RESUMEN
Variants in rhodopsin (RHO) have been linked to autosomal dominant congenital stationary night blindness (adCSNB), which affects the ability to see in dim light, and the pathogenetic mechanism is still not well understood. In this study we report two novel RHO variants found in adCSNB families, p.W265R and p.A269V, that map in the sixth transmembrane domain of RHO protein. We applied in silico molecular simulation and in vitro biochemical and molecular studies to characterize the two new variants and compare the molecular determinants to two previously characterized adCSNB variants, p.G90D and p.T94I, that map in the second transmembrane domain of the RHO protein. We demonstrate that W265R and A269V cause constitutive activation of RHO with light-independent G protein coupling and impaired binding to arrestin. Differently, G90D and T94I are characterized by slow kinetics of RHO activation and deactivation. This study provides new evidence on the differential contribution of transmembrane α-helixes two and six to the interaction with intracellular transducers of RHO and mutations in these helixes result in a similar phenotype in patients but with distinct molecular effects.
Asunto(s)
Mutación , Ceguera Nocturna , Rodopsina , Rodopsina/genética , Rodopsina/química , Rodopsina/metabolismo , Humanos , Ceguera Nocturna/genética , Ceguera Nocturna/metabolismo , Miopía/genética , Miopía/metabolismo , Enfermedades Hereditarias del Ojo/genética , Enfermedades Hereditarias del Ojo/metabolismo , Conformación Proteica en Hélice alfa , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Masculino , Femenino , Linaje , Unión Proteica , Modelos Moleculares , Arrestina/genética , Arrestina/metabolismo , Arrestina/químicaRESUMEN
Arrestin-dependent G protein-coupled receptor (GPCR) signaling pathway is regulated by the phosphorylation state of GPCR's C-terminal domain, but the molecular bases of arrestin:receptor interaction are to be further illuminated. Here we investigated the impact of phosphorylation on the conformational features of the C-terminal region from three rhodopsin-like GPCRs, the vasopressin V2 receptor (V2R), the growth hormone secretagogue or ghrelin receptor type 1a (GHSR), and the ß2-adernergic receptor (ß2AR). Using phosphomimetic variants, we identified pre-formed secondary structure elements, or short linear motifs (SLiMs), that undergo specific conformational transitions upon phosphorylation. Of importance, such conformational transitions appear to favor arrestin-2 binding. Hence, our results suggest a model in which the phosphorylation-dependent structuration of the GPCR C-terminal regions would modulate arrestin binding and therefore signaling outcomes in arrestin-dependent pathways.
Asunto(s)
Arrestina , Receptores Acoplados a Proteínas G , Arrestina/química , Fosforilación , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Rodopsina/químicaRESUMEN
G protein-coupled receptors (GPCRs) are membrane proteins constituting the largest family of drug targets. The activated GPCR binds either the heterotrimeric G proteins or arrestin through its activation cycle. Water molecules have been reported to play a role in GPCR activation. Nevertheless, reported studies are focused on the hydrophobic helical bundle region. How water molecules function in GPCR bound either G protein or arrestin is rarely studied. To address this issue, we carried out computational studies on water molecules in both GPCR/G protein complexes and GPCR/arrestin complexes. Using inhomogeneous fluid theory (IFT), we locate all possible hydration sites in GPCRs binding either to G protein or arrestin. We observe that the number of water molecules on the interaction surface between GPCRs and signal proteins are correlated with the insertion depths of the α5-helix from G-protein or "finger loop" from arrestin in GPCRs. In three out of the four simulation pairs, the interfaces of Rhodopsin, M2R and NTSR1 in the G protein-associated systems show more water-mediated hydrogen-bond networks when compared to these in arrestin-associated systems. This reflects that more functionally relevant water molecules may probably be attracted in G protein-associated structures than that in arrestin-associated structures. Moreover, we find the water-mediated interaction networks throughout the NPxxY region and the orthosteric pocket, which may be a key for GPCR activation. Reported studies show that non-biased agonist, which can trigger both GPCR-G protein and GPCR-arrestin activation signal, can result in pharmacologically toxicities. Our comprehensive studies of the hydration sites in GPCR/G protein complexes and GPCR/arrestin complexes may provide important insights in the design of G-protein biased agonists.
Asunto(s)
Arrestina , Agua , Arrestina/química , Arrestina/metabolismo , Agua/metabolismo , Receptores Acoplados a Proteínas G/química , Proteínas de Unión al GTP/metabolismo , Rodopsina/química , Rodopsina/metabolismoRESUMEN
Visual arrestin (Arr1) terminates rhodopsin signaling by blocking its interaction with transducin. To do this, Arr1 translocates from the inner to the outer segment of photoreceptors upon light stimulation. Mounting evidence indicates that inositol phosphates (InsPs) affect Arr1 activity, but the Arr1-InsP molecular interaction remains poorly defined. We report the structure of bovine Arr1 in a ligand-free state featuring a near-complete model of the previously unresolved C-tail, which plays a crucial role in regulating Arr1 activity. InsPs bind to the N-domain basic patch thus displacing the C-tail, suggesting that they prime Arr1 for interaction with rhodopsin and help direct Arr1 translocation. These structures exhibit intact polar cores, suggesting that C-tail removal by InsP binding is insufficient to activate Arr1. These results show how Arr1 activity can be controlled by endogenous InsPs in molecular detail.
Asunto(s)
Arrestina/química , Arrestina/metabolismo , Fosfatos de Inositol/metabolismo , Rodopsina/metabolismo , Animales , Bovinos , Cristalografía por Rayos X , Ratones , Modelos Moleculares , Conformación Proteica , Dominios Proteicos , Análisis de Secuencia de ARN , Análisis de la Célula IndividualRESUMEN
G protein-coupled receptors (GPCRs) can be used to shuttle peptide-drug conjugates into cells. But, for efficient therapy, a high concentration of cargo needs to be delivered. To explore this, we studied the pharmacologically interesting neuropeptide Y1 receptor (Y1 R) in one recombinant and three oncogenic cell systems that endogenously express the receptor. We demonstrate that recycled receptors behave identically to newly synthesized receptors with respect to ligand binding and internalization pathways. Depending on the cell system, biosynthesis, recycling efficiency, and peptide uptake differ partially, but shuttling was efficient in all systems. However, by comparing continuous application of the ligand for four hours to four cycles of internalization and recycling in between, a significantly higher amount of peptide uptake was achieved in the pulsed application (150-250 % to 300-400 %). Accordingly, in this well-suited drug shuttle system pulsed application is superior under all investigated conditions and should be considered for innovative, targeted drug delivery in general.
Asunto(s)
Neuropéptido Y/química , Preparaciones Farmacéuticas/química , Receptores de Neuropéptido Y/metabolismo , Arrestina/química , Arrestina/metabolismo , Línea Celular Tumoral , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Colorantes Fluorescentes/química , Células HEK293 , Humanos , Ligandos , Microscopía Confocal , Neuropéptido Y/metabolismo , Unión Proteica , Receptores de Neuropéptido Y/químicaRESUMEN
The finger loop in the central crest of the receptor-binding site of arrestins engages the cavity between the transmembrane helices of activated G-protein-coupled receptors. Therefore, it was hypothesized to serve as the sensor that detects the activation state of the receptor. We performed comprehensive mutagenesis of the finger loop in bovine visual arrestin-1, generated mutant radiolabeled proteins by cell-free translation, and determined the effects of mutations on the in vitro binding of arrestin-1 to purified phosphorylated light-activated rhodopsin. This interaction is driven by two factors, rhodopsin activation and rhodopsin-attached phosphates. Therefore, the binding of arrestin-1 to light-activated unphosphorylated rhodopsin is low. To evaluate the role of the finger loop specifically in the recognition of the active receptor conformation, we tested the effects of these mutations in the context of truncated arrestin-1 that demonstrates much higher binding to unphosphorylated activated and phosphorylated inactive rhodopsin. The majority of finger loop residues proved important for arrestin-1 binding to light-activated rhodopsin, with six mutations affecting the binding exclusively to this form. Thus, the finger loop is the key element of arrestin-1 activation sensor. The data also suggest that arrestin-1 and its enhanced mutant bind various functional forms of rhodopsin differently.
Asunto(s)
Arrestina/química , Arrestina/metabolismo , Estructura Secundaria de Proteína/fisiología , Animales , Sitios de Unión , Bovinos , Unión ProteicaRESUMEN
Binding of arrestin to phosphorylated G-protein-coupled receptors (GPCRs) controls many aspects of cell signaling. The number and arrangement of phosphates may vary substantially for a given GPCR, and different phosphorylation patterns trigger different arrestin-mediated effects. Here, we determine how GPCR phosphorylation influences arrestin behavior by using atomic-level simulations and site-directed spectroscopy to reveal the effects of phosphorylation patterns on arrestin binding and conformation. We find that patterns favoring binding differ from those favoring activation-associated conformational change. Both binding and conformation depend more on arrangement of phosphates than on their total number, with phosphorylation at different positions sometimes exerting opposite effects. Phosphorylation patterns selectively favor a wide variety of arrestin conformations, differently affecting arrestin sites implicated in scaffolding distinct signaling proteins. We also reveal molecular mechanisms of these phenomena. Our work reveals the structural basis for the long-standing "barcode" hypothesis and has important implications for design of functionally selective GPCR-targeted drugs.
Asunto(s)
Arrestina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Arrestina/química , Simulación por Computador , Células HEK293 , Humanos , Fosfatos/metabolismo , Fosfopéptidos/metabolismo , Fosforilación , Unión Proteica , Conformación Proteica , Análisis EspectralRESUMEN
Characterization of the dynamic conformational changes in membrane protein signaling complexes by nuclear magnetic resonance (NMR) spectroscopy remains challenging. Here we report the site-specific incorporation of 4-trimethylsilyl phenylalanine (TMSiPhe) into proteins, through genetic code expansion. Crystallographic analysis revealed structural changes that reshaped the TMSiPhe-specific amino-acyl tRNA synthetase active site to selectively accommodate the trimethylsilyl (TMSi) group. The unique up-field 1H-NMR chemical shift and the highly efficient incorporation of TMSiPhe enabled the characterization of multiple conformational states of a phospho-ß2 adrenergic receptor/ß-arrestin-1(ß-arr1) membrane protein signaling complex, using only 5 µM protein and 20 min of spectrum accumulation time. We further showed that extracellular ligands induced conformational changes located in the polar core or ERK interaction site of ß-arr1 via direct receptor transmembrane core interactions. These observations provided direct delineation and key mechanism insights that multiple receptor ligands were able to induce distinct functionally relevant conformational changes of arrestin.
Asunto(s)
Arrestina/química , Arrestina/genética , Arrestina/metabolismo , Ligandos , Espectroscopía de Protones por Resonancia Magnética/métodos , Sitios de Unión , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Fenilalanina , Unión Proteica , Conformación Proteica , Receptores Adrenérgicos beta 2/metabolismo , Transducción de Señal , beta-Arrestina 1/química , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismoRESUMEN
The adhesion G-protein-coupled receptor (GPCR) latrophilin 3 (ADGRL3) has been associated with increased risk of attention deficit hyperactivity disorder (ADHD) and substance use in human genetic studies. Knockdown in multiple species leads to hyperlocomotion and altered dopamine signaling. Thus, ADGRL3 is a potential target for treatment of neuropsychiatric disorders that involve dopamine dysfunction, but its basic signaling properties are poorly understood. Identification of adhesion GPCR signaling partners has been limited by a lack of tools to acutely activate these receptors in living cells. Here, we design a novel acute activation strategy to characterize ADGRL3 signaling by engineering a receptor construct in which we could trigger acute activation enzymatically. Using this assay, we found that ADGRL3 signals through G12/G13 and Gq, with G12/13 the most robustly activated. Gα12/13 is a new player in ADGRL3 biology, opening up unexplored roles for ADGRL3 in the brain. Our methodological advancements should be broadly useful in adhesion GPCR research.
Asunto(s)
Factor de Transcripción Activador 6/metabolismo , Subunidades alfa de la Proteína de Unión al GTP G12-G13/metabolismo , Péptidos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/metabolismo , Factor de Transcripción Activador 6/agonistas , Factor de Transcripción Activador 6/química , Factor de Transcripción Activador 6/genética , Animales , Arrestina/química , Arrestina/genética , Arrestina/metabolismo , Sistemas CRISPR-Cas , Ingeniería Celular , Subunidades alfa de la Proteína de Unión al GTP G12-G13/química , Subunidades alfa de la Proteína de Unión al GTP G12-G13/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/química , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Expresión Génica , Células HEK293 , Humanos , Cinética , Ratones , Proteína Quinasa 1 Activada por Mitógenos/química , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/química , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Péptidos/química , Péptidos/farmacología , Unión Proteica , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores de Péptidos/química , Receptores de Péptidos/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de SeñalRESUMEN
Termination of the G-protein-coupled receptor signaling involves phosphorylation of its C-terminus and subsequent binding of the regulatory protein arrestin. In the visual system, arrestin-1 preferentially binds to photoactivated and phosphorylated rhodopsin and inactivates phototransduction. Here, we have investigated binding of a synthetic phosphopeptide of bovine rhodopsin (residues 323-348) to the active variants of visual arrestin-1: splice variant p44, and the mutant R175E. Unlike the wild type arrestin-1, both these arrestins are monomeric in solution. Solution structure analysis using small angle X-ray scattering supported by size exclusion chromatography results reveal dimerization in both the arrestins in the presence of phosphopeptide. Our results are the first report, to our knowledge, on receptor-induced oligomerization in arrestin, suggesting possible roles for the cellular function of arrestin oligomers. Given high structural homology and the similarities in their activation mechanism, these results are expected to have implications for all arrestin isoforms.
Asunto(s)
Arrestina/química , Arrestina/metabolismo , Multimerización de Proteína , Rodopsina/química , Rodopsina/metabolismo , Animales , Bovinos , Cristalografía por Rayos X , Fosforilación , Unión Proteica , Relación Estructura-ActividadRESUMEN
Peptide ligands of class B G-protein-coupled receptors act via a two-step binding process, but the essential mechanisms that link their extracellular binding to intracellular receptor-arrestin interactions are not fully understood. Using NMR, crosslinking coupled to mass spectrometry, signaling experiments and computational approaches on the parathyroid hormone (PTH) type 1 receptor (PTHR), we show that initial binding of the PTH C-terminal part constrains the conformation of the flexible PTH N-terminal signaling epitope before a second binding event occurs. A 'hot-spot' PTH residue, His9, that inserts into the PTHR transmembrane domain at this second step allosterically engages receptor-arrestin coupling. A conformational change in PTHR intracellular loop 3 permits favorable interactions with ß-arrestin's finger loop. These results unveil structural determinants for PTHR-arrestin complex formation and reveal that the two-step binding mechanism proceeds via cooperative fluctuations between ligand and receptor, which extend to other class B G-protein-coupled receptors.
Asunto(s)
Arrestina/metabolismo , Hormona Paratiroidea/metabolismo , Arrestina/química , Fosfatos de Calcio , Microscopía por Crioelectrón , AMP Cíclico , Escherichia coli , Células HEK293 , Humanos , Simulación de Dinámica Molecular , Hormona Paratiroidea/química , Receptores Acoplados a Proteínas GRESUMEN
G protein-coupled receptors (GPCRs) couple to diverse heterotrimeric G protein subtypes and then activate downstream signaling pathways in classical GPCR activation. It has also been found that GPCRs transduce signals through different regulatory proteins, such as arrestins. Recently, owing to the breakthroughs in cryo-electron macroscopy (Cryo-EM), numerous structures of GPCR-G protein or GPCR-arrestin complexes have been deciphered. In this review, we summarize most of reported GPCR signaling complex structures, with an emphasis on the structural features of rhodopsin-like GPCR activation and G protein-binding/arrestin-binding modes, to illustrate the activation and signaling mechanism of rhodopsin-like GPCRs.
Asunto(s)
Modelos Moleculares , Complejos Multiproteicos/química , Receptores Acoplados a Proteínas G/química , Animales , Arrestina/química , Arrestina/metabolismo , Sitios de Unión , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Microscopía por Crioelectrón , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Humanos , Complejos Multiproteicos/metabolismo , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Relación Estructura-ActividadRESUMEN
Molecular processes within cells have traditionally been studied with biochemical methods due to their high degree of specificity and ease of use. In recent years, cell-based assays have gained more and more popularity since they facilitate the extraction of mode of action, phenotypic, and toxicity information. However, to provide specificity, cellular assays rely heavily on biomolecular labels and tags while label-free cell-based assays only offer holistic information about a bulk property of the investigated cells. Here, we introduce a cell-based assay for protein-protein interaction analysis. We achieve specificity by spatially ordering a membrane protein of interest into a coherent pattern of fully functional membrane proteins on the surface of an optical sensor. Thereby, molecular interactions with the coherently ordered membrane proteins become visible in real time, while nonspecific interactions and holistic changes within the living cell remain invisible. Due to its unbiased nature, this new cell-based detection method presents itself as an invaluable tool for cell signaling research and drug discovery.
Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas de la Membrana/metabolismo , Arrestina/química , Arrestina/genética , Arrestina/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Mapas de Interacción de Proteínas , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismoRESUMEN
G protein-coupled receptors (GPCRs) are membrane proteins that play critical roles in transmembrane signaling. Intracellular arrestin can form a complex with GPCRs to block G protein binding or mediate independent signaling pathways. It is known that different extracellular stimuli lead to the recruitment of different downstream effectors through arrestin. How this selective signaling is achieved is a fascinating but unresolved question. One hypothesis is that different stimuli can lead to different phosphorylation patterns in the C-terminus loop of GPCR (C-loop), and arrestin then adopts different conformations according to the phosphorylation pattern, and then arrestin in turn can recruit various downstream signaling molecules. In this study, we conducted atomistic molecular dynamics (MD) simulations to investigate whether the conformation of arrestin is related to the phosphorylation pattern of the GPCR C-loop in the GPCR-arrestin complex. Our results showed that arrestin undergoes a significant conformational change when binding to the GPCR C-loop, and its specific holo conformation seems to be phosphorylation-dependent. Further analysis of the pairwise forces between the phosphorylated residues of the C-loop and the adjacent residues of arrestin showed that these forces vary to a large degree, depending on the phosphorylation pattern of the C-loop, which might direct arrestin into distinct conformations and result in the selective binding of downstream signaling molecules. These results shed light on the C-loop phosphorylation pattern dependent signaling through the GPCR-arrestin pathway.
Asunto(s)
Arrestina/química , Simulación de Dinámica Molecular , Rodopsina/química , Transducción de Señal , Fosforilación , Unión Proteica , Conformación ProteicaRESUMEN
Arrestin-1 is the arrestin family member responsible for inactivation of the G protein-coupled receptor rhodopsin in photoreceptors. Arrestin-1 is also well-known to interact with additional protein partners and to affect other signaling cascades beyond phototransduction. In this study, we investigated one of these alternative arrestin-1 binding partners, the glycolysis enzyme enolase-1, to map the molecular contact sites between these two proteins and investigate how the binding of arrestin-1 affects the catalytic activity of enolase-1. Using fluorescence quench protection of strategically placed fluorophores on the arrestin-1 surface, we observed that arrestin-1 primarily engages enolase-1 along a surface that is opposite of the side of arrestin-1 that binds photoactivated rhodopsin. Using this information, we developed a molecular model of the arrestin-1-enolase-1 complex, which was validated by targeted substitutions of charge-pair interactions. Finally, we identified the likely source of arrestin's modulation of enolase-1 catalysis, showing that selective substitution of two amino acids in arrestin-1 can completely remove its effect on enolase-1 activity while still remaining bound to enolase-1. These findings open up opportunities for examining the functional effects of arrestin-1 on enolase-1 activity in photoreceptors and their surrounding cells.
Asunto(s)
Arrestina/química , Biomarcadores de Tumor/química , Proteínas de Unión al ADN/química , Modelos Moleculares , Complejos Multienzimáticos/química , Fosfopiruvato Hidratasa/química , Rodopsina/química , Proteínas Supresoras de Tumor/química , Arrestina/genética , Sitios de Unión , Biomarcadores de Tumor/genética , Catálisis , Proteínas de Unión al ADN/genética , Humanos , Complejos Multienzimáticos/genética , Fosfopiruvato Hidratasa/genética , Rodopsina/genética , Proteínas Supresoras de Tumor/genéticaRESUMEN
Arrestin binding to G protein-coupled receptors (GPCRs) plays a vital role in receptor signaling. Recently, the crystal structure of rhodopsin bound to activated visual arrestin was resolved using XFEL (X-ray free electron laser). However, even with the crystal structure in hand, our ability to understand GPCR-arrestin binding is limited by the availability of accurate tools to explore receptor-arrestin interactions. We applied fragment molecular orbital (FMO) method to explore the interactions formed between the residues of rhodopsin and arrestin. FMO enables ab initio approaches to be applied to systems that conventional quantum mechanical (QM) methods would be too compute-expensive. The FMO calculations detected 35 significant interactions involved in rhodopsin-arrestin binding formed by 25 residues of rhodopsin and 28 residues of arrestin. Two major regions of interaction were identified: at the C-terminal tail of rhodopsin (D330-S343) and where the "finger loop" (G69-T79) of arrestin directly inserts into rhodopsin active core. Out of these 35 interactions, 23 were mainly electrostatic and 12 hydrophobic in nature.
Asunto(s)
Arrestina/química , Rodopsina/química , Cristalografía por Rayos X/métodos , Unión Proteica/fisiología , Teoría Cuántica , Receptores Acoplados a Proteínas G/químicaRESUMEN
G-protein-coupled receptors (GPCRs) have evolved as highly specialized cellular machinery that can dictate biological outcomes in response to diverse stimuli. Specifically, they induce multiple pathway responses upon structural perturbations induced at local protein sites. GPCRs utilize a concurrent strategy involving a central transmembrane topology and biochemical modifications for precise functional implementation. However, the specific role of the latter is not known due to the lack of precise probing techniques that can characterize receptor dynamics upon biochemical modifications. Phosphorylation is known to be one of the critical biochemical modifications in GPCRs that aids in receptor desensitization via arrestin binding. Here, we carry out all-atom molecular dynamics simulations of rhodopsin in a membrane environment to study its conformational dynamics induced upon phosphorylation. Interestingly, our comparative analysis of non-phosphorylated and phosphorylated rhodopsin structure demonstrated enhanced receptor stability upon phosphorylation at the C-terminal region that leads to the opening of the extracellular part of the transmembrane helices. In addition, monitoring the distinct number of phosphorylation states showed that having fewer phosphorylated residues does not bring about appropriate conformational changes in the extracellular region. Since phosphorylation results in receptor desensitization and recycling of the ligand, our findings provide significant insights into the conformational dynamics of the mechanism of ligand exit from the receptor.
Asunto(s)
Membrana Celular/genética , Conformación Proteica , Receptores Acoplados a Proteínas G/genética , Rodopsina/genética , Animales , Arrestina/química , Arrestina/genética , Membrana Celular/química , Evolución Molecular , Humanos , Ligandos , Simulación de Dinámica Molecular , Fosforilación/genética , Unión Proteica , Estructura Secundaria de Proteína , Receptores Acoplados a Proteínas G/química , Rodopsina/química , Transducción de Señal/genéticaRESUMEN
Cellular functions of arrestins are determined in part by the pattern of phosphorylation on the G protein-coupled receptors (GPCRs) to which arrestins bind. Despite high-resolution structural data of arrestins bound to phosphorylated receptor C-termini, the functional role of each phosphorylation site remains obscure. Here, we employ a library of synthetic phosphopeptide analogues of the GPCR rhodopsin C-terminus and determine the ability of these peptides to bind and activate arrestins using a variety of biochemical and biophysical methods. We further characterize how these peptides modulate the conformation of arrestin-1 by nuclear magnetic resonance (NMR). Our results indicate different functional classes of phosphorylation sites: 'key sites' required for arrestin binding and activation, an 'inhibitory site' that abrogates arrestin binding, and 'modulator sites' that influence the global conformation of arrestin. These functional motifs allow a better understanding of how different GPCR phosphorylation patterns might control how arrestin functions in the cell.
Asunto(s)
Arrestina/metabolismo , Fosforilación/fisiología , Rodopsina/metabolismo , beta-Arrestina 1/metabolismo , Arrestina beta 2/metabolismo , Secuencias de Aminoácidos/fisiología , Animales , Arrestina/química , Arrestina/genética , Arrestina/aislamiento & purificación , Bioensayo , Bovinos , Membrana Celular/metabolismo , Mutación , Resonancia Magnética Nuclear Biomolecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Rodopsina/química , Segmento Externo de la Célula en Bastón/metabolismo , beta-Arrestina 1/química , beta-Arrestina 1/aislamiento & purificación , Arrestina beta 2/química , Arrestina beta 2/aislamiento & purificaciónRESUMEN
G protein-coupled receptors (GPCRs) are the largest family of signaling proteins targeted by more clinically used drugs than any other protein family. GPCR signaling via G proteins is quenched (desensitized) by the phosphorylation of the active receptor by specific GPCR kinases (GRKs) followed by tight binding of arrestins to active phosphorylated receptors. Thus, arrestins engage two types of receptor elements: those that contain GRK-added phosphates and those that change conformation upon activation. GRKs attach phosphates to serines and threonines in the GPCR C-terminus or any one of the cytoplasmic loops. In addition to these phosphates, arrestins engage the cavity that appears between trans-membrane helices upon receptor activation and several other non-phosphorylated elements. The residues that bind GPCRs are localized on the concave side of both arrestin domains. Arrestins undergo a global conformational change upon receptor binding (become activated). Arrestins serve as important hubs of cellular signaling, emanating from activated GPCRs and receptor-independent.
Asunto(s)
Arrestina/química , Arrestina/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Animales , Sitios de Unión , Quinasas de Receptores Acoplados a Proteína-G/metabolismo , Humanos , Modelos Moleculares , Fosforilación , Unión Proteica , Conformación Proteica , Dominios ProteicosRESUMEN
Arrestins play a key role in homologous desensitization of G protein-coupled receptors (GPCRs) and regulate several other vital signaling pathways in cells. Considering the critical roles of these proteins in cellular signaling, surprisingly few disease-causing mutations in human arrestins were described. Most of these are loss-of-function mutations of visual arrestin-1 that cause excessive rhodopsin signaling and hence night blindness. Only one dominant arrestin-1 mutation was discovered so far. It reduces the thermal stability of the protein, which likely results in photoreceptor death via unfolded protein response. In case of the two nonvisual arrestins, only polymorphisms were described, some of which appear to be associated with neurological disorders and altered response to certain treatments. Structure-function studies revealed several ways of enhancing arrestins' ability to quench GPCR signaling. These enhanced arrestins have potential as tools for gene therapy of disorders associated with excessive signaling of mutant GPCRs.