Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.795
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731877

RESUMEN

Epstein-Barr virus (EBV) DNA is known to be shed upon reactivation of latent EBV. Based on our previous findings linking Toll-like receptor-9 (TLR9) to an EBV DNA-driven surge in IL-17A production, we aimed to examine the therapeutic potential of TLR9 inhibition in EBV DNA-exacerbated arthritis in a collagen-induced arthritis (CIA) mouse model. C57BL/6J mice were administered either collagen, EBV DNA + collagen, EBV DNA + collagen + TLR9 inhibitor, or only the TLR9 inhibitor. After 70 days, paw thicknesses, clinical scores, and gripping strength were recorded. Moreover, affected joints, footpads, and colons were histologically scored. Furthermore, the number of cells co-expressing IL-17A, IFN-γ, and FOXP3 in joint sections was determined by immunofluorescence assays. Significantly decreased paw thicknesses, clinical scores, and histological scores with a significantly increased gripping strength were observed in the group receiving EBV DNA + collagen + TLR9 inhibitor, compared to those receiving EBV DNA + collagen. Similarly, this group showed decreased IL-17A+ IFN-γ+, IL-17A+ FOXP3+, and IL-17A+ IFN-γ+ FOXP3+ foci counts in joints. We show that inhibiting TLR9 limits the exacerbation of arthritis induced by EBV DNA in a CIA mouse model, suggesting that TLR9 could be a potential therapeutic target for rheumatoid arthritis management in EBV-infected individuals.


Asunto(s)
Artritis Experimental , ADN Viral , Modelos Animales de Enfermedad , Herpesvirus Humano 4 , Ratones Endogámicos C57BL , Receptor Toll-Like 9 , Animales , Receptor Toll-Like 9/metabolismo , Ratones , Herpesvirus Humano 4/fisiología , Artritis Experimental/virología , Artritis Experimental/patología , Artritis Experimental/metabolismo , ADN Viral/genética , Interleucina-17/metabolismo , Masculino , Infecciones por Virus de Epstein-Barr/virología , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/patología , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Artritis Reumatoide/virología
2.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 739-747, 2024 Apr 20.
Artículo en Chino | MEDLINE | ID: mdl-38708508

RESUMEN

OBJECTIVE: To explore the inhibitory effect of Sidaxue, a traditional Miao herbal medicine formula, on articular bone and cartilage destruction and synovial neovascularization in rats with collagen-induced arthritis (CIA). METHODS: In a SD rat model of CIA, we tested the effects of daily gavage of Sidaxue at low, moderate and high doses (10, 20, and 40 g/kg, respectively) for 21 days, with Tripterygium glycosides (GTW) as the positive control, on swelling in the hind limb plantar regions by arthritis index scoring. Pathologies in joint synovial membrane of the rats were observed with HE staining, and serum TNF-α and IL-1ß levels were detected with ELISA. The expressions of NF-κB p65, matrix metalloproteinase 1 (MMP1), MMP2 and MMP9 at the mRNA and protein levels in the synovial tissues were detected using real-time PCR and Western blotting. Network pharmacology analysis was conducted to identify the important target proteins in the pathways correlated with the therapeutic effects of topical Sidaxue treatment for RA, and the core target proteins were screened by topological analysis. RESULTS: Treatment with GTW and Sidaxue at the 3 doses all significantly alleviated plantar swelling, lowered arthritis index scores, improved cartilage and bone damage and reduced neovascularization in CIA rats (P<0.05), and the effects of Sidaxue showed a dose dependence. Both GTW and Sidaxue treatments significantly lowered TNF-α, IL-1ß, NF-κB p65, MMP1, MMP2, and MMP9 mRNA and protein expressions in the synovial tissues of CIA rats (P<0.05). Network pharmacological analysis identified MMPs as the core proteins associated with topical Sidaxue treatment of RA. CONCLUSION: Sidaxue alleviates articular bone and cartilage damages and reduces synovial neovascularization in CIA rats possibly by downregulating MMPs via the TNF-α/IL-1ß/NF-κB-MMP1, 2, 9 signaling pathway, and MMPs probably plays a key role in mediating the effect of Sidaxue though the therapeutic pathways other than oral administration.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Medicamentos Herbarios Chinos , Metaloproteinasa 1 de la Matriz , Ratas Sprague-Dawley , Membrana Sinovial , Factor de Necrosis Tumoral alfa , Animales , Ratas , Artritis Reumatoide/tratamiento farmacológico , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/metabolismo , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/farmacología , Metaloproteinasa 1 de la Matriz/metabolismo , Membrana Sinovial/efectos de los fármacos , Membrana Sinovial/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-1beta/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Metaloproteinasa 9 de la Matriz/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Tripterygium/química , Factor de Transcripción ReIA/metabolismo
3.
Int J Rheum Dis ; 27(5): e15164, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38706209

RESUMEN

BACKGROUND: JAK inhibitors are well known for the treatment of rheumatoid arthritis (RA), but whether they can be used to treat pulmonary fibrosis, a common extra-articular disease of RA, remains to be clarified. METHODS: A jak2 inhibitor, CEP33779 (CEP), was administered to a rat model of RA-associated interstitial lung disease to observe the degree of improvement in both joint swelling and pulmonary fibrosis. HFL1 cells were stimulated with TGF-ß1 to observe the expression of p-JAK2. Then, different concentrations of related gene inhibitors (JAK2, TGFß-R1/2, and p-STAT3) or silencers (STAT3, JAK2) were administered to HFL1 cells, and the expression levels of related proteins were detected to explore the underlying mechanisms of action. RESULTS: CEP not only reduced the degree of joint swelling and inflammation in rats but also improved lung function, inhibited the pro-inflammatory factors IL-1ß and IL-6, reduced lung inflammation and collagen deposition, and alleviated lung fibrosis. CEP decreased the expression levels of TGFß-R2, p-SMAD, p-STAT3, and ECM proteins in rat lung tissues. TGF-ß1 induced HFL1 cells to highly express p-JAK2, with the most pronounced expression at 48 h. The levels of p-STAT3, p-SMAD3, and ECM-related proteins were significantly reduced after inhibition of either JAK2 or STAT3. CONCLUSION: JAK2 inhibitors may be an important and novel immunotherapeutic drug that can improve RA symptoms while also delaying or blocking the development of associated pulmonary fibrotic disease. The mechanism may be related to the downregulation of p-STAT3 protein via inhibition of the JAK2/STAT signaling pathway, which affects the phosphorylation of SMAD3.


Asunto(s)
Modelos Animales de Enfermedad , Regulación hacia Abajo , Isoquinolinas , Janus Quinasa 2 , Pulmón , Fibrosis Pulmonar , Piridinas , Pirroles , Transducción de Señal , Proteína smad3 , Animales , Proteína smad3/metabolismo , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Janus Quinasa 2/metabolismo , Janus Quinasa 2/antagonistas & inhibidores , Fosforilación , Transducción de Señal/efectos de los fármacos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Pulmón/enzimología , Masculino , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Humanos , Ratas Sprague-Dawley , Inhibidores de las Cinasas Janus/farmacología , Inhibidores de las Cinasas Janus/uso terapéutico , Línea Celular , Inhibidores de Proteínas Quinasas/farmacología , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/antagonistas & inhibidores , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/metabolismo , Artritis Experimental/enzimología , Antiinflamatorios/farmacología , Ratas
4.
Eur J Med Chem ; 271: 116417, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38688063

RESUMEN

Since synovial hypoxic microenvironment significantly promotes the pathological progress of rheumatoid arthritis (RA), hypoxia-inducible factor 1 (HIF-1) has been emerged as a promising target for the development of novel therapeutic agents for RA treatment. In this study, we designed and synthesized a series of diaryl substituted isoquinolin-1(2H)-one derivatives as HIF-1 signaling inhibitors using scaffold-hopping strategy. By modifying the substituents on N-atom and 6-position of isoquinolin-1-one, we discovered compound 17q with the most potent activities against HIF-1 (IC50 = 0.55 µM) in a hypoxia-reactive element (HRE) luciferase reporter assay. Further pharmacological studies revealed that 17q concentration-dependently blocked hypoxia-induced HIF-1α protein accumulation, reduced inflammation response, inhibited cellular invasiveness and promoted VHL-dependent HIF-1α degradation in human RA synovial cell line. Moreover, 17q improved the pathological injury of ankle joints, decreased angiogenesis and attenuated inflammation response in the adjuvant-induced arthritis (AIA) rat model, indicating the promising therapeutic potential of compound 17q as an effective HIF-1 inhibitor for RA therapy.


Asunto(s)
Artritis Reumatoide , Isoquinolinas , Transducción de Señal , Animales , Humanos , Masculino , Ratas , Antirreumáticos/farmacología , Antirreumáticos/química , Antirreumáticos/síntesis química , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/patología , Artritis Experimental/metabolismo , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Isoquinolinas/química , Isoquinolinas/farmacología , Isoquinolinas/síntesis química , Estructura Molecular , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Quinolonas/síntesis química , Quinolonas/química , Quinolonas/farmacología
5.
Nanoscale ; 16(16): 7965-7975, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38567436

RESUMEN

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that mostly affects joints. Although RA therapy has made significant progress, difficulties including extensive medication metabolism and its quick clearance result in its inadequate bioavailability. The anti-inflammatory effect of zein was reported with other medications, but it has certain limitations. There are reports on the anti-oxidant and anti-inflammatory effect of aescin, which exhibits low bioavailability for the treatment of rheumatoid arthritis. Also, the combinatorial effect of zein with other effective drug delivery systems is still under investigation for the treatment of experimental collagen-induced rheumatoid arthritis. The focus of this study was to formulate and define the characteristics of zein-coated gelatin nanoparticles encapsulated with aescin (Ze@Aes-GNPs) and to assess and contrast the therapeutic effectiveness of Ze@Aes-GNPs towards collagen-induced RA in Wistar rats. Nanoprecipitation and the layer-by-layer coating process were used to fabricate Ze@Aes-GNPs and their hydrodynamic diameter was determined to be 182 nm. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to further validate the size, shape, and surface morphology of Ze@Aes-GNPs. When tested against foreskin fibroblasts (BJ), these nanoparticles demonstrated significantly high cytocompatibility. Both Aes and Ze@Aes-GNPs were effective in treating arthritis, as shown by the decreased edoema, erythema, and swelling of the joints, between which Ze@Aes-GNPs were more effective. Further, it was demonstrated that Aes and Ze@Aes-GNPs reduced the levels of oxidative stress (articular elastase, lipid peroxidation, catalase, superoxide dismutase and nitric oxide) and inflammatory indicators (TNF-α, IL-1ß and myeloperoxidase). The histopathology findings further demonstrated that Ze@Aes-GNPs considerably reduced the infiltration of inflammatory cells at the ankle joint cartilage compared to Aes. Additionally, immunohistochemistry examination showed that treatment with Ze@Aes-GNPs suppressed the expression of pro-inflammatory markers (COX-2 and IL-6) while increasing the expression of SOD1. In summary, the experiments indicated that Aes and Ze@Aes-GNPs lowered the severity of arthritis, and critically, Ze@Aes-GNPs showed better effectiveness in comparison to Aes. This suppression of oxidative stress and inflammation was likely driven by Aes and Ze@Aes-GNPs.


Asunto(s)
Artritis Experimental , Escina , Gelatina , Nanopartículas , Ratas Wistar , Zeína , Animales , Gelatina/química , Zeína/química , Ratas , Nanopartículas/química , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/patología , Artritis Experimental/metabolismo , Escina/química , Escina/farmacología , Masculino , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/patología , Artritis Reumatoide/metabolismo , Humanos , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/patología , Colágeno/química
6.
Eur J Pharmacol ; 972: 176551, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38570082

RESUMEN

Fibroblast-like synoviocytes (FLS) play an important role in rheumatoid arthritis (RA)-related swelling and bone damage. Therefore, novel targets for RA therapy in FLS are urgently discovered for improving pathologic phenomenon, especially joint damage and dyskinesia. Here, we suggested that pyruvate kinase M2 (PKM2) in FLS represented a pharmacological target for RA treatment by antimalarial drug artemisinin (ART). We demonstrated that ART selectively inhibited human RA-FLS and rat collagen-induced arthritis (CIA)-FLS proliferation and migration without observed toxic effects. In particular, the identification of targets revealed that PKM2 played a crucial role as a primary regulator of the cell cycle, leading to the heightened proliferation of RA-FLS. ART exhibited a direct interaction with PKM2, resulting in an allosteric modulation that enhances the lactylation modification of PKM2. This interaction further promoted the binding of p300, ultimately preventing the nuclear translocation of PKM2 and inducing cell cycle arrest at the S phase. In vivo, ART obviously suppressed RA-mediated synovial hyperplasia, bone damage and inflammatory response to further improve motor behavior in CIA-rats. Taken together, these findings indicate that directing interventions towards PKM2 in FLS could offer a hopeful avenue for pharmaceutical treatments of RA through the regulation of cell cycle via PKM2 lactylation.


Asunto(s)
Artritis Reumatoide , Proliferación Celular , Sinoviocitos , Sinoviocitos/efectos de los fármacos , Sinoviocitos/metabolismo , Sinoviocitos/patología , Artritis Reumatoide/patología , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Humanos , Ratas , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Piruvato Quinasa/metabolismo , Proteínas de Unión a Hormona Tiroide , Masculino , Hormonas Tiroideas/metabolismo , Artritis Experimental/patología , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/metabolismo , Movimiento Celular/efectos de los fármacos , Terapia Molecular Dirigida , Proteínas de la Membrana/metabolismo , Proteínas Portadoras/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/química
7.
J Nanobiotechnology ; 22(1): 197, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38644475

RESUMEN

BACKGROUND: Rheumatoid arthritis (RA) is a chronic autoimmune disorder characterized by synovial inflammation, causing substantial disability and reducing life quality. While macrophages are widely appreciated as a master regulator in the inflammatory response of RA, the precise mechanisms underlying the regulation of proliferation and inflammation in RA-derived fibroblast-like synoviocytes (RA-FLS) remain elusive. Here, we provide extensive evidence to demonstrate that macrophage contributes to RA microenvironment remodeling by extracellular vesicles (sEVs) and downstream miR-100-5p/ mammalian target of rapamycin (mTOR) axis. RESULTS: We showed that bone marrow derived macrophage (BMDM) derived-sEVs (BMDM-sEVs) from collagen-induced arthritis (CIA) mice (cBMDM-sEVs) exhibited a notable increase in abundance compared with BMDM-sEVs from normal mice (nBMDM-sEVs). cBMDM-sEVs induced significant RA-FLS proliferation and potent inflammatory responses. Mechanistically, decreased levels of miR-100-5p were detected in cBMDM-sEVs compared with nBMDM-sEVs. miR-100-5p overexpression ameliorated RA-FLS proliferation and inflammation by targeting the mTOR pathway. Partial attenuation of the inflammatory effects induced by cBMDM-sEVs on RA-FLS was achieved through the introduction of an overexpression of miR-100-5p. CONCLUSIONS: Our work reveals the critical role of macrophages in exacerbating RA by facilitating the transfer of miR-100-5p-deficient sEVs to RA-FLS, and sheds light on novel disease mechanisms and provides potential therapeutic targets for RA interventions.


Asunto(s)
Artritis Reumatoide , Macrófagos , MicroARNs , Transducción de Señal , Serina-Treonina Quinasas TOR , Animales , Humanos , Masculino , Ratones , Artritis Experimental/metabolismo , Artritis Experimental/patología , Artritis Experimental/genética , Artritis Reumatoide/metabolismo , Artritis Reumatoide/genética , Artritis Reumatoide/patología , Proliferación Celular , Vesículas Extracelulares/metabolismo , Inflamación/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos DBA , MicroARNs/genética , MicroARNs/metabolismo , Membrana Sinovial/metabolismo , Membrana Sinovial/patología , Sinoviocitos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
8.
Zhen Ci Yan Jiu ; 49(4): 331-340, 2024 Apr 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38649200

RESUMEN

OBJECTIVES: To observe whether acupuncture up-regulates chemokine CXC ligand 1 (CXCL1) in the brain to play an analgesic role through CXCL1/chemokine CXC receptor 2 (CXCR2) signaling in adjuvant induced arthritis (AIA) rats, so as to reveal its neuro-immunological mechanism underlying improvement of AIA. METHODS: BALB/c mice with relatively stable thermal pain reaction were subjected to planta injection of complete Freund adjuvant (CFA) for establishing AIA model, followed by dividing the AIA mice into simple AF750 (fluorochrome) and AF750+CXCL1 groups (n=2 in each group). AF750 labeled CXCL1 recombinant protein was then injected into the mouse's tail vein to induce elevation of CXCL1 level in blood for simulating the effect of acupuncture stimulation which has been demonstrated by our past study. In vivo small animal imaging technology was used to observe the AF750 and AF750+CXCL1-labelled target regions. After thermal pain screening, the Wistar rats with stable pain reaction were subjected to AIA modeling by injecting CFA into the rat's right planta, then were randomized into model and manual acupuncture groups (n=12 in each group). Other 12 rats that received planta injection of saline were used as the control group. Manual acupuncture (uniform reinforcing and reducing manipulations) was applied to bilateral "Zusanli" (ST36) for 4×2 min, with an interval of 5 min between every 2 min, once daily for 7 days. The thermal pain threshold was assessed by detecting the paw withdrawal latency (PWL) using a thermal pain detector. The contents of CXCL1 in the primary somatosensory cortex (S1), medial prefrontal cortex, nucleus accumbens, amygdala, periaqueductal gray and rostroventromedial medulla regions were assayed by using ELISA, and the expression levels of CXCL1, CXCR2 and mu-opioid receptor (MOR) mRNA in the S1 region were detected using real time-quantitative polymerase chain reaction. The immune-fluorescence positive cellular rate of CXCL1 and CXCR2 in S1 region was observed after immunofluorescence stain. The immunofluorescence double-stain of CXCR2 and astrocyte marker glial fibrillary acidic protein (GFAP) or neuron marker NeuN or MOR was used to determine whether there is a co-expression between them. RESULTS: In AIA mice, results of in vivo experiments showed no obvious enrichment signal of AF750 or AF750+CXCL1 in any organ of the body, while in vitro experiments showed that there was a stronger fluorescence signal of CXCL1 recombinant protein in the brain. In rats, compared with the control group, the PWL from day 0 to day 7 was significantly decreased (P<0.01) and the expression of CXCR2 mRNA in the S1 region significantly increased in the model group (P<0.05), while in comparison with the model group, the PWL from day 2 to day 7, CXCL1 content, CXCR2 mRNA expression and CXCR2 content, and MOR mRNA expression in the S1 region were significantly increased in the manual acupuncture group (P<0.05, P<0.01). Immunofluorescence stain showed that CXCR2 co-stained with NeuN and MOR in the S1 region, indicating that CXCR2 exists in neurons and MOR-positive neurons but not in GFAP positive astrocytes. CONCLUSIONS: Acupuncture can increase the content of CXCL1 in S1 region, up-regulate CXCR2 on neurons in the S1 region and improve MOR expression in S1 region of AIA rats, which may contribute to its effect in alleviating inflammatory pain.


Asunto(s)
Terapia por Acupuntura , Artritis Experimental , Quimiocina CXCL1 , Receptores de Interleucina-8B , Corteza Somatosensorial , Animales , Humanos , Masculino , Ratones , Ratas , Puntos de Acupuntura , Artritis Experimental/terapia , Artritis Experimental/metabolismo , Artritis Experimental/genética , Quimiocina CXCL1/metabolismo , Quimiocina CXCL1/genética , Inflamación/terapia , Inflamación/metabolismo , Inflamación/genética , Ratones Endogámicos BALB C , Dolor/metabolismo , Dolor/genética , Manejo del Dolor , Ratas Wistar , Receptores de Interleucina-8B/metabolismo , Receptores de Interleucina-8B/genética , Transducción de Señal , Corteza Somatosensorial/metabolismo
9.
In Vivo ; 38(3): 1182-1191, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38688626

RESUMEN

BACKGROUND/AIM: Rheumatoid arthritis (RA) is an inflammatory autoimmune disease, and management of it is still a challenge. The present investigation assessed the potential preventive effect of phlorizin on rats with RA. MATERIALS AND METHODS: A total of 40 healthy Wistar rats were used for this study. Bovine type II collagen and Freund's incomplete adjuvant (1:1 and 1 mg/ml) were administered on days 1 and 8 of the protocol to induce RA in rats; treatment with phlorizin at 60 or 120 mg/kg was started after the 4th week of the protocol, and its effect on inflammation, level of inflammatory cytokines, and expression of proteins were estimated in RA rats. Moreover, an in vitro study was performed on fibroblast-like synoviocytes (FLSs), and the effects of phlorizin on proliferation, apoptosis, and expression of the mechanistic target of rapamycin kinase pathway protein after stimulating these cells with tumor necrosis factor α (TNF-α) were estimated. RESULTS: The data obtained from the study indicate that phlorizin has the potential to mitigate inflammation and enhance weight management in rats with RA induced by bovine type II collagen (CII). The level of inflammatory cytokines in the serum and the expression of protein kinase B (AKT), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), and mechanistic target of rapamycin kinase (mTOR) proteins in the joint tissue were reduced in phlorizin-treated rats with RA. In this investigation, phlorizin was shown to reverse the histological abnormalities in the joint tissue of rats with RA. The in-vitro study showed that phlorizin reduced proliferation and had no apoptotic effect on TNF-α-stimulated FLSs. Expression of AKT, PI3K, and mTOR proteins was also down-regulated in phlorizin-treated TNF-α-stimulated FLSs. CONCLUSION: Phlorizin protects against inflammation and reduces injury to synovial tissues in RA by modulating the AKT/PI3K/mTOR pathway.


Asunto(s)
Artritis Reumatoide , Hiperplasia , Inflamación , Florizina , Transducción de Señal , Sinoviocitos , Serina-Treonina Quinasas TOR , Animales , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Serina-Treonina Quinasas TOR/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos , Florizina/farmacología , Inflamación/patología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Sinoviocitos/efectos de los fármacos , Sinoviocitos/metabolismo , Sinoviocitos/patología , Membrana Sinovial/efectos de los fármacos , Membrana Sinovial/metabolismo , Membrana Sinovial/patología , Modelos Animales de Enfermedad , Citocinas/metabolismo , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Masculino , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/patología , Artritis Experimental/metabolismo , Ratas Wistar , Proteínas Proto-Oncogénicas c-akt/metabolismo
10.
Int Immunopharmacol ; 132: 111933, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38581988

RESUMEN

Transient receptor potential melastatin 7 (TRPM7) is a cation channel that plays a role in the progression of rheumatoid arthritis (RA), yet its involvement in synovial hyperplasia and inflammation has not been determined. We previously reported that TRPM7 affects the destruction of articular cartilage in RA. Herein, we further confirmed the involvement of TRPM7 in fibroblast-like synoviocyte (FLS) proliferation, metastasis and inflammation. We observed increased TRPM7 expression in FLSs derived from human RA patients. Pharmacological inhibition of TRPM7 protected primary RA-FLSs from proliferation, metastasis and inflammation. Furthermore, we found that TRPM7 contributes to RA-FLS proliferation, metastasis and inflammation by increasing the intracellular Ca2+ concentration. Mechanistically, the PKCα-HuR axis was demonstrated to respond to Ca2+ influx, leading to TRPM7-mediated RA-FLS proliferation, metastasis and inflammation. Moreover, HuR was shown to bind to IL-6 mRNA after nuclear translocation, which could be weakened by TRPM7 channel inhibition. Additionally, adeno-associated virus 9-mediated TRPM7 silencing is highly effective at alleviating synovial hyperplasia and inflammation in adjuvant-induced arthritis rats. In conclusion, our findings unveil a novel regulatory mechanism involved in the pathogenesis of RA and suggest that targeting TRPM7 might be a potential strategy for the prevention and treatment of RA.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Proliferación Celular , Interleucina-6 , Proteína Quinasa C-alfa , Sinoviocitos , Canales Catiónicos TRPM , Canales Catiónicos TRPM/metabolismo , Canales Catiónicos TRPM/genética , Artritis Reumatoide/patología , Artritis Reumatoide/metabolismo , Animales , Sinoviocitos/metabolismo , Sinoviocitos/patología , Humanos , Interleucina-6/metabolismo , Interleucina-6/genética , Proteína Quinasa C-alfa/metabolismo , Proteína Quinasa C-alfa/genética , Artritis Experimental/patología , Artritis Experimental/metabolismo , Masculino , Ratas , Fibroblastos/metabolismo , Fibroblastos/patología , Proteína 1 Similar a ELAV/metabolismo , Proteína 1 Similar a ELAV/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Células Cultivadas , Inflamación/metabolismo , Inflamación/patología , Ratas Sprague-Dawley , Femenino , Transducción de Señal
11.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38542266

RESUMEN

Numerous studies have indicated a link between vaccines and the exacerbation of autoimmune diseases including rheumatoid arthritis (RA). However, there is no consensus in clinical practice regarding the optimal timing of immunization. Therefore, this study aimed to investigate the impact of the 3Fluart influenza vaccine on the complete Freund's adjuvant (CFA)-induced chronic arthritis rat model and to identify new biomarkers with clinical utility. CFA was injected into the plantar surface of one hind paw and the root of the tail on day 0, and the tail root injection was repeated on day 1. Flu vaccination was performed on day 1 or 7. Paw volume was measured by plethysmometry, mechanonociceptive threshold by dynamic plantar aesthesiometry, neutrophil myeloperoxidase (MPO) activity, and vascular leakage using in vivo optical imaging throughout the 21-day experiment. Inflammatory markers were determined by Western blot and histopathology. CFA-induced swelling, an increase in MPO activity, plasma extravasation in the tibiotarsal joint. Mechanical hyperalgesia of the hind paw was observed 3 days after the injection, which gradually decreased. Co-administration of the flu vaccine on day 7 but not on day 1 resulted in significantly increased heme oxygenase 1 (HO-1) expression. The influenza vaccination appears to have a limited impact on the progression and severity of the inflammatory response and associated pain. Nevertheless, delayed vaccination could alter the disease activity, as indicated by the findings from assessments of edema and inflammatory biomarkers. HO-1 may serve as a potential marker for the severity of inflammation, particularly in the case of delayed vaccination. However, further investigation is needed to fully understand the regulation and role of HO-1, a task that falls outside the scope of the current study.


Asunto(s)
Artritis Experimental , Gripe Humana , Ratas , Animales , Humanos , Artritis Experimental/metabolismo , Adyuvante de Freund/efectos adversos , Hiperalgesia/metabolismo , Inflamación , Vacunación , Progresión de la Enfermedad
12.
Inflammopharmacology ; 32(2): 1203-1223, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38451395

RESUMEN

For treating chronic diseases like rheumatoid arthritis, herbal medicines are preferred due to their evident therapeutic effects and lesser side effects as compared to the long-term used conventional drugs. In this study, the anti-rheumatoid arthritis effect of an unexplored marine grass Halodule pinifolia (HP), and a combination of it with Glycyrrhiza glabra (liquorice; LQ), prepared as a conventional suspension (C1) and a lipid nano-emulsion (C1-N) was evaluated in Freund's complete adjuvant (FCA)- and collagen-induced arthritis (CIA) models. Formulations C1 and C1-N contained standardized extract HP (100 mg/kg) as major active ingredient and liquorice LQ (50 mg/kg) as both active ingredient (anti-inflammatory and anti-ulcer) and sweetening agent. Oral administration of HP and C1 to FCA-induced Sprague-Dawley rats significantly reduced the paw oedema, spleen index, controlled the haematological parameters, cytokine levels (IL-1ß, IL-6, TNF-α estimated by ELISA), mRNA expression of cytokines and osteoclast markers (RANK, TRAP and cathepsin K measured by RTPCR). Histopathology and radiological scanning demonstrated lesser joint deterioration in sample-treated rats, as evident phenotypically. The downregulation of CD51 and MMP-3 (western blot) corroborated the anti-arthritic effect of HP and C1. HP showed better results among all. Further, under the CIA model, both C1 and C1-N were found to be potentially active as evidenced by their effect on rat paw oedema, spleen index, haematological parameters, rheumatoid factor, cytokines, osteoclast markers, histology and X-rays. The results proved the anti-arthritic effect of HP and the formulations, particularly the lipid nano-emulsion that showed improved stability as well as activity.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Ratas , Animales , Ratas Sprague-Dawley , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Artritis Experimental/metabolismo , Citocinas/metabolismo , Edema/tratamiento farmacológico , Lípidos
13.
Life Sci ; 341: 122503, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38354974

RESUMEN

AIMS: To explore cardiac structural and functional parameters and myocardial sensitivity to ischemia in a rat model of chronic arthritis, pristane-induced arthritis (PIA), and to investigate the effects of a running exercise protocol on cardiac disorders related to rheumatoid arthritis (RA). MAIN METHODS: 3 groups of male Dark Agouti rats were formed: Controls, PIA and PIA-Exercise. The PIA-Exercise group was subjected to an individualized treadmill running protocol during the remission phase. At acute and chronic phases of PIA, cardiac structure was analyzed by histology. Cardiac function was explored in isolated hearts to measure left ventricular developed pressure (LVDP), cardiac compliance and infarct size before and after ischemia/reperfusion. Cardiac inflammation was evaluated through VCAM-1 mRNA expression by RT-qPCR. Plasma irisin levels were measured by ELISA. KEY FINDINGS: PIA rats exhibited myocardial hypertrophy fibrosis and inflammation at the 2 inflammatory phases of the model. At chronic phase only, LVDP and cardiac compliance were lower in PIA compared to controls. As compared to sedentary PIA, exercise did not change cardiac function but reduced fibrosis, inflammation, infarct size, and arthritis severity and increased irisin levels. Cardiac inflammation positively correlated with fibrosis, while irisin levels negatively correlated with cardiac inflammation and fibrosis. SIGNIFICANCE: In the PIA model that recapitulated most cardiac disorders of RA, a daily program of treadmill running alleviated cardiac fibrosis and inflammation and improved resistance to ischemia. These data provide arguments to promote the practice of exercise in RA patients for cardiac diseases prevention.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Cardiopatías , Terpenos , Humanos , Ratas , Masculino , Animales , Artritis Experimental/metabolismo , Fibronectinas/efectos adversos , Inflamación , Artritis Reumatoide/metabolismo , Isquemia , Infarto , Fibrosis
14.
Int Immunopharmacol ; 129: 111677, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38350355

RESUMEN

OBJECTIVES: Exosomes are small, membrane-bound vesicles secreted by cells into the extracellular environment. They play a crucial role in various biological processes, including immune response, cell-to-cell signaling, and tumor progression. Exosomes have attracted attention as potential targets for therapeutic intervention, drug delivery, and biomarker detection. In this study, we aimed to isolate exosomes from human RA fibroblasts (hRAF-Exo) and load them with triptolide (TP) to generate engineered exosomes (hRAF-Exo@TP). METHODS: Transmission electron microscopy, particle size analysis, and western blotting for protein detection were employed to characterize hRAF-Exo. Furthermore, a murine model of collagen-induced arthritis (CIA) was employed to observe the distinct affinity of hRAF-Exo@TP towards the afflicted area. RESULTS: Cellular experiments demonstrated the inhibitory effect of hRAF-Exo@TP on the proliferative activity of human RA fibroblasts. Additionally, it exhibited remarkable selectivity for lesion sites in a CIA mouse model. CONCLUSION: Exosomes loaded with TP may enhance the therapeutic effects on RA in mice. Our study provides a promising avenue for the treatment of RA in the future.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Diterpenos , Exosomas , Fenantrenos , Humanos , Ratones , Animales , Exosomas/metabolismo , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Diterpenos/uso terapéutico , Diterpenos/farmacología , Fenantrenos/uso terapéutico , Fenantrenos/farmacología , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/metabolismo , Compuestos Epoxi
15.
Inflammopharmacology ; 32(2): 1171-1186, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38349589

RESUMEN

Flavipin, a fungal lower molecular weight biomolecule (MW 196.16 g/mol), has not been yet extensively studied for beneficial preclinical and clinical applications. In recent years, various preclinical mouse models including adjuvant-induced arthritis (AIA) were employed to understand mechanisms associated with Rheumatoid arthritis (RA) and to develop new therapeutic drugs. In the current study, we studied the inhibitory effect of Flavipin on major signaling molecules involved in the inflammatory response during RA using both in-silico virtual interaction and in vivo mouse model of AIA. Our in-silico results clarified that Flavipin interacts with the tumor necrosis factor alpha (TNF-α) through conventional hydrogen binding (H-H) at one of TNF-α critical amino acids tyrosine residues, Tyr119, with binding energy (b.e.) -5.9. In addition, Flavipin binds to ATP-binging sites of the Jesus kinases, JAK1, JAK2 and JAK3, through H-H (b. e. between -5.8 and -6.1) and then it may inhibit JAKs, regulators of RA signaling molecules. Moreover, our molecular dynamics stimulation for the docked TNF-α/Flavipin complex confirmed the specificity and the stability of the interaction. In vitro, Flavipin is not toxic to normal cells at doses below 50 µM (its IC50 in normal fibroblast cell line was above 100 µM). However, in vivo, the arthritis score and hind paw oedema parameters were modulated in Flavipin treated mice. Consistent with the in-silico results the levels of the TNF-α, the nuclear transcription factor kappaB (NF-κB) and the signal transduction and activator of transcription (STAT3, downstream of JAKs) were modulated at joint tissues of the hind-paw of Flavipin/AIA treated mice. Our data suggest Flavipin as a potential therapeutic agent for arthritis can inhibit RA major signaling molecules.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , o-Ftalaldehído/análogos & derivados , Ratones , Animales , Factor de Necrosis Tumoral alfa/farmacología , Transducción de Señal , Artritis Reumatoide/metabolismo , FN-kappa B/metabolismo , Hongos/metabolismo , Artritis Experimental/metabolismo
16.
Prostaglandins Other Lipid Mediat ; 172: 106823, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38408536

RESUMEN

Arthritis, a prevalent inflammatory condition, is often linked to obesity as a contributing factor. This study aimed to assess the potential protective effects of purslane extract in male albino rats with induced arthritis and obesity. Fifty rats were randomly assigned to five groups: a control group, an induced arthritis-high-fat diet group, a high-dose purslane extract-supplemented group (300 mg/kg body weight) for 8 weeks, a low-dose purslane extract-supplemented group (150 mg/kg body weight) for 8 weeks, and a metformin-supplemented group. Arthritis was induced in the rats using Complete Freund's Adjuvant. Plasma biomarkers, including Total Cholesterol, Triglycerides, HDL-cholesterol, LDL-cholesterol, C Reactive Protein (CRP), Erythrocyte Sedimentation Rate (ESR), Rheumatoid Factor (RF), and Anti-CCP, were assessed in each group. The results revealed a significant improvement in these biomarkers in the high-dose purslane-supplemented group (300 mg/kg body weight) compared to the induced arthritis-high-fat-diet group. This suggests a potential protective role of purslane against arthritis associated with obesity, likely attributed to its lipolytic capacity and anti-inflammatory properties. These findings contribute to our understanding of the interplay between obesity, arthritis, and natural interventions, providing valuable insights for future therapeutic approaches.


Asunto(s)
Artritis Experimental , Obesidad , Extractos Vegetales , Animales , Obesidad/metabolismo , Obesidad/tratamiento farmacológico , Masculino , Ratas , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/metabolismo , Artritis Experimental/prevención & control , Extractos Vegetales/farmacología , Biomarcadores/sangre , Dieta Alta en Grasa/efectos adversos , Proteína C-Reactiva/metabolismo
17.
Ann Rheum Dis ; 83(5): 564-575, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38272667

RESUMEN

OBJECTIVE: Erythropoietin (EPO) known as an erythrocyte-stimulating factor is increased in patients with rheumatoid arthritis (RA). Nevertheless, the function of EPO in the process of RA and relative mechanism needs to be further clarified. METHODS: The level of EPO in serum and synovial fluid from patients with RA and healthy controls was determined by . Collagen-induced arthritis (CIA) mice were constructed to confirm the role of EPO on RA pathogenesis. Differentially expressed genes (DEGs) of EPO-treated fibroblast-like synoviocyte (FLS) were screened by transcriptome sequencing. The transcription factor of neuraminidase 3 (NEU3) of DEGs was verified by double luciferase reporting experiment, DNA pulldown, electrophoretic mobility shift assay and chromatin immunoprecipitation-quantitative PCR (qPCR) assay. RESULTS: The overexpression of EPO was confirmed in patients with RA, which was positively associated with Disease Activity Score 28-joint count. Additionally, EPO intervention could significantly aggravate the joint destruction in CIA models. The upregulation of NEU3 was screened and verified by transcriptome sequencing and qPCR in EPO-treated FLS, and signal transducer and activator of transcription 5 was screened and verified to be the specific transcription factor of NEU3. EPO upregulates NEU3 expression via activating the Janus kinase 2 (JAK2)-STAT5 signalling pathway through its receptor EPOR, thereby to promote the desialylation through enhancing the migration and invasion ability of FLS, which is verified by JAK2 inhibitor and NEU3 inhibitor. CONCLUSION: EPO, as a proinflammatory factor, accelerates the process of RA through transcriptional upregulation of the expression of NEU3 by JAK2/STAT5 pathway.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Eritropoyetina , Neuraminidasa , Sinoviocitos , Animales , Humanos , Ratones , Artritis Experimental/genética , Artritis Experimental/metabolismo , Artritis Reumatoide/genética , Artritis Reumatoide/metabolismo , Proliferación Celular , Células Cultivadas , Eritropoyetina/metabolismo , Fibroblastos/metabolismo , Neuraminidasa/metabolismo , Factor de Transcripción STAT5/metabolismo , Membrana Sinovial/metabolismo , Sinoviocitos/metabolismo
18.
Cell Cycle ; 23(1): 1-14, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38234233

RESUMEN

Rheumatoid arthritis (RA) is an inflammatory disease which causes severe pain and disability. Neutrophils play essential roles in the onset and progression of RA; thus, inhibition of neutrophil activation is becoming a popular therapeutic strategy. Dehydroandrographolide has provided satisfactory outcomes in inflammatory diseases; however, its therapeutic effects and mechanism in RA are not fully understood. Leukocyte mono-immunoglobulin-like receptor 3 (LMIR3) is a negative regulator highly expressed in neutrophils. To determine whether dehydroandrographolide negatively regulated neutrophils activation via LMIR3, cytokines release and collagen-induced arthritis (CIA) rats were used in vitro and in vivo. Biacore, molecular docking analysis and molecular dynamics simulation were performed to prove the target of dehydroandrographolide. Moreover, the downstream signaling pathways of LMIR3 activation were analyzed by western blotting. Results showed that oral dehydroandrographolide administration of 2 mg/kg/day to CIA rats attenuated synovitis and bone and cartilage damage after the 28-day intervention, revealed using HE sections and micro-CT. Dehydroandrographolide significantly inhibited cytokine release and chemotaxis of LPS/TNF-α-activated neutrophils in vitro. Dehydroandrographolide inhibited neutrophils activation via binding to LMIR3. Moreover, dehydroandrographolide up-regulated the phosphorylation of SHP-1 and SHP-2, which are the essential kinases in the LMIR3 signaling pathways. This study revealed that dehydroandrographolide attenuated collagen-induced arthritis by suppressing neutrophil activation via LMIR3.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Diterpenos , Ratas , Animales , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/metabolismo , Activación Neutrófila , Simulación del Acoplamiento Molecular , Artritis Reumatoide/tratamiento farmacológico , Citocinas/metabolismo
19.
Inflammopharmacology ; 32(1): 873-883, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38227094

RESUMEN

Lignan-rich beans, nuts, and various seeds are the main foods with antioxidative and hormone-modulating activities. Although the role of lignans in mediating hormone-dependent cancers and cardiovascular diseases is well characterized, the function of lignans in anti-arthritic activity and its underlying mechanisms remain unknown. Three new lignan derivatives, (-)-nortrachelogenin, trachelogenin, and matairesinol, were extracted from Loranthus parasiticus. After establishing the collagen-induced arthritis (CIA) model by intradermal injection of collagen, rats were treated with three new lignan derivatives ((-)-nortrachelogenin: 37%; trachelogenin: 27%; matairesinol: 25.7%) at a concentration of 50 mg/kg and 100 mg/kg, or methotrexate at 0.3 mg/kg. Mixed lignan derivatives significantly attenuated the immune responses in the joints of CIA rats, leading to lower levels of proinflammatory cytokines (IL-6 and TNF-α) and higher levels of free androgen in the serum compared to the CIA model. The results of molecular docking using AutoDock Vina showed that the lignan derivative (-)-nortrachelogenin was the most effective compound for binding to sex hormone-binding globulin (SHBG), thus inhibiting the activity of NFκB in LPS-stimulated macrophages. In this study, (-)-nortrachelogenin was identified as a novel natural lignan derivative with previously unrecognized anti-inflammatory activity. Its molecular mechanism appears related to the regulation of the NFκB/SHBG pathway. Our findings suggest that further application of sex hormone-like compounds in the treatment of rheumatoid arthritis and the potential clinical applications of (-)-nortrachelogenin are promising.


Asunto(s)
4-Butirolactona/análogos & derivados , Artritis Experimental , Furanos , Lignanos , Ratas , Animales , Artritis Experimental/inducido químicamente , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/metabolismo , Globulina de Unión a Hormona Sexual , Simulación del Acoplamiento Molecular , Lignanos/farmacología , Lignanos/uso terapéutico , Hormonas/efectos adversos
20.
Food Funct ; 15(2): 838-852, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38164088

RESUMEN

Olacein (OLA), one of the main secoiridoids derived from extra virgin olive oil (EVOO), has been shown to modulate oxidative and inflammatory responses in various pathological conditions; however, its potential benefit in joint disorders such as rheumatoid arthritis (RA) is unknown. Therefore, this study was designed to evaluate the preventive role of the effects of an OLA-supplemented diet in the murine model of collagen-induced arthritis (CIA), delving into the possible mechanisms and signaling pathways involved. Animals were fed an OLA-enriched preventive diet for 6 weeks prior to CIA induction and until the end of the experimental time course. On day 43 after the first immunization, mice were sacrificed: blood was collected, and paws were histologically and biochemically processed. Dietary OLA prevented collagen-induced rheumatic bone, joint and cartilage conditions. Circulating matrix metalloproteinase (MMP)-3 and proinflammatory cytokine (IL-6, IL-1ß, TNF-α, IL-17) levels were significantly decreased in the joint, as well as MMP-9 and cathepsin-K (CatK) expression in secoiridoid-fed animals. In addition, dietary OLA was able to decrease COX-2, mPGES-1 and iNOS protein expressions and, also, PGE2 levels. The mechanisms possibly involved in these protective effects could be related to the activation of the Nrf-2/HO-1 axis and the inhibition of proinflammatory signaling pathways, including JAK-STAT, MAPKs and NF-κB, involved in the production of inflammatory and oxidative mediators. These results support the interest of OLA, as a nutraceutical intervention, in the management of RA.


Asunto(s)
Aldehídos , Artritis Experimental , Artritis Reumatoide , Fenoles , Ratones , Animales , Artritis Experimental/inducido químicamente , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/metabolismo , Aceite de Oliva/efectos adversos , FN-kappa B/metabolismo , Dieta , Iridoides
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA