spirodela (S. polyrhiza and S. intermedia). However, elucidation of chromosome homeology and evolutionary chromosome rearrangements by cross-FISH using Spirodela BAC probes to species of other duckweed genera has not been successful so far. We investigated the potential of chromosome-specific oligo-FISH probes to address these topics. We designed oligo-FISH probes specific for one S. intermedia and one S. polyrhiza chromosome (Fig. 1a). Our results show that these oligo-probes cross-hybridize with the homeologous regions of the other congeneric species, but are not suitable to uncover chromosomal homeology across duckweeds genera. This is most likely due to too low sequence similarity between the investigated genera and/or too low probe density on the target genomes. Finally, we suggest genus-specific design of oligo-probes to elucidate chromosome evolution across duckweed genera.


Asunto(s)
Araceae/genética , Cromosomas de las Plantas/genética , Evolución Molecular , Genoma de Planta , Hibridación Fluorescente in Situ/métodos , Sondas de Oligonucleótidos/química , Araceae/clasificación , Araceae/crecimiento & desarrollo , Cariotipificación , Sondas de Oligonucleótidos/genética , Filogenia , Especificidad de la Especie
20.
Aquat Toxicol ; 231: 105710, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33338701

RESUMEN

The co-contamination of naphthalene (NAP) and microcystin-LR (MC-LR) commonly occurs in eutrophic waters. However, the joint effects of NAP and MC-LR on plants in aquatic environments remain unknown. Landoltia punctata is characterized by high starch yields and high biomass in polluted waters and has been proven to be a bioenergy crop and phytoremediation plant. In this study, L. punctata was cultured in a nutrient medium with environmentally relevant NAP (0.1, 1, 3, 5, and 10 µg/L) and MC-LR (5, 10, 25, 50, and 100 µg/L) to determine individual and joint toxic effects. The effects of NAP and MC-LR on physiological responses of L. punctata, including growth, starch accumulation, and antioxidant responses, were studied. Bioaccumulation of MC-LR in L. punctata, with or without NAP, was also examined. The results showed that growth and chlorophyll-a contents of L. punctata were reduced at high concentrations of MC-LR (≥ 25 µg/L), NAP (≥ 10 µg/L) and their mixture (≥ 10 + 1 µg/L) after exposure for 7 d. Starch accumulation in L. punctata did not decrease when exposed to NAP and MC-LR, and higher starch content of 29.8 % ± 2.7 % DW could be due to the destruction of starch-degrading enzymes. The antioxidant responses of L. punctata were stronger after exposure to MC-LR + NAP than when exposed to a single pollutant, although not enough to avoid oxidative damage. NAP enhanced the bioaccumulation of MC-LR in L. punctata when NAP concentration was higher than 5 µg/L, suggesting that higher potentials of MC-LR phytoremediation with L. punctata may be observed in NAP and MC-LR co-concomitant waters. This study provides theoretical support for the application of duckweed in eutrophic waters containing organic chemical pollutants.


Asunto(s)
Araceae/fisiología , Toxinas Marinas/toxicidad , Microcistinas/toxicidad , Naftalenos/toxicidad , Antioxidantes/metabolismo , Araceae/efectos de los fármacos , Araceae/crecimiento & desarrollo , Bioacumulación/efectos de los fármacos , Biodegradación Ambiental , Biomasa , Modelos Biológicos , Fenotipo , Almidón/metabolismo , Pruebas de Toxicidad , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...