Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 426
Filtrar
1.
Malar J ; 23(1): 296, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39363296

RESUMEN

BACKGROUND: Parenteral artesunate is the first-line therapy for severe malaria. Artesunate, in its current formulation, must be prepared immediately before administration by first dissolving in sodium bicarbonate solution and then diluting in saline. A novel solvent for rapid and stable single step reconstitution of artesunate was recently developed showing improved solubility and stability. This study aimed to compare the safety and pharmacokinetic properties of the currently available and newly developed parenteral formulation of artesunate in healthy Thai volunteers. METHODS: This was an open-label, randomized, 4 periods, 4-treatments, 24-sequence, single-dose, cross-over study in 72 male and female healthy Thai volunteers. Frequent pharmacokinetic samples were collected in all volunteers at each dose occasion. Observed concentration-time profiles were analysed with a non-compartmental approach followed by a bioequivalence evaluation. RESULTS: Both intramuscular and intravenous administrations of the new parenteral formulation of artesunate were safe and well-tolerated, with no additional safety signals compared to the currently used formulation. The pharmacokinetic properties of artesunate and its active metabolite, dihydroartemisinin, were well-characterized, and showed rapid conversion of artesunate into dihydroartemisinin. Intramuscular administration of the newly formulated artesunate resulted in almost complete bioavailability of dihydroartemisinin. The pharmacokinetic properties were similar between the old and new formulation. CONCLUSIONS: The new and more easily prepared formulation of artesunate was safe and well-tolerated, with similar pharmacokinetic properties compared to the currently used formulation. Dihydroartemisinin, the active metabolite responsible for the majority of the anti-malarial effect, showed equivalent exposure after both intravenous and intramuscular administration of artesunate, suggesting that both routes of administration should generate comparable therapeutic effects. TRIAL REGISTRATION: The study was registered to clinicaltrials.gov (#TCTR20170907002).


Asunto(s)
Antimaláricos , Artemisininas , Artesunato , Estudios Cruzados , Voluntarios Sanos , Humanos , Artesunato/farmacocinética , Artesunato/administración & dosificación , Masculino , Antimaláricos/farmacocinética , Antimaláricos/administración & dosificación , Antimaláricos/efectos adversos , Adulto , Artemisininas/farmacocinética , Artemisininas/administración & dosificación , Artemisininas/efectos adversos , Femenino , Tailandia , Adulto Joven , Inyecciones Intramusculares , Administración Intravenosa , Persona de Mediana Edad , Adolescente , Equivalencia Terapéutica , Pueblos del Sudeste Asiático
2.
Trials ; 25(1): 583, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227956

RESUMEN

BACKGROUND: Primaquine (PQ) has activity against mature P. falciparum gametocytes and proven transmission blocking efficacy (TBE) between humans and mosquitoes. WHO formerly recommended a single transmission blocking dose of 0.75 mg/kg but this was little used. Then in 2012, faced with the emergence of artemisinin-resistant P. falciparum (ARPf) in SE Asia, the WHO recommended a lower dose of 0.25 mg/kg to be added to artemisinin-based combination therapy in falciparum-infected patients in low transmission areas. This dose was considered safe in glucose-6-phosphate dehydrogenase deficiency (G6PDd) and not requiring G6PD testing. Subsequent single low-dose primaquine (SLDPQ) studies have demonstrated safety in different G6PD variants. Dosing remains challenging in children under the age of 5 because of the paucity of PQ pharmacokinetic (PK) data. We plan to assess the anti-infectivity efficacy of SLDPQ using an allometrically scaled, weight-based regimen, with a target dose of 0.25 mg/kg, in children with acute uncomplicated falciparum malaria. METHODS: This study is an open label, randomised 1:1, phase IIb study to assess TBE, tolerability, pharmacokinetics and acceptability of artesunate pyronaridine (ASPYR) administered alone or combined with SLDPQ in 56 Burkinabe children aged ≥ 6 months- < 5 years, with uncomplicated P. falciparum and a haemoglobin (Hb) concentration of ≥ 5 g/dL. We will assess TBE, using direct membrane feeding assays (DMFA), and further investigate PQ pharmacokinetics, adverse events, Hb dynamics, G6PD, sickle cells, thalassaemia and cytochrome 2D6 (CYP2D6) status, acceptability of flavoured PQ [CAST-ClinSearch Acceptability Score Test®], and the population's knowledge, attitude and practices on malaria. EXPECTED RESULTS AND DISCUSSION: We expect children to accept tablets, confirm the TBE and gametocytocidal effects of SLDPQ and then construct a PK infectivity model (including age, sex, baseline Hb, G6PD and CYP2D6 status) to define the dose response TBE relationship that may lead to fine tuning our SLDPQ regimen. Our study will complement others that have examined factors associated with Hb dynamics and PQ PK. It will provide much needed, high-quality evidence of SLDPQ in sick African children and provide reassurance that SLDPQ should be used as a strategy against emerging ARPf in Africa. TRIAL REGISTRATION: ISRCTN16297951. Registered on September 26, 2021.


Asunto(s)
Antimaláricos , Malaria Falciparum , Plasmodium falciparum , Primaquina , Ensayos Clínicos Controlados Aleatorios como Asunto , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Primaquina/farmacocinética , Primaquina/administración & dosificación , Primaquina/efectos adversos , Burkina Faso , Antimaláricos/farmacocinética , Antimaláricos/administración & dosificación , Antimaláricos/efectos adversos , Preescolar , Plasmodium falciparum/efectos de los fármacos , Masculino , Resultado del Tratamiento , Femenino , Lactante , Ensayos Clínicos Fase II como Asunto , Artemisininas/farmacocinética , Artemisininas/administración & dosificación , Artemisininas/efectos adversos , Artemisininas/uso terapéutico
3.
Ther Deliv ; 15(9): 653-666, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39225262

RESUMEN

Aim: In this study, we aimed to prepare enteric encapsulated spheroids containing inclusion complex using quality by design approach.Methods: A Box-Behnken design was employed to determine effects of variables on selected responses. Risk assessment was conducted using Ishikawa fishbone diagram. A model with a p-value was less than 0.5 for being a significant error of model was determined based on significance 'lack of fit' value. Spheroids were formulated using the extrusion spheronization technique and were characterized using analytical techniques.Results: In vitro release was performed in both acidic (pH 1.2) and simulated intestinal (pH 6.8) conditions. Permeability studies demonstrated tenfold enhancement compared with arteether. In vivo studies further validated increase of 51.8% oral bioavailability. Ex vivo studies revealed 3.4-fold enhancement in antimalarial activity compared with arteether.Conclusion: These findings highlight effectiveness of inclusion complexation technique as a viable approach to enhance solubility and bioavailability for drugs with low aqueous solubility.


[Box: see text].


Asunto(s)
Antimaláricos , Artemisininas , Disponibilidad Biológica , Solubilidad , Antimaláricos/farmacocinética , Antimaláricos/administración & dosificación , Antimaláricos/química , Animales , Artemisininas/administración & dosificación , Artemisininas/química , Artemisininas/farmacocinética , Artemisininas/farmacología , Permeabilidad , Administración Oral , Humanos , Química Farmacéutica/métodos , Masculino , Plasmodium falciparum/efectos de los fármacos , Absorción Intestinal , Concentración de Iones de Hidrógeno , Liberación de Fármacos
4.
Microbiol Spectr ; 12(10): e0099424, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39194289

RESUMEN

Malaria rapid diagnostic tests (RDTs), which detect Plasmodium falciparum (Pf)-specific histidine-rich protein-2 (HRP2), have increasing importance for the diagnosis and control of malaria, especially also in regions where routine diagnosis by microscopy is not available. HRP2-based RDTs have a similar sensitivity to expert microscopy, but their reported low specificity can lead to high false positivity rates, particularly in high-endemic areas. Despite the widespread use of RDTs, models investigating the dynamics of HRP2 clearance following Pf treatment focus rather on short-term clearance of the protein. The goal of this observational cohort study was to determine the long-term kinetic of HRP2-levels in peripheral blood after treatment of uncomplicated malaria cases with Pf mono-infection using a 3-day course of artesunate/amodiaquine. HRP2 levels were quantified at enrollment and on days 1, 2, 3, 5, 7, 12, 17, 22, and 28 post-treatment initiation. The findings reveal an unexpectedly prolonged clearance of HRP2 after parasite clearance from capillary blood. Terminal HRP2 half-life was estimated to be 9 days after parasite clearance using a pharmacokinetic two-compartmental elimination model. These results provide evidence that HRP2 clearance has generally been underestimated, as the antigen remains detectable in capillary blood for up to 28 days following successful treatment, influencing RDT-based assessment following a malaria treatment for weeks. A better understanding of the HRP2 clearance dynamics is critical for guiding the diagnosis of malaria when relying on RDTs. IMPORTANCE: Detecting Plasmodium falciparum, the parasite responsible for the severest form of malaria, typically involves microscopy, polymerase chain reaction (PCR), or rapid diagnostic tests (RDTs) targeting the histidine-rich protein 2 or 3 (HRP2/3). While microscopy and PCR quickly turn negative after the infection is cleared, HRP2 remains detectable for a prolonged period. The exact duration of HRP2 persistence had not been well defined. Our study in Gabon tracked HRP2 levels over 4 weeks, resulting in a new model for antigen clearance. We discovered that a two-compartment model accurately predicts HRP2 levels, revealing an initial rapid reduction followed by a much slower elimination phase that can take several weeks. These findings are crucial for interpreting RDT results, as lingering HRP2 can lead to false positives, impacting malaria diagnosis and treatment decisions.


Asunto(s)
Amodiaquina , Antígenos de Protozoos , Antimaláricos , Malaria Falciparum , Plasmodium falciparum , Proteínas Protozoarias , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Malaria Falciparum/diagnóstico , Antígenos de Protozoos/sangre , Antígenos de Protozoos/metabolismo , Antígenos de Protozoos/genética , Plasmodium falciparum/genética , Gabón , Masculino , Femenino , Amodiaquina/uso terapéutico , Amodiaquina/farmacocinética , Antimaláricos/uso terapéutico , Antimaláricos/farmacocinética , Adulto , Adolescente , Artemisininas/uso terapéutico , Artemisininas/farmacocinética , Pruebas Diagnósticas de Rutina/métodos , Niño , Adulto Joven , Preescolar , Persona de Mediana Edad , Estudios de Cohortes , Combinación de Medicamentos
5.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39000107

RESUMEN

Even though several new targets (mostly viral infection) for drug repurposing of pyronaridine and artesunate have recently emerged in vitro and in vivo, inter-species pharmacokinetic (PK) data that can extend nonclinical efficacy to humans has not been reported over 30 years of usage. Since extrapolation of animal PK data to those of humans is essential to predict clinical outcomes for drug repurposing, this study aimed to investigate inter-species PK differences in three animal species (hamster, rat, and dog) and to support clinical translation of a fixed-dose combination of pyronaridine and artesunate. PK parameters (e.g., steady-state volume of distribution (Vss), clearance (CL), area under the concentration-time curve (AUC), mean residence time (MRT), etc.) of pyronaridine, artesunate, and dihydroartemisinin (an active metabolite of artesunate) were determined by non-compartmental analysis. In addition, one- or two-compartment PK modeling was performed to support inter-species scaling. The PK models appropriately described the blood concentrations of pyronaridine, artesunate, and dihydroartemisinin in all animal species, and the estimated PK parameters in three species were integrated for inter-species allometric scaling to predict human PKs. The simple allometric equation (Y = a × Wb) well explained the relationship between PK parameters and the actual body weight of animal species. The results from the study could be used as a basis for drug repurposing and support determining the effective dosage regimen for new indications based on in vitro/in vivo efficacy data and predicted human PKs in initial clinical trials.


Asunto(s)
Artemisininas , Artesunato , Reposicionamiento de Medicamentos , Naftiridinas , Artesunato/farmacocinética , Artesunato/farmacología , Reposicionamiento de Medicamentos/métodos , Animales , Ratas , Perros , Naftiridinas/farmacocinética , Naftiridinas/farmacología , Artemisininas/farmacocinética , Especificidad de la Especie , Humanos , Modelos Biológicos , Masculino , Antimaláricos/farmacocinética , Antimaláricos/farmacología
6.
BMC Pharmacol Toxicol ; 25(1): 38, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38978151

RESUMEN

BACKGROUND: Dihydroartemisinin-piperaquine (DHP) recently showed superior effectiveness over sulfadoxine-pyrimethamine for malaria intermittent preventive treatment in pregnancy (IPTp). We investigated day 7 piperaquine pharmacokinetics and its therapeutic efficacy in preventing malaria during pregnancy. METHODS: Malaria-free (mRDT) pregnant women (n = 400) who received monthly IPTp-DHP were enrolled and followed till delivery. Day 7 Plasma piperaquine concentrations were determined after each IPTp dose using UPLC/MS/MS. IPTp outcomes (symptomatic malaria and parasitemia during pregnancy, placental malaria, and maternal malaria at delivery) were monitored. Linear mixed model and Cox regression were used to assess predictors of day 7 piperaquine concentration and treatment outcome, respectively. RESULTS: The incidences of symptomatic malaria and parasitemia during pregnancy per 100 person-year at risk were 2 and 33, respectively. The prevalence of histopathologically confirmed placental malaria and maternal malaria at delivery were 3% and 9.8%, respectively. Repeated monthly IPTp-DHP resulted in significantly increased day 7 plasma piperaquine concentration (p < 0.001). Following the 1st, 2nd, and 3rd monthly IPTp-DHP doses, the proportions of women with day 7 piperaquine concentration below the therapeutic threshold (< 30 ng/mL) were 6.1%, 4.1% and 3.6%, respectively. Factors such as maternal age, body weight and trimester were not significant predictors of day 7 piperaquine concentration. However, having a low day 7 piperaquine plasma concentration (< 30 ng/mL) was significantly associated with a higher risk of parasitemia during pregnancy (p = 0.004). CONCLUSION: Lower day 7 piperaquine plasma concentration is a risk factor for parasitemia during pregnancy. Single plasma sampling at day 7 can be used to monitor piperaquine effectiveness during IPTp-DHP. TRIAL REGISTRATION: Registered 09/12/2016, PACTR201612001901313.


Asunto(s)
Antimaláricos , Malaria , Complicaciones Parasitarias del Embarazo , Quinolinas , Humanos , Femenino , Embarazo , Quinolinas/farmacocinética , Quinolinas/sangre , Quinolinas/uso terapéutico , Quinolinas/administración & dosificación , Antimaláricos/farmacocinética , Antimaláricos/uso terapéutico , Antimaláricos/sangre , Antimaláricos/administración & dosificación , Adulto , Complicaciones Parasitarias del Embarazo/prevención & control , Complicaciones Parasitarias del Embarazo/sangre , Adulto Joven , Malaria/prevención & control , Malaria/tratamiento farmacológico , Artemisininas/farmacocinética , Artemisininas/uso terapéutico , Artemisininas/administración & dosificación , Artemisininas/sangre , Parasitemia/sangre , Parasitemia/prevención & control , Resultado del Tratamiento , Combinación de Medicamentos , Adolescente , Piperazinas
7.
Int J Nanomedicine ; 19: 5273-5295, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38859952

RESUMEN

Purpose: Reducing the first-pass hepatic effect via intestinal lymphatic transport is an effective way to increase the oral absorption of drugs. 2-Monoacylglycerol (2-MAG) as a primary digestive product of dietary lipids triglyceride, can be assembled in chylomicrons and then transported from the intestine into the lymphatic system. Herein, we propose a biomimetic strategy and report a 2-MAG mimetic nanocarrier to target the intestinal lymphatic system via the lipid absorption pathway and improve oral bioavailability. Methods: The 2-MAG mimetic liposomes were designed by covalently bonding serinol (SER) on the surface of liposomes named SER-LPs to simulate the structure of 2-MAG. Dihydroartemisinin (DHA) was chosen as the model drug because of its disadvantages such as poor solubility and high first-pass effect. The endocytosis and exocytosis mechanisms were investigated in Caco-2 cells and Caco-2 cell monolayers. The capacity of intestinal lymphatic transport was evaluated by ex vivo biodistribution and in vivo pharmacokinetic experiments. Results: DHA loaded SER-LPs (SER-LPs-DHA) had a particle size of 70 nm and a desirable entrapment efficiency of 93%. SER-LPs showed sustained release for DHA in the simulated gastrointestinal environment. In vitro cell studies demonstrated that the cellular uptake of SER-LPs primarily relied on the caveolae- rather than clathrin-mediated endocytosis pathway and preferred to integrate into the chylomicron assembly process through the endoplasmic reticulum/Golgi apparatus route. After oral administration, SER-LPs efficiently promoted drug accumulation in mesenteric lymphatic nodes. The oral bioavailability of DHA from SER-LPs was 10.40-fold and 1.17-fold larger than that of free DHA and unmodified liposomes at the same dose, respectively. Conclusion: SER-LPs improved oral bioavailability through efficient intestinal lymphatic transport. These findings of the current study provide a good alternative strategy for oral delivery of drugs with high first-pass hepatic metabolism.


Asunto(s)
Artemisininas , Disponibilidad Biológica , Liposomas , Animales , Liposomas/química , Liposomas/farmacocinética , Células CACO-2 , Humanos , Administración Oral , Artemisininas/farmacocinética , Artemisininas/química , Artemisininas/administración & dosificación , Absorción Intestinal/efectos de los fármacos , Masculino , Distribución Tisular , Tamaño de la Partícula , Ratones , Sistema Linfático/metabolismo , Sistema Linfático/efectos de los fármacos , Ratas Sprague-Dawley , Ratas , Materiales Biomiméticos/farmacocinética , Materiales Biomiméticos/química , Mucosa Intestinal/metabolismo
8.
Int J Nanomedicine ; 19: 3847-3859, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38708182

RESUMEN

Background: Dihydroartemisinin (DHA) has emerged as a promising candidate for anticancer therapy. However, the application of DHA in clinics has been hampered by several limitations including poor bioavailability, short circulation life, and low solubility, significantly restricting its therapeutic efficacy and leading to notable side effects during the treatment. Purpose: We present DHA-loaded zeolitic imidazolate framework-8 (D-ZIF) with controllable and targeted DHA release properties, leading to enhanced antitumor effects while reducing potential side effects. Methods: D-ZIF was prepared by one-pot synthesis method using methylimidazole (MIM), Zn(NO3)2•6H2O and DHA. We characterized the physical and chemical properties of D-ZIF by TEM, DLS, XRD, FT-IR, and TG. We measured the drug loading efficiency and the cumulative release of DHA in different pH conditions. We evaluated the cytotoxicity of D-ZIF on renal cell carcinoma (RCC786-O), glioma cells (U251), TAX-resistant human lung adenocarcinoma (A549-TAX) cells by CCK8 in vitro. We explored the possible antitumor mechanism of D-ZIF by Western blot. We evaluated the biocompatibility and hemolysis of D-ZIF and explored the in vivo antitumor efficiency in mice model by TUNEL testing and blood biomarker evaluations. Results: D-ZIF showed rhombic dodecahedral morphology with size of 129±7.2 nm and possessed a noticeable DHA encapsulation efficiency (72.9%). After 48 hours, D-ZIF released a cumulative 70.0% of the loaded DHA at pH 6.5, and only 42.1% at pH 7.4. The pH-triggered programmed release behavior of D-ZIF could enhance anticancer effect of DHA while minimizing side effects under normal physiological conditions. Compared with the free DHA group with 31.75% of A549-TAX cell apoptosis, the percentage of apoptotic cells was approximately 76.67% in the D-ZIF group. D-ZIF inhibited tumor growth by inducing tumor cell apoptosis through the mechanism of ROS production and regulation of Nrf2/HO-1 and P38 MAPK signaling pathways. D-ZIF showed potent effects in treating tumors with high safety in vivo. Conclusion: This pH-responsive release mechanism enhanced the targeting efficiency of DHA towards tumor cells, thereby increasing drug concentration in tumor sites with negligible side effects. Herein, D-ZIF holds great promise for curing cancers with minimal adverse effects.


Asunto(s)
Antineoplásicos , Artemisininas , Resistencia a Antineoplásicos , Imidazoles , Neoplasias Pulmonares , Estructuras Metalorgánicas , Especies Reactivas de Oxígeno , Artemisininas/química , Artemisininas/farmacología , Artemisininas/farmacocinética , Animales , Humanos , Especies Reactivas de Oxígeno/metabolismo , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacocinética , Estructuras Metalorgánicas/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Ratones , Resistencia a Antineoplásicos/efectos de los fármacos , Línea Celular Tumoral , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/farmacocinética , Concentración de Iones de Hidrógeno , Células A549 , Liberación de Fármacos , Ratones Desnudos , Apoptosis/efectos de los fármacos , Ratones Endogámicos BALB C , Ensayos Antitumor por Modelo de Xenoinjerto , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Hemólisis/efectos de los fármacos
9.
Malar J ; 23(1): 125, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38685044

RESUMEN

BACKGROUND: Despite efforts made to reduce morbidity and mortality associated with malaria, especially in sub-Saharan Africa, malaria continues to be a public health concern that requires innovative efforts to reach the WHO-set zero malaria agenda. Among the innovations is the use of artemisinin-based combination therapy (ACT) that is effective against Plasmodium falciparum. Generic artemether-lumefantrine (AL) is used to treat uncomplicated malaria after appropriate diagnosis. AL is metabolized by the cytochrome P450 family of enzymes, such as CYP2B6, CYP3A4 and CYP3A5, which can be under pharmacogenetic influence. Pharmacogenetics affecting AL metabolism, significantly influence the overall anti-malarial activity leading to variable therapeutic efficacy. This study focused on generic AL drugs used in malarial treatment as prescribed at health facilities and evaluated pharmacogenomic influences on their efficacy. METHODS: Patients who have been diagnosed with malaria and confirmed through RDT and microscopy were recruited in this study. Blood samples were taken on days 1, 2, 3 and 7 for parasite count and blood levels of lumefantrine, artemisinin, desbutyl-lumefantrine (DBL), and dihydroartemisinin (DHA), the active metabolites of lumefantrine and artemether, respectively, were analysed using established methods. Pharmacogene variation analysis was undertaken using iPLEX microarray and PCR-RFLP. RESULTS: A total of 52 patients completed the study. Median parasite density from day 1 to 7 ranged from 0-2666/µL of blood, with days 3 and 7 recording 0 parasite density. Highest median plasma concentration for lumefantrine and desbutyl lumefantrine, which are the long-acting components of artemisinin-based combinations, was 4123.75 ng/mL and 35.87 ng/mL, respectively. Day 7 plasma lumefantrine concentration across all generic ACT brands was ≥ 200 ng/mL which potentially accounted for the parasitaemia profile observed. Monomorphism was observed for CYP3A4 variants, while there were observed variations in CYP2B6 and CYP3A5 alleles. Among the CYP3A5 genotypes, significant differences in genotypes and plasma concentration for DBL were seen on day 3 between 1/*1 versus *1/*6 (p = 0.002), *1/*3 versus *1/*6 (p = 0.006) and *1/*7 versus *1/*6 (p = 0.008). Day 7 plasma DBL concentrations showed a significant difference between *1/*6 and *1/*3 (p = 0.026) expressors. CONCLUSIONS: The study findings show that CYP2B6 and CYP3A5 pharmacogenetic variations may lead to higher plasma exposure of AL metabolites.


Asunto(s)
Antimaláricos , Combinación Arteméter y Lumefantrina , Artemisininas , Combinación de Medicamentos , Etanolaminas , Fluorenos , Humanos , Antimaláricos/uso terapéutico , Antimaláricos/farmacocinética , Combinación Arteméter y Lumefantrina/uso terapéutico , Femenino , Etanolaminas/uso terapéutico , Etanolaminas/farmacocinética , Adolescente , Fluorenos/uso terapéutico , Fluorenos/farmacocinética , Fluorenos/farmacología , Artemisininas/uso terapéutico , Artemisininas/farmacocinética , Masculino , Ghana , Adulto , Adulto Joven , Niño , Preescolar , Persona de Mediana Edad , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Medicamentos Genéricos/uso terapéutico , Resultado del Tratamiento , Farmacogenética , Anciano , Lactante
10.
Biomed Chromatogr ; 38(5): e5844, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38326977

RESUMEN

As first-line antimalarials used in the artemisinin combination therapy, artemisinin drugs exert their action inside red blood cells. However, the blood pharmacokinetic characteristics of artemisinin drugs have not been fully revealed owing to their built-in chemical instability initiated by Fe2+ released from hemoglobin, with limited information on their metabolites. In this study, liquid chromatography tandem high-resolution mass spectrometric (LC-HRMS) methods were developed for the quantification of two representative artemisinin drugs (artemisinin, ART; dihydroartemisinin, DHA) and their respective metabolite (deoxyartemisinin, D-ART; dihydroartemisinin glucuronide, DHA-Glu) in rat blood/plasma. The blood samples were pretreated with the stabilizer (0.4 m potassium dichromate and 3% EDTA-2Na). The methods displayed excellent specificity, linearity, accuracy and precision for ART (17.7-709.2 nm) and its metabolite D-ART (18.8-751.9 nm), and the linear range was 40.0-4,000.0 nm for both DHA and DHA-Glu. The methods were successfully applied to the pharmacokinetic studies of ART and DHA in rats. The blood-to-plasma ratio was 0.8-1.5 for ART, 1.0-1.5 for D-ART, 1.2-2.2 for DHA and 0.9-1.3 for DHA-Glu, which was time dependent. The results indicated that artemisinin drugs and their metabolites showed a high but different blood-to-plasma ratio, which should be considered when optimizating their dosing regimens or evaluating their clinical outcomes.


Asunto(s)
Artemisininas , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem , Artemisininas/sangre , Artemisininas/farmacocinética , Animales , Ratas , Reproducibilidad de los Resultados , Masculino , Modelos Lineales , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Antimaláricos/sangre , Antimaláricos/farmacocinética , Límite de Detección , Sensibilidad y Especificidad
11.
J Ethnopharmacol ; 322: 117612, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38135228

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Artemisinin (ART) showed enhanced antimalarial potency in the herb Artemisia annua L. (A. annua), from which ART is isolated. Increased absorption of ART with inhibited metabolism in the plant matrix is an underlying mechanism. Several synergistic components have been reported based on a "bottom-up" approach, i.e., traditional isolation followed by pharmacokinetic and/or pharmacodynamic evaluation. AIM OF THE STUDY: In this study, we employed a "top-down" approach based on in vivo antimalarial and pharmacokinetic studies to identify synergistic components in A. annua. MATERIALS AND METHODS: Two A. annua extracts in different chemical composition were obtained by extraction using ethyl acetate (EA) and petroleum ether (PE). The synergistic antimalarial activity of ART in two extracts was compared both in vitro (Plasmodium falciparum) and in vivo (murine Plasmodium yoelii). For the PD-PK correlation analysis, the pharmacokinetic profiles of ART and its major metabolite (ART-M) were investigated in healthy rats after a single oral administration of pure ART (20 mg/kg) or equivalent ART in each A. annua extract. A liquid chromatography-tandem high-resolution mass spectrometry (LC-HRMS)-based analytical strategy was then applied for efficient component classification and structural characterization of the differential components in the targeted extract with a higher antimalarial potency. Major components isolated from the targeted extract were then evaluated for their synergistic effect in the same proportion. RESULTS: Compared with pure ART (ED50, 5.6 mg/kg), ART showed enhanced antimalarial potency in two extracts in vivo (ED50 of EA, 2.9 mg/kg; ED50 of PE, 1.6 mg/kg), but not in vitro (IC50, 15.0-20.0 nM). A significant increase (1.7-fold) in ART absorption (AUC0-t) was found in rats after a single oral dose of equivalent ART in PE but not in EA; however, no significant change in the metabolic capability (AUCART-M/AUCART) was found for ART in either extract. The differential component analysis of the two extracts showed a higher composition of sesquiterpene compounds, especially component AB (3.0% in PE vs. 0.9% in EA) and component AA (14.1% in PE vs. 5.1% in EA). Two target sesquiterpenes were isolated and identified as arteannuin B (AB) and artemisinic acid (AA). The synergism between ART and AB/AA in the same proportion with PE extract (20:1.6:7.6, mg/kg) was verified by a pharmacokinetic study in rats. CONCLUSIONS: A "top-down" strategy based on PD-PK studies was successfully employed to identify synergistic components for ART in A. annua. Two sesquiterpene compounds (arteannuin B and artemisinic acid) could enhance the antimalarial potency of ART by increasing its absorption.


Asunto(s)
Antimaláricos , Artemisia annua , Artemisininas , Sesquiterpenos , Ratas , Ratones , Animales , Antimaláricos/química , Artemisia annua/química , Artemisininas/farmacocinética , Extractos Vegetales/farmacología , Extractos Vegetales/química
12.
Clin Pharmacol Ther ; 113(3): 660-669, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36260349

RESUMEN

Artemisinin-based combination therapies (ACTs) are the primary treatment for malaria. It is essential to characterize the pharmacokinetics (PKs) and pharmacodynamics (PDs) of ACTs in vulnerable populations at risk of suboptimal dosing. We developed a population PK/PD model using data from our previous study of artemether-lumefantrine in HIV-uninfected and HIV-infected children living in a high-transmission region of Uganda. HIV-infected children were on efavirenz-, nevirapine-, or lopinavir-ritonavir-based antiretroviral regimens, with daily trimethoprim-sulfamethoxazole prophylaxis. We assessed selection for resistance in two key parasite transporters, pfcrt and pfmdr1, over 42-day follow-up and incorporated genotyping into a time-to-event model to ascertain how resistance genotype in relation to drug exposure impacts recurrence risk. Two hundred seventy-seven children contributed 364 episodes to the model (186 HIV-uninfected and 178 HIV-infected), with recurrent microscopy-detectable parasitemia detected in 176 episodes by day 42. The final model was a two-compartment model with first-order absorption and an estimated age effect on bioavailability. Systemic lumefantrine exposure was highest with lopinavir-ritonavir, lowest with efavirenz, and equivalent with nevirapine and HIV-uninfected children. HIV status and lumefantrine concentration were significant factors associated with recurrence risk. Significant selection was demonstrated for pfmdr1 N86 and pfcrt K76 in recurrent infections, with no evidence of selection for pfmdr1 Y184F. Less sensitive parasites were able to tolerate lumefantrine concentrations ~ 3.5-fold higher than more sensitive parasites. This is the first population PK model of lumefantrine in HIV-infected children and demonstrates selection for reduced lumefantrine susceptibility, a concern as we confront the threat to ACTs posed by emerging artemisinin resistance in Africa.


Asunto(s)
Antimaláricos , Artemisininas , Infecciones por VIH , Malaria Falciparum , Malaria , Niño , Humanos , Antimaláricos/uso terapéutico , Antimaláricos/farmacocinética , Lopinavir/uso terapéutico , Ritonavir/uso terapéutico , Arteméter/uso terapéutico , Nevirapina/uso terapéutico , Uganda , Fluorenos/uso terapéutico , Fluorenos/farmacocinética , Combinación Arteméter y Lumefantrina/uso terapéutico , Malaria/tratamiento farmacológico , Artemisininas/farmacocinética , Lumefantrina , Combinación de Medicamentos , Infecciones por VIH/tratamiento farmacológico , Malaria Falciparum/tratamiento farmacológico
13.
Antimicrob Agents Chemother ; 66(8): e0018522, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35862743

RESUMEN

Mass drug administration (MDA) with monthly dihydroartemisinin-piperaquine (DHA-PQP) appears useful in malaria control and elimination strategies. Determining the relationship between consecutive piperaquine phosphate (PQP) exposure and its impact on QT interval prolongation is a key safety consideration for MDA campaigns. Healthy volunteers from Papua New Guinea received a 3-day course of DHA-PQP (2.1/17.1 mg/kg) monthly for 3 consecutive months in a single arm longitudinal study. Plasma PQP concentrations were measured after the third dose of each course (at 52-54 h) and at 0 h of course 3. Twelve-lead electrocardiographic readings were conducted at 0 h, 48 h, 52 h, and day 7 of each course. QT interval corrected by Fridericia's formula (QTcF) was measured at each time point. A pharmacokinetic-pharmacodynamic model using nonlinear mixed effects models was developed to correlate PQP concentrations with QTcF. Ten thousand female and 10,000 male individuals were simulated at each treatment course. Eighty-two participants were included; mean age was 28.3 years (standard deviation [SD] ±12.3 years), and 36 (44%) were female. Pharmacokinetic-pharmacodynamic models were determined with 290 PQP concentrations and 868 QTcF observations. The average baseline QTcF was 392 ms with a between-subject variability SD ±14.4 ms and between-occasion variability SD ±3.64 ms. From the population modeled, only 0.08% of males and 0.45% of females would be at risk of an absolute QTcF of >500 ms. DHA-PQP is safe at standard doses in consecutive months, and the likelihood of severe cardiac events occurring during an MDA campaign is very low. This study has been registered at ClinicalTrials.gov under identifier NCT02605720.


Asunto(s)
Antimaláricos , Malaria Falciparum , Piperazinas , Quinolinas , Adulto , Antimaláricos/efectos adversos , Antimaláricos/farmacocinética , Antimaláricos/farmacología , Artemisininas/efectos adversos , Artemisininas/farmacocinética , Artemisininas/farmacología , Femenino , Voluntarios Sanos , Humanos , Síndrome de QT Prolongado/inducido químicamente , Estudios Longitudinales , Malaria Falciparum/tratamiento farmacológico , Masculino , Papúa Nueva Guinea , Piperazinas/efectos adversos , Piperazinas/farmacocinética , Piperazinas/farmacología , Quinolinas/efectos adversos , Quinolinas/farmacocinética , Quinolinas/farmacología
14.
Antimicrob Agents Chemother ; 66(7): e0011422, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35727057

RESUMEN

The rate at which parasitemia declines in a host after treatment with an antimalarial drug is a major metric for assessment of antimalarial drug activity in preclinical models and in early clinical trials. However, this metric does not distinguish between viable and nonviable parasites. Thus, enumeration of parasites may result in underestimation of drug activity for some compounds, potentially confounding its use as a metric for assessing antimalarial activity in vivo. Here, we report a study of the effect of artesunate on Plasmodium falciparum viability in humans and in mice. We first measured the drug effect in mice by estimating the decrease in parasite viability after treatment using two independent approaches to estimate viability. We demonstrate that, as previously reported in humans, parasite viability declines much faster after artesunate treatment than does the decline in parasitemia (termed parasite clearance). We also observed that artesunate kills parasites faster at higher concentrations, which is not discernible from the traditional parasite clearance curve and that each subsequent dose of artesunate maintains its killing effect. Furthermore, based on measures of parasite viability, we could accurately predict the in vivo recrudescence of infection. Finally, using pharmacometrics modeling, we show that the apparent differences in the antimalarial activity of artesunate in mice and humans are partly explained by differences in host removal of dead parasites in the two hosts. However, these differences, along with different pharmacokinetic profiles, do not fully account for the differences in activity. (This study has been registered with the Australian New Zealand Clinical Trials Registry under identifier ACTRN12617001394336.).


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Parásitos , Animales , Antimaláricos/farmacocinética , Antimaláricos/uso terapéutico , Artemisininas/farmacocinética , Artemisininas/uso terapéutico , Artesunato/farmacología , Artesunato/uso terapéutico , Australia , Humanos , Malaria Falciparum/tratamiento farmacológico , Ratones , Parasitemia/tratamiento farmacológico , Parasitemia/parasitología , Plasmodium falciparum
15.
Clin Pharmacol Ther ; 111(3): 676-685, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34905220

RESUMEN

Clinical studies have shown that adding a single 0.25 mg base/kg dose of primaquine to standard antimalarial regimens rapidly sterilizes Plasmodium falciparum gametocytes. However, the mechanism of action and overall impact on malaria transmission is still unknown. Using data from 81 adult Malians with P. falciparum gametocytemia who received the standard dihydroartemisinin-piperaquine treatment course and were randomized to receive either a single dose of primaquine between 0.0625 and 0.5 mg base/kg or placebo, we characterized the pharmacokinetic-pharmacodynamic relationships for transmission blocking activity. Both gametocyte clearance and mosquito infectivity were assessed. A mechanistically linked pharmacokinetic-pharmacodynamic model adequately described primaquine and carboxy-primaquine pharmacokinetics, gametocyte dynamics, and mosquito infectivity at different clinical doses of primaquine. Primaquine showed a dose-dependent gametocytocidal effect that precedes clearance. A single low dose of primaquine (0.25 mg/kg) rapidly prevented P. falciparum transmissibility.


Asunto(s)
Antimaláricos/farmacología , Antimaláricos/farmacocinética , Culicidae/parasitología , Primaquina/farmacología , Primaquina/farmacocinética , Animales , Artemisininas/farmacocinética , Artemisininas/farmacología , Quimioterapia Combinada/métodos , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Piperazinas/farmacocinética , Piperazinas/farmacología , Plasmodium falciparum/efectos de los fármacos , Quinolinas/farmacocinética , Quinolinas/farmacología
16.
Mol Pharm ; 18(12): 4256-4271, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34723557

RESUMEN

Artemisinin (ART) is a most promising antimalarial agent, which is both effective and well tolerated in patients, though it has therapeutic limitations due to its low solubility, bioavailability, and short half-life. The objective of this work was to explore the possibility of formulating ART cocrystals, i.e., artemisinin-orcinol (ART-ORC) and artemisinin-resorcinol (ART2-RES), as oral dosage forms to deliver ART molecules for bioavailability enhancement. This is the first part of the study, aiming to develop a simple and effective formulation, which can then be tested on an appropriate animal model (i.e., mouse selected for in vivo study) to evaluate their preclinical pharmacokinetics for further development. In the current work, the physicochemical properties (i.e., solubility and dissolution rate) of ART cocrystals were measured to collect information necessary for the formulation development strategy. It was found that the ART solubility can be increased significantly by its cocrystals, i.e., 26-fold by ART-ORC and 21-fold by ART2-RES, respectively. Screening a set of polymers widely used in pharmaceutical products, including poly(vinylpyrrolidone), hydroxypropyl methylcellulose, and hydroxypropyl methylcellulose acetate succinate, based on the powder dissolution performance parameter analysis, revealed that poly(vinylpyrrolidone)/vinyl acetate (PVP-VA) was the most effective crystallization inhibitor. The optimal concentration of PVP-VA at 0.05 mg/mL for the formulation was then determined by a dissolution/permeability method, which represented a simplified permeation model to simultaneously evaluate the effects of a crystallization inhibitor on the dissolution and permeation performance of ART cocrystals. Furthermore, experiments, including surface dissolution of single ART cocrystals monitored by Raman spectroscopy, scanning electron microscopy and diffusion properties of ART in solution measured by 1H and diffusion-ordered spectroscopy nuclear magnetic resonance spectroscopy, provided insights into how the excipient affects the ART cocrystal dissolution performance and bioavailability.


Asunto(s)
Artemisininas/química , Artemisininas/farmacocinética , Disponibilidad Biológica , Cristalización , Difusión , Composición de Medicamentos , Excipientes/química , Polímeros/química , Solubilidad
17.
Mol Pharm ; 18(12): 4272-4289, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34748332

RESUMEN

We report the evaluation and prediction of the pharmacokinetic (PK) performance of artemisinin (ART) cocrystal formulations, that is, 1:1 artemisinin/orcinol (ART-ORC) and 2:1 artemisinin/resorcinol (ART2-RES), using in vivo murine animal and physiologically based pharmacokinetic (PBPK) models. The efficacy of the ART cocrystal formulations along with the parent drug ART was tested in mice infected with Plasmodium berghei. When given at the same dose, the ART cocrystal formulation showed a significant reduction in parasitaemia at day 4 after infection compared to ART alone. PK parameters including Cmax (maximum plasma concentration), Tmax (time to Cmax), and AUC (area under the curve) were obtained by determining drug concentrations in the plasma using liquid chromatography-high-resolution mass spectrometry (LC-HRMS), showing enhanced ART levels after dosage with the cocrystal formulations. The dose-response tests revealed that a significantly lower dose of the ART cocrystals in the formulation was required to achieve a similar therapeutic effect as ART alone. A PBPK model was developed using a PBPK mouse simulator to accurately predict the in vivo behavior of the cocrystal formulations by combining in vitro dissolution profiles with the properties of the parent drug ART. The study illustrated that information from classical in vitro and in vivo experimental investigations of the parent drug of ART formulations can be coupled with PBPK modeling to predict the PK parameters of an ART cocrystal formulation in an efficient manner. Therefore, the proposed modeling strategy could be used to establish in vitro and in vivo correlations for different cocrystals intended to improve dissolution properties and to support clinical candidate selection, contributing to the assessment of cocrystal developability and formulation development.


Asunto(s)
Artemisininas/farmacocinética , Animales , Artemisininas/química , Disponibilidad Biológica , Cristalización , Relación Dosis-Respuesta a Droga , Liberación de Fármacos , Femenino , Ratones , Ratones Endogámicos BALB C , Modelos Biológicos
18.
Nat Commun ; 12(1): 6714, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34795281

RESUMEN

Intermittent preventive treatment (IPT) with dihydroartemisinin-piperaquine (DP) is highly protective against malaria in children, but is not standard in malaria-endemic countries. Optimal DP dosing regimens will maximize efficacy and reduce toxicity and resistance selection. We analyze piperaquine (PPQ) concentrations (n = 4573), malaria incidence data (n = 326), and P. falciparum drug resistance markers from a trial of children randomized to IPT with DP every 12 weeks (n = 184) or every 4 weeks (n = 96) from 2 to 24 months of age (NCT02163447). We use nonlinear mixed effects modeling to establish malaria protective PPQ levels and risk factors for suboptimal protection. Compared to DP every 12 weeks, DP every 4 weeks is associated with 95% protective efficacy (95% CI: 84-99%). A PPQ level of 15.4 ng/mL reduces the malaria hazard by 95%. Malnutrition reduces PPQ exposure. In simulations, we show that DP every 4 weeks is optimal across a range of transmission intensities, and age-based dosing improves malaria protection in young or malnourished children.


Asunto(s)
Artemisininas/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Complicaciones Parasitarias del Embarazo/tratamiento farmacológico , Quinolinas/uso terapéutico , Algoritmos , Antimaláricos/administración & dosificación , Antimaláricos/farmacocinética , Antimaláricos/uso terapéutico , Artemisininas/administración & dosificación , Artemisininas/farmacocinética , Niño , Preescolar , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Incidencia , Lactante , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Masculino , Modelos Biológicos , Evaluación de Resultado en la Atención de Salud/métodos , Evaluación de Resultado en la Atención de Salud/estadística & datos numéricos , Plasmodium falciparum/fisiología , Embarazo , Complicaciones Parasitarias del Embarazo/metabolismo , Quinolinas/administración & dosificación , Quinolinas/farmacocinética , Uganda/epidemiología
19.
Curr Drug Metab ; 22(10): 824-834, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34602032

RESUMEN

BACKGROUND: Hepatocellular damage has been reported for the antimalarial piperaquine (PQ) in the clinic after cumulative doses. OBJECTIVES: The role of metabolism in PQ toxicity was evaluated, and the mechanism mediating PQ hepatotoxicity was investigated. METHODS: The toxicity of PQ and its major metabolite (PQ N-oxide; M1) in mice was evaluated in terms of serum biochemical parameters. The role of metabolism in PQ toxicity was investigated in mice pretreated with an inhibitor of CYP450 (ABT) and/or FMO enzyme (MMI). The dose-dependent pharmacokinetics of PQ and M1 were studied in mice. Histopathological examination was performed to reveal the mechanism mediating PQ hepatotoxicity. RESULTS: Serum biochemical levels (ALT and BUN) increased significantly (P < 0.05) in mice after three-day oral doses of PQ (> 200 mg/kg/day), indicating hepatotoxicity and nephrotoxicity of PQ at a high dose. Weaker toxicity was observed for M1. Pretreatment with ABT and/or MMI did not increase PQ toxicity. PQ and M1 showed linear pharmacokinetics in mice after a single oral dose, and multiple oral doses led to their cumulative exposures. Histopathological examination showed that a high dose of PQ (> 200 mg/kg/day for three days) could induce hepatocyte apoptosis. The mRNA levels of targets in NF-κB and p53 pathways could be up-regulated by 2-30-fold in mice by PQ or M1. CONCLUSION: PQ metabolism led to detoxification of PQ, but there was a low possibility of altered toxicity induced by metabolism inhibition. The hepatotoxicity of PQ and its N-oxidation metabolite was partly mediated by NF-κB inflammatory pathway and p53 apoptosis pathway.


Asunto(s)
Artemisininas , Enfermedad Hepática Inducida por Sustancias y Drogas , Inactivación Metabólica , Enfermedades Renales , Piperazinas , Quinolinas , Animales , Antiinfecciosos/administración & dosificación , Antiinfecciosos/farmacocinética , Antimaláricos/administración & dosificación , Antimaláricos/farmacocinética , Antimaláricos/toxicidad , Artemisininas/administración & dosificación , Artemisininas/farmacocinética , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Preparaciones de Acción Retardada/administración & dosificación , Preparaciones de Acción Retardada/farmacocinética , Preparaciones de Acción Retardada/toxicidad , Relación Dosis-Respuesta a Droga , Monitoreo de Drogas/métodos , Quimioterapia Combinada , Enfermedades Renales/inducido químicamente , Enfermedades Renales/metabolismo , Redes y Vías Metabólicas , Ratones , FN-kappa B/metabolismo , Piperazinas/administración & dosificación , Piperazinas/farmacocinética , Piperazinas/toxicidad , Quinolinas/administración & dosificación , Quinolinas/farmacocinética , Quinolinas/toxicidad , Proteína p53 Supresora de Tumor/metabolismo
20.
Drug Deliv ; 28(1): 2241-2255, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34668811

RESUMEN

The main treatment measure currently used for glioma treatment is chemotherapy; the biological barrier of solid tumors hinders the deep penetration of nanomedicines and limits anticancer therapy. Furthermore, the poor solubility of many chemotherapeutic drugs limits the efficacy of antitumor drugs. Therefore, improving the solubility of chemotherapeutic agents and drug delivery to tumor tissues through the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB) are major challenges in glioma treatment. Nanostructured lipid carriers (NLCs) have high drug loading capacity, high stability, and high in vivo safety; moreover, they can effectively improve the solubility of insoluble drugs. Therefore, in this study, we used solvent volatilization and ultrasonic melting methods to prepare dihydroartemisinin nanostructured lipid carrier (DHA-NLC). We further used the glioma C6 cancer cell (CC) membrane to encapsulate DHA-NLC owing to the homologous targeting mechanism of the CC membrane; however, the targeting ability of the CC membrane was weak. We accordingly used targeting ligands for modification, and developed a bionanostructured lipid carrier with BBB and BBTB penetration and tumor targeting abilities. The results showed that DHA-loaded NGR/CCNLC (asparagine-glycine-arginine, NGR) was highly targeted, could penetrate the BBB and BBTB, and showed good anti-tumor effects both in vitro and in vivo, which could effectively prolong the survival time of tumor-bearing mice. Thus, the use of DHA-loaded NGR/CCNLC is an effective strategy for glioma treatment and has the potential to treat glioma.


Asunto(s)
Antineoplásicos/farmacología , Artemisininas/farmacología , Neoplasias Encefálicas/patología , Glioma/patología , Nanopartículas/química , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Artemisininas/administración & dosificación , Artemisininas/farmacocinética , Biomimética , Barrera Hematoencefálica , Línea Celular Tumoral , Química Farmacéutica , Sistemas de Liberación de Medicamentos , Ligandos , Lípidos de la Membrana/metabolismo , Ratones , Oligopéptidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...