Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Microbiol ; 122(2): 201-212, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38922722

RESUMEN

An arsenate reductase (Car1) from the Bacteroidetes species Rufibacter tibetensis 1351T was isolated from the Tibetan Plateau. The strain exhibits resistance to arsenite [As(III)] and arsenate [As(V)] and reduces As(V) to As(III). Here we shed light on the mechanism of enzymatic reduction by Car1. AlphaFold2 structure prediction, active site energy minimization, and steady-state kinetics of wild-type and mutant enzymes give insight into the catalytic mechanism. Car1 is structurally related to calcineurin-like metallophosphoesterases (MPPs). It functions as a binuclear metal hydrolase with limited phosphatase activity, particularly relying on the divalent metal Ni2+. As an As(V) reductase, it displays metal promiscuity and is coupled to the thioredoxin redox cycle, requiring the participation of two cysteine residues, Cys74 and Cys76. These findings suggest that Car1 evolved from a common ancestor of extant phosphatases by incorporating a redox function into an existing MPP catalytic site. Its proposed mechanism of arsenate reduction involves Cys74 initiating a nucleophilic attack on arsenate, leading to the formation of a covalent intermediate. Next, a nucleophilic attack of Cys76 leads to the release of As(III) and the formation of a surface-exposed Cys74-Cys76 disulfide, ready for reduction by thioredoxin.


Asunto(s)
Arseniato Reductasas , Bacteroidetes , Dominio Catalítico , Oxidación-Reducción , Arseniato Reductasas/metabolismo , Arseniato Reductasas/genética , Arseniato Reductasas/química , Bacteroidetes/enzimología , Bacteroidetes/genética , Arseniatos/metabolismo , Cinética , Monoéster Fosfórico Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/química , Catálisis , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Arsenitos/metabolismo
2.
Plant J ; 114(1): 110-123, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36710626

RESUMEN

As sessile organisms, plants encounter dynamic and challenging environments daily, including abiotic/biotic stresses. The regulation of carbon and nitrogen allocations for the synthesis of plant proteins, carbohydrates, and lipids is fundamental for plant growth and adaption to its surroundings. Light, one of the essential environmental signals, exerts a substantial impact on plant metabolism and resource partitioning (i.e., starch). However, it is not fully understood how light signaling affects carbohydrate production and allocation in plant growth and development. An orphan gene unique to Arabidopsis thaliana, named QUA-QUINE STARCH (QQS) is involved in the metabolic processes for partitioning of carbon and nitrogen among proteins and carbohydrates, thus influencing leaf, seed composition, and plant defense in Arabidopsis. In this study, we show that PHYTOCHROME-INTERACTING bHLH TRANSCRIPTION FACTORS (PIFs), including PIF4, are required to suppress QQS during the period at dawn, thus preventing overconsumption of starch reserves. QQS expression is significantly de-repressed in pif4 and pifQ, while repressed by overexpression of PIF4, suggesting that PIF4 and its close homologs (PIF1, PIF3, and PIF5) act as negative regulators of QQS expression. In addition, we show that the evening complex, including ELF3 is required for active expression of QQS, thus playing a positive role in starch catabolism during night-time. Furthermore, QQS is epigenetically suppressed by DNA methylation machinery, whereas histone H3 K4 methyltransferases (e.g., ATX1, ATX2, and ATXR7) and H3 acetyltransferases (e.g., HAC1 and HAC5) are involved in the expression of QQS. This study demonstrates that PIF light signaling factors help plants utilize optimal amounts of starch during the night and prevent overconsumption of starch before its biosynthesis during the upcoming day.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fitocromo/metabolismo , Almidón/metabolismo , Carbono/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Nitrógeno/metabolismo , Regulación de la Expresión Génica de las Plantas , Luz , Arseniato Reductasas/genética , Arseniato Reductasas/metabolismo
3.
Environ Sci Technol ; 56(19): 14146-14153, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36121644

RESUMEN

Selenate enhances arsenic (As) accumulation in As-hyperaccumulator Pteris vittata, but the associated molecular mechanisms are unclear. Here, we investigated the mechanisms of selenate-induced arsenic accumulation by exposing P. vittata to 50 µM arsenate (AsV50) and 1.25 (Se1.25) or 5 µM (Se5) selenate in hydroponics. After 2 weeks, plant biomass, plant As and Se contents, As speciation in plant and growth media, and important genes related to As detoxification in P. vittata were determined. These genes included P transporters PvPht1;3 and PvPht1;4 (AsV uptake), arsenate reductases PvHAC1 and PvHAC2 (AsV reduction), and arsenite (AsIII) antiporters PvACR3 and PvACR3;2 (AsIII translocation) in the roots, and AsIII antiporters PvACR3;1 and PvACR3;3 (AsIII sequestration) in the fronds. The results show that Se1.25 was more effective than Se5 in increasing As accumulation in both P. vittata roots and fronds, which increased by 27 and 153% to 353 and 506 mg kg-1. The As speciation analyses show that selenate increased the AsIII levels in P. vittata, with 124-282% more AsIII being translocated into the fronds. The qPCR analyses indicate that Se1.25 upregulated the gene expression of PvHAC1 by 1.2-fold, and PvACR3 and PvACR3;2 by 1.0- to 2.5-fold in the roots, and PvACR3;1 and PvACR3;3 by 0.6- to 1.1-fold in the fronds under AsV50 treatment. Though arsenate enhanced gene expression of P transporters PvPht1;3 and PvPht1;4, selenate had little effect. Our results indicate that selenate effectively increased As accumulation in P. vittata, mostly by increasing reduction of AsV to AsIII in the roots, AsIII translocation from the roots to fronds, and AsIII sequestration into the vacuoles in the fronds. The results suggest that selenate may be used to enhance phytoremediation of As-contaminated soils using P. vittata.


Asunto(s)
Arsénico , Arsenitos , Pteris , Selenio , Contaminantes del Suelo , Antiportadores/metabolismo , Antiportadores/farmacología , Arseniato Reductasas/genética , Arseniato Reductasas/metabolismo , Arseniatos , Arsénico/metabolismo , Arsenitos/metabolismo , Biodegradación Ambiental , Raíces de Plantas/metabolismo , Pteris/genética , Pteris/metabolismo , Ácido Selénico , Selenio/metabolismo , Suelo , Contaminantes del Suelo/metabolismo
4.
Environ Pollut ; 309: 119825, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35870529

RESUMEN

Rice growing in flooded paddy soil often accumulates considerable levels of inorganic and organic arsenic (As) species, which may cause toxicity to plants and/or pose a risk to human health. The bioavailability and toxicity of As in soil depends on its chemical species, which undergo multiple transformations driven primarily by soil microbes. However, the role of endophytes inside rice roots in As species transformation remains largely unknown. We quantified the abundances of microbial functional genes involved in As transformation in the endosphere and rhizosphere of rice roots growing in three paddy soils in a pot experiment. We also isolated 46 different bacterial endophytes and tested their abilities to transform various As species. The absolute abundances of the arsenate reductase gene arsC and the dissimilatory arsenate reductase gene arrA in the endosphere were comparable to those in the rhizosphere, whereas the absolute abundances of the arsenite methylation gene arsM and arsenite oxidation gene aioA in the endosphere were lower. After normalization based on the bacterial 16S rRNA gene, all four As transformation genes showed higher relative abundances in the endosphere than in the rhizosphere. Consistent with the functional gene data, all of the 30 aerobic endophytic isolates were able to reduce arsenate, but only 3 strains could oxidize arsenite. Among the 16 anaerobic endophytic isolates, 4 strains belonging to Desulfovibrio, Terrisporobacter or Clostridium could methylate arsenite and/or methylarsenite. Six strains of aerobic endophytes could demethylate methylarsenite, among which three strains also could reduce and demethylate methylarsenate. None of the isolates could demethylate dimethylarsenate. These results suggest that diverse endophytes living inside rice roots could participate in As species transformation and affect As accumulation and species distribution in rice plants.


Asunto(s)
Arsénico , Arsenitos , Oryza , Contaminantes del Suelo , Arseniato Reductasas/genética , Arsénico/análisis , Bacterias/genética , Endófitos , Humanos , Oryza/microbiología , Raíces de Plantas/química , ARN Ribosómico 16S/genética , Suelo , Contaminantes del Suelo/análisis
5.
Arch Microbiol ; 204(1): 46, 2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-34932145

RESUMEN

The present study characterized aresenate reductase of Bacillus thuringiensis KPWP1, tolerant to salt, arsenate and a wide range of pH during growth. Interestingly, it was found that arsC, arsB and arsR genes involved in arsenate tolerance are distributed in the genome of strain KPWP1. The inducible arsC gene was cloned, expressed and the purified ArsC protein showed profound enzyme activity with the KM and Kcat values as 25 µM and 0.00119 s-1, respectively. In silico studies revealed that in spite of 19-26% differences in gene sequences, the ArsC proteins of Bacillus thuringiensis, Bacillus subtilis and Bacillus cereus are structurally conserved and ArsC structure of strain KPWP1 is close to nature. Docking and analysis of the binding site showed that arsenate ion interacts with three cysteine residues of ArsC and predicts that the ArsC from B. thuringiensis KPWP1 reduces arsenate by using the triple Cys redox relay mechanism.


Asunto(s)
Arseniato Reductasas , Bacillus thuringiensis , Arseniato Reductasas/genética , Arseniatos , Arsénico , Bacillus cereus , Bacillus subtilis , Bacillus thuringiensis/enzimología , Bacillus thuringiensis/genética , Proteínas Bacterianas/genética , Concentración de Iones de Hidrógeno , Tolerancia a la Sal
6.
Sci Rep ; 11(1): 6794, 2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33762609

RESUMEN

This study evaluated the phytoextraction capacity of the fern Pteris vittata grown on a natural arsenic-rich soil of volcanic-origin from the Viterbo area in central Italy. This calcareous soil is characterized by an average arsenic concentration of 750 mg kg-1, of which 28% is bioavailable. By means of micro-energy dispersive X-ray fluorescence spectrometry (µ-XRF) we detected As in P. vittata fronds after just 10 days of growth, while a high As concentrations in fronds (5,000 mg kg-1), determined by Inductively coupled plasma-optical emission spectrometry (ICP-OES), was reached after 5.5 months. Sixteen arsenate-tolerant bacterial strains were isolated from the P. vittata rhizosphere, a majority of which belong to the Bacillus genus, and of this majority only two have been previously associated with As. Six bacterial isolates were highly As-resistant (> 100 mM) two of which, homologous to Paenarthrobacter ureafaciens and Beijerinckia fluminensis, produced a high amount of IAA and siderophores and have never been isolated from P. vittata roots. Furthermore, five isolates contained the arsenate reductase gene (arsC). We conclude that P. vittata can efficiently phytoextract As when grown on this natural As-rich soil and a consortium of bacteria, largely different from that usually found in As-polluted soils, has been found in P. vittata rhizosphere.


Asunto(s)
Arsénico/análisis , Beijerinckiaceae/metabolismo , Micrococcaceae/metabolismo , Pteris/química , Suelo/química , Arseniato Reductasas/genética , Arseniato Reductasas/metabolismo , Arsénico/metabolismo , Arsénico/toxicidad , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Beijerinckiaceae/química , Beijerinckiaceae/aislamiento & purificación , Biodegradación Ambiental , Farmacorresistencia Bacteriana/genética , Micrococcaceae/química , Micrococcaceae/aislamiento & purificación , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Pteris/metabolismo , Pteris/microbiología , Rizosfera , Sideróforos/análisis , Sideróforos/metabolismo , Microbiología del Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismo , Espectrofotometría Atómica
7.
J Integr Plant Biol ; 63(4): 755-771, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33325122

RESUMEN

In eukaryotes, MEDIATOR is a conserved multi-subunit complex that links transcription factors and RNA polymerase II and that thereby facilitates transcriptional initiation. Although the composition of MEDIATOR has been well studied in yeast and mammals, relatively little is known about the composition of MEDIATOR in plants. By affinity purification followed by mass spectrometry, we identified 28 conserved MEDIATOR subunits in Arabidopsis thaliana, including putative MEDIATOR subunits that were not previously validated. Our results indicated that MED34, MED35, MED36, and MED37 are not Arabidopsis MEDIATOR subunits, as previously proposed. Our results also revealed that two homologous CBP/p300 histone acetyltransferases, HAC1 and HAC5 (HAC1/5) are in fact plant-specific MEDIATOR subunits. The MEDIATOR subunits MED8 and MED25 (MED8/25) are partially responsible for the association of MEDIATOR with HAC1/5, MED8/25 and HAC1/5 co-regulate gene expression and thereby affect flowering time and floral development. Our in vitro observations indicated that MED8 and HAC1 form liquid-like droplets by phase separation, and our in vivo observations indicated that these droplets co-localize in the nuclear bodies at a subset of nuclei. The formation of liquid-like droplets is required for MED8 to interact with RNA polymerase II. In summary, we have identified all of the components of Arabidopsis MEDIATOR and revealed the mechanism underlying the link of histone acetylation and transcriptional regulation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flores/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Arseniato Reductasas/genética , Arseniato Reductasas/metabolismo , Flores/genética , Regulación de la Expresión Génica de las Plantas , Histonas/genética , Histonas/metabolismo , Complejo Mediador/genética , Complejo Mediador/metabolismo , Plantas Modificadas Genéticamente/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo
8.
J Hazard Mater ; 399: 122895, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32937698

RESUMEN

Arsenic-hyperaccumulator Pteris vittata is efficient in As absorption, reduction, and translocation. But the molecular mechanisms and locations of arsenate (AsV) reduction in P. vittata are still unclear. Here, we identified two new arsenate reductase genes from P. vittata, PvHAC1 and PvHAC2. Two PvHAC genes encoded a rhodanase-like protein, which were localized in the cytoplasm and nucleus. Both recombinant Escherichia coli strains and transgenic Arabidopsis thaliana lines showed arsenate reductase ability after expressing PvHAC genes. Further, expressing PvHAC2 enhanced As tolerance and reduced As accumulation in A. thaliana shoots under AsV exposure. Based on expression pattern analysis, PvHAC1 and PvHAC2 were predominantly expressed in the rhizomes and fronds of P. vittata. Different from those of HAC homologous genes in non-hyperaccumulators, little PvHAC was expressed in the roots. Besides, PvHAC1 expression was strongly upregulated under AsV exposure but not AsIII. The data suggest that arsenate reductase PvHAC1 in the rhizomes coupled with arsenate reductase PvHAC2 in the fronds of P. vittata played a critical role in As-hyperaccumulation by P. vittata, which helps to further improve its utility in phytoremediation of As-contaminated soils.


Asunto(s)
Arsénico , Pteris , Contaminantes del Suelo , Arseniato Reductasas/genética , Arseniatos , Biodegradación Ambiental , Raíces de Plantas/química , Pteris/genética , Contaminantes del Suelo/análisis
9.
Appl Environ Microbiol ; 86(21)2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32859593

RESUMEN

Arsenate is a notorious toxicant that is known to disrupt multiple biochemical pathways. Many microorganisms have developed mechanisms to detoxify arsenate using the ArsC-type arsenate reductase, and some even use arsenate as a terminal electron acceptor for respiration involving arsenate respiratory reductase (Arr). ArsC-type reductases have been studied extensively, but the phylogenetically unrelated Arr system is less investigated and has not been characterized from Archaea Here, we heterologously expressed the genes encoding Arr from the crenarchaeon Pyrobaculum aerophilum in the euryarchaeon Pyrococcus furiosus, both of which grow optimally near 100°C. Recombinant P. furiosus was grown on molybdenum (Mo)- or tungsten (W)-containing medium, and two types of recombinant Arr enzymes were purified, one containing Mo (Arr-Mo) and one containing W (Arr-W). Purified Arr-Mo had a 140-fold higher specific activity in arsenate [As(V)] reduction than Arr-W, and Arr-Mo also reduced arsenite [As(III)]. The P. furiosus strain expressing Arr-Mo (the Arr strain) was able to use arsenate as a terminal electron acceptor during growth on peptides. In addition, the Arr strain had increased tolerance compared to that of the parent strain to arsenate and also, surprisingly, to arsenite. Compared to the parent, the Arr strain accumulated intracellularly almost an order of magnitude more arsenic when cells were grown in the presence of arsenite. X-ray absorption spectroscopy (XAS) results suggest that the Arr strain of P. furiosus improves its tolerance to arsenite by increasing production of less-toxic arsenate and nontoxic methylated arsenicals compared to that by the parent.IMPORTANCE Arsenate respiratory reductases (Arr) are much less characterized than the detoxifying arsenate reductase system. The heterologous expression and characterization of an Arr from Pyrobaculum aerophilum in Pyrococcus furiosus provides new insights into the function of this enzyme. From in vivo studies, production of Arr not only enabled P. furiosus to use arsenate [As(V)] as a terminal electron acceptor, it also provided the organism with a higher resistance to arsenate and also, surprisingly, to arsenite [As(III)]. In contrast to the tungsten-containing oxidoreductase enzymes natively produced by P. furiosus, recombinant P. aerophilum Arr was much more active with molybdenum than with tungsten. It is also, to our knowledge, the only characterized Arr to be active with both molybdenum and tungsten in the active site.


Asunto(s)
Proteínas Arqueales/genética , Arseniato Reductasas/genética , Regulación de la Expresión Génica Arqueal , Pyrococcus furiosus/genética , Thermoproteaceae/genética , Proteínas Arqueales/metabolismo , Arseniato Reductasas/metabolismo , Arsénico/metabolismo , Microorganismos Modificados Genéticamente/enzimología , Microorganismos Modificados Genéticamente/genética , Microorganismos Modificados Genéticamente/metabolismo , Pyrococcus furiosus/enzimología , Pyrococcus furiosus/metabolismo
10.
Biochim Biophys Acta Bioenerg ; 1861(10): 148252, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32569664

RESUMEN

The three presently known enzymes responsible for arsenic-using bioenergetic processes are arsenite oxidase (Aio), arsenate reductase (Arr) and alternative arsenite oxidase (Arx), all of which are molybdoenzymes from the vast group referred to as the Mo/W-bisPGD enzyme superfamily. Since arsenite is present in substantial amounts in hydrothermal environments, frequently considered as vestiges of primordial biochemistry, arsenite-based bioenergetics has long been predicted to be ancient. Conflicting scenarios, however, have been put forward proposing either Arr/Arx or Aio as operating in the ancestral metabolism. Phylogenetic data argue in favor of Aio whereas biochemical and physiological data led several authors to propose Arx/Arr as the most ancient anaerobic arsenite metabolizing enzymes. Here we combine phylogenetic approaches with physiological and biochemical experiments to demonstrate that the Arx/Arr enzymes could not have been functional in the Archaean geological eon. We propose that Arr reacts with menaquinones to reduce arsenate whereas Arx reacts with ubiquinone to oxidize arsenite, in line with thermodynamic considerations. The distribution of the quinone biosynthesis pathways, however, clearly indicates that the ubiquinone pathway is recent. An updated phylogeny of Arx furthermore reinforces the hypothesis of a recent emergence of this enzyme. We therefore conclude that anaerobic arsenite redox conversion in the Archaean must have been performed in a metabolism involving Aio.


Asunto(s)
Arseniato Reductasas/metabolismo , Arsenitos/metabolismo , Evolución Molecular , Oxidorreductasas/metabolismo , Filogenia , Arseniato Reductasas/genética , Genómica , Oxidación-Reducción , Oxidorreductasas/genética , Termodinámica
11.
J Environ Sci Health B ; 55(5): 447-454, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31941390

RESUMEN

The genome of Acidiphilium multivorum strain AIU 301, acidophilic, aerobic Gram-negative bacteria, was investigated for potential metabolic pathways associated with organic acid production and metal uptake. The genome was compared to other acidic mine drainage isolates, Acidiphilium cryptum JF-5 and Acidithiobacillus ferrooxidans ATCC 23270, as well as Acetobacter pasteurianus 386B, which ferments cocoa beans. Plasmids between two Acidiphilium spp. were compared, and only two of the sixteen plasmids were identified as potentially similar. Comparisons of the genome size to the number of protein coding sequences indicated that A. multivorum and A. cryptum follow the line of best fit unlike A. pasteurianus 386B, which suggests that it was improperly annotated in the database. Pathways between these four species were analyzed bioinformatically and are discussed here. A. multivorum AIU 301, shares pathways with A. pasteurianus 386B including aldehyde and alcohol dehydrogenase pathways, which are used in the generation of vinegar. Mercury reductase, arsenate reductase and sulfur utilization proteins were identified and discussed at length. The absence of sulfur utilization proteins from A. multivorum AIU 301 suggests that this species uses previously undefined pathways for sulfur acquisition. Bioinformatic examination revealed novel pathways that may benefit commercial fields including acetic acid production and biomining.


Asunto(s)
Ácido Acético/metabolismo , Acidiphilium/genética , Genoma Bacteriano , Acidiphilium/metabolismo , Arseniato Reductasas/genética , Biología Computacional , Simulación por Computador , Tamaño del Genoma , Redes y Vías Metabólicas/genética , Metales/metabolismo , Minería , Oxidorreductasas/genética , Plásmidos , Azufre/metabolismo
12.
Sci Signal ; 12(609)2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31772124

RESUMEN

The yeast stress-activated protein kinase Hog1 is best known for its role in mediating the response to osmotic stress, but it is also activated by various mechanistically distinct environmental stressors, including heat shock, endoplasmic reticulum stress, and arsenic. In the osmotic stress response, the signal is sensed upstream and relayed to Hog1 through a kinase cascade. Here, we identified a mode of Hog1 function whereby Hog1 senses arsenic through a direct physical interaction that requires three conserved cysteine residues located adjacent to the catalytic loop. These residues were essential for Hog1-mediated protection against arsenic, were dispensable for the response to osmotic stress, and promoted the nuclear localization of Hog1 upon exposure of cells to arsenic. Hog1 promoted arsenic detoxification by stimulating phosphorylation of the transcription factor Yap8, promoting Yap8 nuclear localization, and stimulating the transcription of the only known Yap8 targets, ARR2 and ARR3, both of which encode proteins that promote arsenic efflux. The related human kinases ERK1 and ERK2 also bound to arsenic in vitro, suggesting that this may be a conserved feature of some members of the mitogen-activated protein kinase (MAPK) family. These data provide a mechanistic basis for understanding how stress-activated kinases can sense distinct threats and perform highly specific adaptive responses.


Asunto(s)
Arsénico/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Arseniato Reductasas/genética , Arseniato Reductasas/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
13.
Plant Cell ; 31(9): 2187-2205, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31320481

RESUMEN

Groucho/Thymidine uptake 1 (Gro/Tup1) family proteins are evolutionarily conserved transcriptional coregulators in eukaryotic cells. Despite their prominent function in transcriptional repression, little is known about their role in transcriptional activation and the underlying mechanism. Here, we report that the plant Gro/Tup1 family protein LEUNIG_HOMOLOG (LUH) activates MYELOCYTOMATOSIS2 (MYC2)-directed transcription of JAZ2 and LOX2 via the Mediator complex coactivator and the histone acetyltransferase HAC1. We show that the Mediator subunit MED25 physically recruits LUH to MYC2 target promoters that then links MYC2 with HAC1-dependent acetylation of Lys-9 of histone H3 (H3K9ac) to activate JAZ2 and LOX2 Moreover, LUH promotes hormone-dependent enhancement of protein interactions between MYC2 and its coactivators MED25 and HAC1. Our results demonstrate that LUH interacts with MED25 and HAC1 through its distinct domains, thus imposing a selective advantage by acting as a scaffold for MYC2 activation. Therefore, the function of LUH in regulating jasmonate signaling is distinct from the function of TOPLESS, another member of the Gro/Tup1 family that represses MYC2-dependent gene expression in the resting stage.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arseniato Reductasas/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Proteínas de Unión al ADN/metabolismo , Activación Transcripcional/fisiología , Acetilación , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Arseniato Reductasas/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas , Histonas , Lipooxigenasas/genética , Lipooxigenasas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Activación Transcripcional/genética
14.
Arch Microbiol ; 201(9): 1285-1293, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31256199

RESUMEN

Aiming at revealing the arsenic (As) resistance of the endophytic Kocuria strains isolated from roots and stems of Sphaeralcea angustifolia grown at mine tailing, four strains belonging to different clades of Kocuria based upon the phylogeny of 16S rRNA genes were screened for minimum inhibitory concentration (MIC). Only the strain NE1RL3 was defined as an As-resistant bacterium with MICs of 14.4/0.0125 mM and 300/20.0 mM for As3+ and As5+, respectively, in LB/mineral media. This strain was identified as K. palustris based upon analyses of cellular chemical compositions (cellular fatty acids, isoprenoides, quinones, and sugars), patterns of carbon source, average nucleotide identity of genome and digital DNA-DNA relatedness. Six genes coding to enzymes or proteins for arsenate reduction and arsenite-bumping were detected in the genome, demonstrating that this strain is resistant to As possibly by reducing As5+ to As3+, and then bumping As3+ out of the cell. However, this estimation was not confirmed since no arsenate reduction was detected in a subsequent assay. This study reported for the first time the presence of phylogenetically distinct arsenate reductase genes in a Kocuria strain and evidenced the possible horizontal transfer of these genes among the endophytic bacteria.


Asunto(s)
Arseniato Reductasas/genética , Arseniatos/metabolismo , Micrococcaceae/enzimología , Micrococcaceae/genética , Arsénico/farmacología , Arsenitos/metabolismo , Pruebas de Sensibilidad Microbiana , Micrococcaceae/metabolismo , Filogenia , ARN Ribosómico 16S/genética , Tracheophyta/microbiología
15.
Epigenetics ; 14(2): 130-145, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30739529

RESUMEN

Arsenic exposure is a global health problem. Millions of people encounter arsenic through contaminated drinking water, consumption, and inhalation. The arsenic response locus in budding yeast is responsible for the detoxification of arsenic and its removal from the cell. This locus constitutes a conserved pathway ranging from prokaryotes to higher eukaryotes. The goal of this study was to identify how transcription from the arsenic response locus is regulated in an arsenic dependent manner. An affinity enrichment strategy called CRISPR-Chromatin Affinity Purification with Mass Spectrometry (CRISPR-ChAP-MS) was used, which provides for the proteomic characterization of a targeted locus. CRISPR-ChAP-MS was applied to the promoter regions of the activated arsenic response locus and uncovered 40 nuclear-annotated proteins showing enrichment. Functional assays identified the histone acetyltransferase SAGA and the chromatin remodelling complex SWI/SNF to be required for activation of the locus. Furthermore, SAGA and SWI/SNF were both found to specifically organize the chromatin structure at the arsenic response locus for activation of gene transcription. This study provides the first proteomic characterization of an arsenic response locus and key insight into the mechanisms of transcriptional activation that are necessary for detoxification of arsenic from the cell.


Asunto(s)
Arsénico/farmacología , Proteómica/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Arseniato Reductasas/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Sistemas CRISPR-Cas , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Proteínas de Transporte de Membrana/genética , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
16.
J Mol Model ; 25(1): 15, 2019 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-30610463

RESUMEN

Arsenic prevalence in the environment impelled many organisms to develop resistance over the course of evolution. Tolerance to arsenic, either as the pentavalent [As(V)] form or the trivalent form [As(III)], by bacteria has been well studied in prokaryotes, and the mechanism of action is well defined. However, in the rod-shaped arsenic tolerant Deinococcus indicus DR1, the key enzyme, arsenate reductase (ArsC) has not been well studied. ArsC of D. indicus belongs to the Grx-linked prokaryotic arsenate reductase family. While it shares homology with the well-studied ArsC of Escherichia coli having a catalytic cysteine (Cys 12) and arginine triad (Arg 60, 94, and 107), the active site of D.indicus ArsC contains four residues Glu 9, Asp 53, Arg 86, and Glu 100, and with complete absence of structurally equivalent residue for crucial Cys 12. Here, we report that the mechanism of action of ArsC of D. indicus is different as a result of convergent evolution and most likely able to detoxify As(V) using a mix of positively- and negatively-charged residues in its active site, unlike the residues of E. coli. This suggests toward the possibility of an alternative mechanism of As (V) degradation in bacteria.


Asunto(s)
Arseniato Reductasas/metabolismo , Arsénico/metabolismo , Proteínas Bacterianas/metabolismo , Deinococcus/enzimología , Secuencia de Aminoácidos , Aminoácidos/química , Aminoácidos/metabolismo , Arseniato Reductasas/clasificación , Arseniato Reductasas/genética , Arsénico/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Dominio Catalítico , Deinococcus/genética , Simulación de Dinámica Molecular , Filogenia , Unión Proteica , Dominios Proteicos , Homología de Secuencia de Aminoácido
17.
Aquat Toxicol ; 204: 9-18, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30170209

RESUMEN

The major hazard of arsenic in living organisms is increasingly being recognized. Marine mollusks are apt to accumulate high levels of arsenic, but knowledge related to arsenic detoxification in marine mollusks is still less than sufficient. In this study, arsenic bioaccumulation as well as the role of glutathione S-transferase omega (GSTΩ) in the process of detoxification were investigated in the Ruditapes philippinarum clam after waterborne exposure to As(III) or As(V) for 30 days. The results showed that the gills accumulated significantly higher arsenic levels than the digestive glands. Arsenobetaine (AsB) and dimethylarsenate (DMA) accounted for most of the arsenic found, and monomethylarsonate (MMA) can be quickly metabolized. A subcellular distribution analysis showed that most arsenic was in biologically detoxified metal fractions (including metal-rich granules and metallothionein-like proteins), indicating their important roles in protecting cells from arsenic toxicity. The relative mRNA expressions of two genes encoding GSTΩ were up-regulated after arsenic exposure, and the transcriptional responses were more sensitive to As(III) than As(V). The recombinant GSTΩs exhibited high activities at optimal conditions, especially at 37 °C and pH 4-5, with an As(V) concentration of 60 mM. Furthermore, the genes encoding GSTΩ significantly enhance the arsenite tolerance but not the arsenate tolerance of E. coli AW3110 (DE3) (ΔarsRBC). It can be deduced from these results that GSTΩs play an important role in arsenic detoxification in R. philippinarum.


Asunto(s)
Arsénico/metabolismo , Bivalvos/enzimología , Glutatión Transferasa/metabolismo , Animales , Arseniato Reductasas/genética , Arseniato Reductasas/metabolismo , Arseniatos/toxicidad , Arsénico/toxicidad , Bivalvos/citología , Bivalvos/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Glutatión Transferasa/genética , Concentración de Iones de Hidrógeno , Inactivación Metabólica/efectos de los fármacos , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Análisis de Secuencia de Proteína , Fracciones Subcelulares/metabolismo , Especificidad por Sustrato/efectos de los fármacos , Temperatura , Distribución Tisular/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad
18.
Can J Microbiol ; 64(9): 619-627, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30169127

RESUMEN

Citrobacter sp. strain TSA-1 is an enteric bacterium isolated from the hindgut of the termite. Strain TSA-1 displays anaerobic growth with selenite, fumarate, tetrathionate, nitrate, or arsenate serving as electron acceptors, and it also grows aerobically. In regards to arsenate, genome sequencing revealed that strain TSA-1 lacks a homolog for respiratory arsenate reductase, arrAB, and we were unable to obtain amplicons of arrA. This raises the question as to how strain TSA-1 achieves As(V)-dependent growth. We show that growth of strain TSA-1 on glycerol, which it cannot ferment, is linked to the electron acceptor arsenate. A series of transcriptomic experiments were conducted to discern which genes were upregulated during growth on arsenate, as opposed to those on fumarate or oxygen. For As(V), upregulation was noted for 1 of the 2 annotated arsC genes, while there was no clear upregulation for tetrathionate reductase (ttr), suggesting that this enzyme is not an alternative to arrAB as occurs in certain hyperthermophilic archaea. A gene-deletion mutant strain of TSA-1 deficient in arsC could not achieve anaerobic respiratory growth on As(V). Our results suggest that Citrobacter sp. strain TSA-1 has an unusual and as yet undefined means of achieving arsenate respiration, perhaps involving its ArsC as a respiratory reductase as well as a detoxifying agent.


Asunto(s)
Arseniato Reductasas/metabolismo , Arseniatos/metabolismo , Citrobacter/metabolismo , Isópteros/microbiología , Anaerobiosis/genética , Animales , Arseniato Reductasas/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Citrobacter/genética , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Genes Bacterianos/genética , Genoma Bacteriano/genética , Mutación
19.
World J Microbiol Biotechnol ; 34(10): 142, 2018 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-30203106

RESUMEN

The Burkholderia xenovorans LB400 multireplicon genome displays a relatively high proportion of redundant genes, including several genes predicted to be related to arsenic resistance. These comprise an ars gene cluster, composed of the arsR3, acr3, arsC1 and arsH genes, as well as two arsB, arsC2, and seven individual arsR genes. The objective of this work was to elucidate the involvement of the ars gene cluster in arsenic resistance by the LB400 strain. Susceptibility tests showed that B. xenovorans LB400 is highly resistant to arsenate and arsenite. Arsenic resistance was induced by prior exposure of LB400 to arsenate or arsenite. reverse transcription-polymerase chain reaction assays using total RNA from LB400 showed arsenite-induced transcription of the arsR3 gene, suggesting that the ars gene cluster constitutes an arsenite-responsive operon. Transfer of cloned LB400 ars genes to heterologous Escherichia coli or Pseudomonas aeruginosa strains demonstrated that the ArsR3 transcriptional repressor, ArsC1 arsenate reductase, and the Acr3 arsenite efflux pump encoded in the LB400 ars gene cluster, are all associated to the arsenic resistance phenotype of this strain. The ars gene cluster from Burkholderia xenovorans LB400 is responsible for the inducible arsenic-resistance phenotype of the bacterium.


Asunto(s)
Arsénico/metabolismo , Proteínas Bacterianas/genética , Burkholderia/genética , Farmacorresistencia Bacteriana/genética , Familia de Multigenes/genética , Arseniato Reductasas/genética , Arseniatos/metabolismo , Arseniatos/toxicidad , Arsénico/toxicidad , Arsenitos/metabolismo , Arsenitos/toxicidad , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Burkholderia/efectos de los fármacos , Burkholderia/crecimiento & desarrollo , Clonación Molecular , ADN Bacteriano/análisis , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Pruebas de Sensibilidad Microbiana , Operón , Fenotipo , Filogenia , Pseudomonas aeruginosa/genética , Alineación de Secuencia , Análisis de Secuencia de Proteína , Transactivadores/genética
20.
BMC Microbiol ; 18(1): 104, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30180796

RESUMEN

BACKGROUND: Microorganisms specifically bacteria play a crucial role in arsenic mobilization and its distribution in aquatic systems. Although bacteria are well known for their active participation in the different biogeochemical cycles, the role of these bacteria in regulating the concentration of arsenic in Brahmaputra valley has not been investigated in detail. RESULTS: In this paper, we report the isolation of an arsenic resistant bacterium TA6 which can efficiently reduce arsenate. The isolate identified as Staphylococcus sp. TA6 based on the molecular and chemotaxonomic identification (FAME) showed resistance to the high concentration of both arsenate and arsenite (As(III) = 30 mM; As(V) = 250 mM), along with cross-tolerance to other heavy metals viz., Hg2+, Cd2+, Co2+, Ni2+, Cr2+. The bacterium also had a high siderophore activity (78.7 ± 0.004 µmol) that positively correlated with its ability to resist arsenic. The isolate, Staphylococcus sp. TA6 displayed high bio-transformation ability and reduced 2 mM As(V) initially added into As(III) in a period of 72 h with 88.2% efficiency. The characterization of arsenate reductase enzyme with NADPH coupled assay showed the highest activity at pH 5.5 and temperature of 50 °C. CONCLUSIONS: This study demonstrates the role of an isolate, Staphylococcus sp. TA6, in the biotransformation of arsenate to arsenite. The presence of ars operon along with the high activity of the arsenate reductase and siderophore production in this isolate may have played an important role in mobilizing arsenate to arsenite and thus increasing the toxicity of arsenic in the aquatic systems of the Brahmaputra valley.


Asunto(s)
Arsénico/metabolismo , Agua Subterránea/microbiología , Sideróforos/metabolismo , Staphylococcus/metabolismo , Contaminantes Químicos del Agua/metabolismo , Arseniato Reductasas/genética , Arseniato Reductasas/metabolismo , Arsénico/análisis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biotransformación , Agua Subterránea/análisis , India , Metales Pesados/metabolismo , Operón , Staphylococcus/clasificación , Staphylococcus/aislamiento & purificación , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...