Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 251
Filtrar
1.
Mol Med ; 30(1): 67, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773379

RESUMEN

BACKGROUND: Gouty arthritis (GA) is characterized by monosodium urate (MSU) crystal accumulation that instigates NLRP3-mediated pyroptosis; however, the underlying regulatory mechanisms have yet to be fully elucidated. The present research endeavors to elucidate the regulatory mechanisms underpinning this MSU-induced pyroptotic cascade in GA. METHODS: J774 cells were exposed to lipopolysaccharide and MSU crystals to establish in vitro GA models, whereas C57BL/6 J male mice received MSU crystal injections to mimic in vivo GA conditions. Gene and protein expression levels were evaluated using real-time quantitative PCR, Western blotting, and immunohistochemical assays. Inflammatory markers were quantified via enzyme-linked immunosorbent assays. Pyroptosis was evaluated using immunofluorescence staining for caspase-1 and flow cytometry with caspase-1/propidium iodide staining. The interaction between MDM2 and PPARγ was analyzed through co-immunoprecipitation assays, whereas the interaction between BRD4 and the MDM2 promoter was examined using chromatin immunoprecipitation and dual-luciferase reporter assays. Mouse joint tissues were histopathologically evaluated using hematoxylin and eosin staining. RESULTS: In GA, PPARγ was downregulated, whereas its overexpression mitigated NLRP3 inflammasome activation and pyroptosis. MDM2, which was upregulated in GA, destabilized PPARγ through the ubiquitin-proteasome degradation pathway, whereas its silencing attenuated NLRP3 activation by elevating PPARγ levels. Concurrently, BRD4 was elevated in GA and exacerbated NLRP3 activation and pyroptosis by transcriptionally upregulating MDM2, thereby promoting PPARγ degradation. In vivo experiments showed that BRD4 silencing ameliorated GA through this MDM2-PPARγ-pyroptosis axis. CONCLUSION: BRD4 promotes inflammation and pyroptosis in GA through MDM2-mediated PPARγ degradation, underscoring the therapeutic potential of targeting this pathway in GA management.


Asunto(s)
Artritis Gotosa , PPAR gamma , Proteínas Proto-Oncogénicas c-mdm2 , Piroptosis , Factores de Transcripción , Animales , PPAR gamma/metabolismo , PPAR gamma/genética , Artritis Gotosa/metabolismo , Artritis Gotosa/genética , Artritis Gotosa/patología , Artritis Gotosa/inducido químicamente , Ratones , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/genética , Masculino , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Modelos Animales de Enfermedad , Proteolisis , Línea Celular , Inflamasomas/metabolismo , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Ácido Úrico/metabolismo , Proteínas que Contienen Bromodominio , Proteínas Nucleares
2.
Arthritis Res Ther ; 26(1): 96, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711064

RESUMEN

BACKGROUND: Gout is caused by monosodium urate (MSU) crystals deposition to trigger immune response. A recent study suggested that inhibition of Class I Histone deacetylases (HDACs) can significantly reduce MSU crystals-induced inflammation. However, which one of HDACs members in response to MSU crystals was still unknown. Here, we investigated the roles of HDAC3 in MSU crystals-induced gouty inflammation. METHODS: Macrophage specific HDAC3 knockout (KO) mice were used to investigate inflammatory profiles of gout in mouse models in vivo, including ankle arthritis, foot pad arthritis and subcutaneous air pouch model. In the in vitro experiments, bone marrow-derived macrophages (BMDMs) from mice were treated with MSU crystals to assess cytokines, potential target gene and protein. RESULTS: Deficiency of HDAC3 in macrophage not only reduced MSU-induced foot pad and ankle joint swelling but also decreased neutrophils trafficking and IL-1ß release in air pouch models. In addition, the levels of inflammatory genes related to TLR2/4/NF-κB/IL-6/STAT3 signaling pathway were significantly decreased in BMDMs from HDAC3 KO mice after MSU treatment. Moreover, RGFP966, selective inhibitor of HDAC3, inhibited IL-6 and TNF-α production in BMDMs treated with MSU crystals. Besides, HDAC3 deficiency shifted gene expression from pro-inflammatory macrophage (M1) to anti-inflammatory macrophage (M2) in BMDMs after MSU challenge. CONCLUSIONS: Deficiency of HDAC3 in macrophage alleviates MSU crystals-induced gouty inflammation through inhibition of TLR2/4 driven IL-6/STAT3 signaling pathway, suggesting that HDAC3 could contribute to a potential therapeutic target of gout.


Asunto(s)
Acrilamidas , Gota , Histona Desacetilasas , Macrófagos , Ratones Endogámicos C57BL , Ratones Noqueados , Fenilendiaminas , Ácido Úrico , Animales , Ácido Úrico/toxicidad , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/deficiencia , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Gota/metabolismo , Gota/patología , Ratones , Inflamación/metabolismo , Inflamación/inducido químicamente , Masculino , Artritis Gotosa/inducido químicamente , Artritis Gotosa/metabolismo , Artritis Gotosa/patología , Modelos Animales de Enfermedad , Transducción de Señal/efectos de los fármacos
3.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 205-211, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38430024

RESUMEN

Gouty arthritis (GA) is an inflammatory disease caused by the deposition of monosodium urate (MSU) crystals into joints. Tetrandrine (TET) is a bisbenzylisoquinoline alkaloid extracted from the root of Stephania tetrandra and can exert an anti-inflammatory function in different diseases. Nevertheless, the specific function of TET in GA remains unclear. We established the GA mouse model by MSU injection into joints of mice. Paw volume and gait score were detected for measuring the degree of joint swelling and the situation of joint dysfunction. Western blot were utilized to test the alterations of M1-related factors (IL-6, IL-1ß, TNF-α, IL-12, and iNOS) and M2-related factors (Mgl1, Mgl2, Pgc1-ß, Arg-1, and IL-10). The activity of NF-κB p65 in tissues was determined. The interaction of NF-κB p65 and Lcp1 was measured by ChIP and luciferase reporter assay. Lcp1 KO mice were utilized to detect the effect of Lcp1 depletion on GA process. TET treatment markedly suppressed MSU-induced joint swelling, joint dysfunction, and joint injury in GA mice. TET can also reduce inflammatory reactions in MUS-induced mice. Furthermore, we proved that TET facilitated M2 macrophage polarization and inhibited M1 macrophage polarization in GA mice. In addition, TET was found to inhibit NF-κB activity and NF-κB-mediated Lcp1 expression. Lcp1 knockdown can improve joint injury and promote M2 macrophage polarization in GA mice, while this effect was further enhanced by TET. TET alleviates inflammation and facilitates macrophage M2 polarization in GA by NF-κB-mediated Lcp1.


Asunto(s)
Artritis Gotosa , Bencilisoquinolinas , Artritis Gotosa/tratamiento farmacológico , Artritis Gotosa/inducido químicamente , Artritis Gotosa/metabolismo , Bencilisoquinolinas/efectos adversos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Macrófagos , FN-kappa B/efectos de los fármacos , FN-kappa B/metabolismo , Ácido Úrico/efectos adversos , Ácido Úrico/metabolismo , Animales , Ratones
4.
Inflamm Res ; 73(5): 739-751, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38493256

RESUMEN

OBJECTIVES: Cellular NAD+ declines in inflammatory states associated with increased activity of the leukocyte-expressed NADase CD38. In this study, we tested the potential role of therapeutically targeting CD38 and NAD+ in gout. METHODS: We studied cultured mouse wild type and CD38 knockout (KO) murine bone marrow derived macrophages (BMDMs) stimulated by monosodium urate (MSU) crystals and used the air pouch gouty inflammation model. RESULTS: MSU crystals induced CD38 in BMDMs in vitro, associated with NAD+ depletion, and IL-1ß and CXCL1 release, effects reversed by pharmacologic CD38 inhibitors (apigenin, 78c). Mouse air pouch inflammatory responses to MSU crystals were blunted by CD38 KO and apigenin. Pharmacologic CD38 inhibition suppressed MSU crystal-induced NLRP3 inflammasome activation and increased anti-inflammatory SIRT3-SOD2 activity in macrophages. BMDM RNA-seq analysis of differentially expressed genes (DEGs) revealed CD38 to control multiple MSU crystal-modulated inflammation pathways. Top DEGs included the circadian rhythm modulator GRP176, and the metalloreductase STEAP4 that mediates iron homeostasis, and promotes oxidative stress and NF-κB activation when it is overexpressed. CONCLUSIONS: CD38 and NAD+ depletion are druggable targets controlling the MSU crystal- induced inflammation program. Targeting CD38 and NAD+ are potentially novel selective molecular approaches to limit gouty arthritis.


Asunto(s)
ADP-Ribosil Ciclasa 1 , Inflamación , Macrófagos , Ratones Endogámicos C57BL , Ratones Noqueados , NAD , Ácido Úrico , Animales , ADP-Ribosil Ciclasa 1/genética , ADP-Ribosil Ciclasa 1/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Inflamación/tratamiento farmacológico , Ratones , NAD/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Masculino , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Células Cultivadas , Artritis Gotosa/tratamiento farmacológico , Artritis Gotosa/metabolismo , Artritis Gotosa/genética , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos
5.
Chem Biodivers ; 21(5): e202400448, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38498112

RESUMEN

Citronella and Nutmeg are two common spices used for seasoning and medicinal purposes, both of which have significant economic value. This study aimed to investigate whether Citronella essential oil and Nutmeg essential oil (NEO) can ameliorate monosodium urate (MSU)-induced gouty arthritis in rats and the potential mechanisms. The results showed that CEO and NEO reduced swelling and redness at joint sites, inhibited neutrophil infiltration, and limited proinflammatory mediator secretion in mice with MSU-induced gouty arthritis. Based on the results of network pharmacology, molecular docking, and western blotting, CEO and NEO may exert anti-gouty arthritis effects by reducing the expression of reactive oxygen species and oxidative stress and downregulating the phosphorylation of the PI3K/AKT/mTOR signaling pathway, thereby inhibiting the production of the NLRP3 inflammasome and inhibiting the production of inflammatory cytokines. Therefore, these two essential oils show potential for use as adjuvant treatments for gouty arthritis in specific aromatherapy products or food seasonings.


Asunto(s)
Artritis Gotosa , Proteína con Dominio Pirina 3 de la Familia NLR , Aceites Volátiles , Estrés Oxidativo , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Serina-Treonina Quinasas TOR , Aceites Volátiles/farmacología , Aceites Volátiles/química , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Estrés Oxidativo/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Fosfatidilinositol 3-Quinasas/metabolismo , Ratones , Artritis Gotosa/tratamiento farmacológico , Artritis Gotosa/inducido químicamente , Artritis Gotosa/metabolismo , Ratas , Masculino , Myristica/química , Ácido Úrico/metabolismo , Simulación del Acoplamiento Molecular , Ratas Sprague-Dawley
6.
J Ethnopharmacol ; 324: 117764, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38219882

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Sanmiao wan (SMW), a classical traditional Chinese medicine (TCM) formula, has been employed to treat gouty diseases in clinic as early as Yuan dynasty. It shows remarkably therapeutic effects in acute gouty arthritis (GA). However, the potential mechanisms of SMW are still not fully revealed. AIM OF THE STUDY: The objective of this project is to evaluate the pharmacological effects and possible mechanisms of SMW in a rat model of acute GA. MATERIALS AND METHODS: Monosodium urate (MSU) suspension was injected into the ankle joint of rats to establish acute GA model. The inflammation was evaluated by measuring the posterior ankle diameter. The pathological status of synovial tissue was assessed by hematoxylin eosin (HE), Masson, and picrosirius red staining. The level of IL-6 was measured using ELISA kit. The levels of blood urea nitrogen (BUN), creatinine (CR), UA (uric acid), and xanthine oxidase (XOD) in the serum were measured using standard diagnostic kits. The percentage of Th17 cells in blood samples was performed using flow cytometry. Moreover, RT-qPCR was performed to examine the mRNA level of RANK, RORγt, RANKL, and STAT3 in the synovial tissue. Furthermore, immunofluorescence was carried out to assess the expression of STAT3 in the synovial tissue. RESULTS: SMW effectively alleviated the inflammation and improved the pathological status of the ankle joint in rats with acute GA. It significantly suppressed the release of proinflammatory cytokine (IL-6). Meanwhile, the levels of UA, BUN, and CR were markedly reduced after SMW treatment. A remarkable reduction of XOD activity was observed in the study. Importantly, SMW treatment significantly reduced the frequency of Th17 cells, decreased the mRNA levels of RANK, RORγt, RANKL, and STAT3 in the synovial tissue. Furthermore, the suppression of STAT3 was also demonstrated using immunofluorescence in SMW-treated group. CONCLUSION: SMW showed significant anti-inflammatory and hypouricemic effects in a rat model of GA. It is an effective TCM formula for GA therapy.


Asunto(s)
Artritis Gotosa , Ratas , Animales , Artritis Gotosa/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares , Interleucina-6 , Inflamación/tratamiento farmacológico , Ácido Úrico , ARN Mensajero
7.
Curr Pharm Biotechnol ; 25(3): 350-364, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37078349

RESUMEN

BACKGROUND: Gouty arthritis (GA) is a common form of inflammatory arthritis caused by intra-articular deposition of monosodium urate (MSU) crystals; however, there is a tremendous lack of safe and effective therapy in the clinic. OBJECTIVE: The goal of this work was to investigate a novel leflunomide analogue, N-(2,4- dihydroxyphenyl)-5-methyl-1,2-oxazole-3-carboxamide (UTLOH-4e), for its potential to prevent/ treat gouty arthritis. METHODS: In this study, the anti-inflammatory activity of UTLOH-4e was evaluated by MSUinduced GA model in vivo and in vitro, and the molecular docking test was applied to estimate the affinity of UTLOH-4e/UTL-5g/b for MAPKs, NF-κB, and NLRP3. RESULTS: In vitro, UTLOH-4e (1~100 µM) treatment inhibited the inflammatory reaction with no obvious cytotoxicity in PMA-induced THP-1 macrophages exposed to MSU crystals for 24 h, involving the prominent decreased production and gene expression of IL-1ß, TNF-α, and IL-6. Western blot analyses demonstrated that UTLOH-4e (1~100 µM) significantly suppressed the activation of NLRP3 inflammasomes, NF-κB, and MAPK pathways. Furthermore, the data from the experiment on gouty rats induced by intra-articular injection of MSU crystal confirmed that UTLOH-4e markedly ameliorated rat paw swelling, articular synovium inflammation and reduced the concentration of IL-1ß and TNF-α in serum through down-regulating NLRP3 protein expression. CONCLUSION: These results manifested that UTLOH-4e ameliorates GA induced by MSU crystals, which contributes to the modulation of NF-κB/ NLRP3 signaling pathway, suggesting that UTLOH- 4e is a promising and potent drug candidate for the prevention and treatment of gouty arthritis.


Asunto(s)
Artritis Gotosa , Ratas , Animales , Artritis Gotosa/inducido químicamente , Artritis Gotosa/tratamiento farmacológico , Artritis Gotosa/metabolismo , Ácido Úrico/efectos adversos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , FN-kappa B/metabolismo , Leflunamida/efectos adversos , Factor de Necrosis Tumoral alfa/metabolismo , Simulación del Acoplamiento Molecular , Inflamación/metabolismo , Inflamasomas/metabolismo , Transducción de Señal
8.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 1015-1023, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37555854

RESUMEN

Evodiamine (EVO) was tested on acute gouty arthritis rats to investigate its anti-inflammatory effect. Seventy-two male Sprague-Dawley (SD) rats were randomly assigned into the control, model, high, medium, and low dose of EVO groups and colchicine group. The ankle swelling degrees were measured at 2 h, 6 h, and 24 h following sodium urate injection into ankle joint. Histopathological examination was performed 24 h after injection. Reactive oxygen species (ROS) content in the ankle joint was detected using chemical fluorescence. Serum interleukin-1ß (IL-1ß), interleukin-18 (IL-18), and tumor necrosis factor-α (TNF-α) content were determined by ELISA. Serum xanthine oxidase (XOD), superoxide dismutase (SOD), and malondialdehyde (MDA) were determined by spectrophotometry. The expressions of thioredoxin-interacting protein (TXNIP), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), pro-caspase-1, caspase-1, and apoptosis-related spot like protein (ASC) in synovium were detected by Western blot. Evodiamine alleviated the ankle swelling of the affected foot in gouty arthritis rats and reduced inflammatory cell infiltration in joint synovial tissue. Evodiamine also decreased the content of serum inflammatory factors including IL-1ß, IL-18, and TNF-α, and increased serum SOD activity, while it decreased serum XOD, MDA activity, and ROS level. Moreover, evodiamine downregulated the protein expression levels of TXNIP, NLRP3, pro-caspase-1, cleaved caspae-1, and ASC. The mechanism of EVO in treating gouty arthritis is associated with the inhibition of NLRP3 inflammasome by regulating the ROS/TXNIP/NLRP3 signaling pathway.


Asunto(s)
Artritis Gotosa , Proteína con Dominio Pirina 3 de la Familia NLR , Quinazolinas , Ratas , Masculino , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Artritis Gotosa/inducido químicamente , Artritis Gotosa/tratamiento farmacológico , Artritis Gotosa/metabolismo , Interleucina-18/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Caspasa 1/metabolismo , Ratas Sprague-Dawley , Superóxido Dismutasa , Proteínas de Ciclo Celular/uso terapéutico
9.
J Ethnopharmacol ; 321: 117527, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38056535

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: With the rapid development of China's economic level, great changes have taken place in people's diet structure, gout has become a common disease that puzzles people's health, seriously affects the realization of China's "Healthy China" strategic goal. Gouty arthritis (GA) is a common joint disease caused by chronic purine metabolism disorder. Currently, drugs used to treat GA are allopurinol and colchicine. However, these drugs can only temporarily relieve the clinical symptoms of GA with significant side effects. More and more basic and clinical studies have confirmed that Traditional Chinese medicine has definite curative effect on GA. AIM OF THE STUDY: To elucidate the potential molecular mechanism of Tongfengkang (TFK) in the treatment of GA, and to provide experimental basis for the search and development of efficient and low-toxicity Chinese medicine for GA treatment. MATERIALS AND METHODS: Aqueous extract of TFK (AETFK) were determined by liquid phase high resolution mass spectrometry and the possible effective constituents were screened out. Acute GA model rats were established to detect the anti-inflammatory and detumification effects of AETFK on GA and explore the potential mechanism. The effect of AETFK on serum uric acid and urinary uric acid levels in acute GA rats was determined by automatic biochemical analyzer, and the effect of AETFK on the expression of acute GA-related immunoinflammatory factors were determined by protein thermal fluorescence chip. The effect of AETFK on the concentration of neutrophils in the joint fluid of acute GA rats were determined by Reichs-Giemsa staining. The effect of AETFK on macrophage activation was detected by ELISA. In order to further investigate the mechanism of AETFK in the treatment of GA, a rat model of hyperuricemia was established to detect the effect of AETFK on the level of uric acid in hyperuricemia model rats. Biochemical indexes of liver and kidney and hematoxylin-eosin staining (HE) were used to evaluate the effects of AETFK on the organs, and to preliminatively evaluate the safety of ventilation confufang. RESULTS: Compared with the model group, the joint swelling degree of GA rats in AETFK treatment group were significantly reduced, and the levels of blood uric acid and urine uric acid were also significantly decreased. Protein thermal fluorescence microarray results showed that the levels of gout - related inflammatory factors in GA rats in AETFK treatment group were significantly lower than those in control group. Reichsen-giemsa staining and ELISA showed that AETFK could reduce the activation of macrophages and the accumulation of neutrophils in the joint fluid. The results of liver and kidney biochemical indexes and HE staining showed that no obvious tissue damage was observed in the organs of rats treated with AETFK. CONCLUSIONS: AETFK not only has significant anti-inflammatory effects on GA, but also can significantly reduce the level of blood uric acid in GA rats, without obvious toxic and side effects. These effects may be related to AETFK's inhibition of neutrophil enrichment and macrophage activation during early inflammation.


Asunto(s)
Artritis Gotosa , Medicamentos Herbarios Chinos , Gota , Hiperuricemia , Humanos , Ratas , Animales , Artritis Gotosa/tratamiento farmacológico , Artritis Gotosa/metabolismo , Ácido Úrico , Gota/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Antiinflamatorios/farmacología
10.
J Ethnopharmacol ; 319(Pt 3): 117313, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37924998

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: DaiTongXiao (DTX) is a traditional Chinese Dai folk formulation utilized for gouty arthritis treatment, with substantial evidence supporting its anti-inflammatory properties. The NLRP3 inflammasome disorder is tightly linked to the development of many inflammatory diseases. AIM OF THE STUDY: To elucidate the therapeutic efficacy of DTX in gouty arthritis and reveal its potential underlying mechanism. MATERIALS AND METHODS: The primary active constituents in DTX were determined through ultraviolet spectrophotometry and gas chromatography. Rats underwent induction with monosodium urate (MSU), followed by treatment of J774A.1 cells with adenosine triphosphate (ATP) activation and lipopolysaccharide (LPS) induction and the subsequent culture in Dulbecco's modified Eagle's medium. The degree of foot joint swelling in rats was assessed, and ankle joints were evaluated through H&E staining. Enzyme-linked immunosorbent assay was performed to measure the levels of interleukin (IL)-1ß, IL-6, IL-8, and tumor necrosis factor (TNF)-α in both serum and cells. Reverse transcription-polymerase chain reaction (RT-PCR) was performed to determine the relative mRNA expression levels of NLRP3, ASC, Caspase-1, and NF-κB in J774A.1 macrophages. The expression of NLRP3, ASC, Caspase-1, and NF-κB was examined by western blotting. RESULTS: DTX could alleviate MSU-induced joint swelling in rats, as evidenced by a reduction in joint inflammation. Moreover, DTX effectively enhanced the survival rate of J774A.1 cells following LPS induction and ATP activation. Furthermore, DTX significantly reduced IL-1ß, IL-6, IL-8, and TNF-α levels in both cell culture medium and rat serum. RT-PCR results revealed that DTX notably downregulated the mRNA expression levels of NLRP3, ASC, Caspase-1, and NF-κB in J774A.1 cells. Additionally, DTX downregulated NLRP3, ASC, NF-κB, and Caspase-1 expression in the joint tissue. CONCLUSIONS: DTX exerts a significant anti-gouty arthritis effect, with its mechanism being tightly linked to the NLRP3 inflammatory signaling pathway. This pathway may be modulated by inhibiting IL-1ß differentiation and maturation by downregulating NLRP3, ASC, Caspase-1, and NF-κB protein expression. This, in turn, leads to a reduction in the release of IL-6, IL-8, and TNF-α, ultimately impeding gouty arthritis progression.


Asunto(s)
Artritis Gotosa , Ratas , Animales , Artritis Gotosa/inducido químicamente , Artritis Gotosa/tratamiento farmacológico , Artritis Gotosa/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6 , Lipopolisacáridos , Interleucina-8 , Transducción de Señal , Inflamasomas/metabolismo , Ácido Úrico , Caspasa 1/metabolismo , Edema , Adenosina Trifosfato , ARN Mensajero
11.
Einstein (Sao Paulo) ; 21: eAO0465, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37909651

RESUMEN

OBJECTIVE: Gouty arthritis is characterized by painful inflammation due to the deposition of monosodium urate crystals in joint tissues. Despite available treatments, many patients experience ineffective management and adverse effects. This study evaluated a manual therapy protocol involving passive joint mobilization at the peak of inflammation in a gouty arthritis model using functional and inflammatory parameters. METHODS: Twenty male Wistar rats, 12 weeks old, were divided into two groups (n=10 each): Gouty Arthritis and Control Groups, which were further subdivided into treated and untreated groups (n=5 each). The Gouty Arthritis Group received intraarticular knee injection of 50µL of monosodium urate crystals, while the Control Group received 50µL of phosphate buffered saline. The treatment involved a 9-minutes session of grade III joint mobilization (according to Maitland). Nociception, grip strength, and edema were evaluated before induction (EV0), 7 hours after assessment (EV1), immediately after treatment (EV2), and 1 hour after treatment (EV3). The animals were euthanized, and synovial fluid was collected to analyze leukocyte migration. RESULTS: The model mimicked the signs of the Gouty Arthritis Group, with a decrease in the threshold of nociception and strength and an increase in edema and leukocyte count. The mobilization protocol significantly increased the nociceptive threshold and grip strength and reduced edema; however, it did not reverse the increase in leukocyte count. CONCLUSION: Our results suggest that mobilization promotes analgesia and may modulate the inflammatory process owing to reduced edema and subtle attenuation of cell migration, which contributes to strength gain.


Asunto(s)
Artritis Gotosa , Humanos , Ratas , Animales , Masculino , Artritis Gotosa/inducido químicamente , Artritis Gotosa/terapia , Artritis Gotosa/metabolismo , Ácido Úrico , Ratas Wistar , Inflamación , Dolor , Edema
12.
Front Endocrinol (Lausanne) ; 14: 1071630, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37810893

RESUMEN

Neutrophil extracellular traps (NETs) are composed of chromatin filaments coated with granular and cytosolic proteins, which contribute to the pathogenesis and progression of immune-related diseases. NETs are frequently observed in gouty arthritis, but the related mechanisms remain poorly understood. The aim of our study was to systematically elucidate the molecular mechanisms of self-remitting effects in gouty arthritis, and the causative relationship between neutrophil autophagy and NETs. The air pouch and paw edema model were used to simulate gouty arthritis in mice. Neutrophil infiltration and the formation of NETs were found in gouty arthritis. Interestingly, monosodium urate (MSU) crystals could induce the formation of NETs, degrade inflammatory factors, and alleviate the inflammatory response in gouty arthritis. In addition, MSU crystals resulted in profound molecular alterations in neutrophils using RNA-seq analysis, including autophagy activation. MSU crystals could activate neutrophil autophagy in vitro, and autophagy activators and inhibitors could regulate the formation of NETs. Furthermore, we explored the mechanism of autophagy-induced NETs. Autophagy related protein 7 (ATG7) produced by neutrophils stimulated with MSU crystals worked synergistically with p53 to enter the nucleus, promoting peptidyl arginine deiminase 4 (PAD4) expression, and inducing the formation of NETs. Finally, we substantiated that neutrophil autophagy regulates the severity of gouty arthritis via the formation of NETs in PAD4 -/- mice. Our results indicated that the autophagy of neutrophils regulates the formation of NETs and degrades inflammatory factors. Regulating autophagy and interfering with the formation of NETs represents a potential therapeutic approach against gouty arthritis during clinical practice.


Asunto(s)
Artritis Gotosa , Trampas Extracelulares , Ratones , Animales , Artritis Gotosa/inducido químicamente , Artritis Gotosa/tratamiento farmacológico , Artritis Gotosa/metabolismo , Neutrófilos/patología , Trampas Extracelulares/metabolismo , Ácido Úrico , Inflamación/patología
13.
Int J Rheum Dis ; 26(11): 2233-2239, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37715329

RESUMEN

AIM: According to reports, long non-coding RNAs (lncRNAs) are involved in the regulation of many inflammatory diseases. Here, our main purpose was to ascertain the expression data of lncRNA SNHG14 in acute gouty arthritis (AGA) and to explore its possible mechanism in the regulation of AGA. METHOD: Reverse transcription quantitative polymerase chain reaction technology was supplied to detect the lncRNA SNHG14 expression. A receiver operating characteristics curve was drawn to estimate the accuracy of lncRNA SNHG14 in AGA diagnosis. An in vitro AGA cell model was constructed by inducing THP-1 cells with monosodium urate (MSU). The concentrations of inflammatory factors such as interleukin-1ß, interleukin-6, and tumor necrosis factor-α were measured by enzyme-linked immunosorbent assay. The luciferase reporter gene was used to verify the relationship between lncRNA SNHG14 and miR-223-3p. RESULTS: In clinical analysis, the levels of serum lncRNA SNHG14 in AGA patients were significantly higher than those in the control group. Abnormally elevated lncRNA SNHG14 has high sensitivity and specificity for AGA diagnosis. In in vitro cell experiments, silencing lncRNA SNHG14 inhibited the inflammatory response of THP-1 cells stimulated by MSU, and the luciferase reporter gene proved that lncRNA SNHG14 could bind to miR-223-3p. In addition, the level of miR-223-3p declined in AGA patients and the AGA cell model. Overexpression of miR-223-3p is helpful to alleviate an MSU-induced inflammatory response. CONCLUSION: In the AGA cell model, lncRNA SNHG14, as an miR-223-3p sponge, induces a cellular inflammatory response by controlling the level of miR-223-3p, so aggravating the disease progress of AGA.


Asunto(s)
Artritis Gotosa , MicroARNs , ARN Largo no Codificante , Humanos , Artritis Gotosa/inducido químicamente , Artritis Gotosa/genética , Artritis Gotosa/metabolismo , ARN Largo no Codificante/genética , MicroARNs/genética , MicroARNs/metabolismo , Ácido Úrico , Luciferasas
14.
Int Immunopharmacol ; 123: 110756, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37573689

RESUMEN

Acute gouty arthritis (AGA) is a frequent self-limiting inflammatory condition produced by the deposition of monosodium urate (MSU) crystals in the joints and periarticular tissues of patients with hyperuricemia. However, no effective interventional measures currently exist for AGA. Pyroptosis, a kind of pro-inflammatory programmed cell death, plays a crucial role in MSU crystal-induced inflammation and represents a potential treatment target for AGA. Therefore, we determined the therapeutic benefits and mechanism of PP121, a pyroptosis-related compound, on AGA. First, we injected an MSU crystal solution intra-articularly into the left foot pad of C57BL/6 mice to create an AGA mouse model. Subsequent treatment with PP121 substantially decreased tissue damage, pro-inflammatory cytokine release, and inflammatory cell infiltration caused by MSU crystals in the ankle joint. Consistent with these observations, the beneficial effects of PP121 on AGA were cancelled in Beclin1+/-(Becn1+/-) mice. Furthermore, after PP121 treatment, super-resolution microscopy revealed a strong relationship between lysosome-connected membrane protein/light chain 3 positive vesicles and the nucleotide-binding domain of leucine-rich family pyrin domain-containing 3 (NLPR3), demonstrating that PP121 promotes phagocytosis of the NLPR3 inflammasome. In summary, PP121-mediated autophagy can improve degradation of the NLRR3 inflammasome in AGA, which suggests the therapeutic potential of PP121 in AGA.


Asunto(s)
Artritis Gotosa , Animales , Humanos , Ratones , Artritis Gotosa/inducido químicamente , Artritis Gotosa/tratamiento farmacológico , Artritis Gotosa/metabolismo , Autofagia , Inflamasomas/metabolismo , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ácido Úrico/uso terapéutico
15.
J Nat Prod ; 86(9): 2091-2101, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37625387

RESUMEN

In the present study, a natural product database of compounds associated with herbs traditionally verified to treat gout/hyperuricemia/arthritis was constructed. 3D-shape and docking-based virtual screening was conducted. To identify potential xanthine oxidase (XOD) inhibitors in the database, eight compounds with commercial availability were identified as high 3D-shape similarity with febuxostat (1), a known XOD inhibitor. Docking was used to further predict the possible interactions between XOD and these compounds. Moracin C (2), moracin D (3), and isoformononetin (8) exhibited higher docking scores and binding energies than other compounds. In vitro, 2 inhibited XOD with an IC50 value of 0.25 ± 0.14 µM, which is similar to that of 1 (0.16 ± 0.08 µM). In a hyperuricemic mouse model, 5-20 mg/kg 2 exhibited satisfying urate-lowering and XOD inhibitory effects. Compound 2 also exhibited antiarthritis activities. In RAW264.7 cells, 2 at 1-10 µM inhibited the expression of IL-1ß and TNF-α induced by MSU. In an acute gouty arthritis model in SD rats, 5-20 mg/kg 2 significantly alleviated the toe swelling, inflammatory response, and dysfunction disorder caused by monosodium urate (MSU). Compound 2 inhibited serum IL-1ß and TNF-α cytokines as well as reduced the expression of the NLRP3/ASC/caspase-1 inflammasome in joints. In summary, 2 was an effective compound for the treatment of hyperuricemia/gouty arthritis.


Asunto(s)
Artritis Gotosa , Hiperuricemia , Ratones , Ratas , Animales , Hiperuricemia/tratamiento farmacológico , Hiperuricemia/metabolismo , Factor de Necrosis Tumoral alfa , Ratas Sprague-Dawley , Artritis Gotosa/tratamiento farmacológico , Artritis Gotosa/inducido químicamente , Artritis Gotosa/metabolismo , Ácido Úrico/efectos adversos , Inhibidores Enzimáticos
16.
Food Funct ; 14(15): 7011-7023, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37439115

RESUMEN

Lycium ruthenicum Murr. (LR) has long been used as a unique nutritional and medicinal food to treat various diseases such as gouty arthritis. However, although recently the literature has focused on the protective roles of LR anthocyanins on gouty arthritis, there is no relevant research from a holistic perspective of lipid metabolism to study their anti-gout effects. In this study, a combined tissue lipidomics, network pharmacology, and molecular docking approach was performed to investigate the intervention mechanism of LR anthocyanins against a monosodium urate (MSU)-induced gout mouse model. 54 gout-related lipid markers were identified via lipidomic profiling of the mouse knee joint, including glycerophospholipids, sphingolipids, glycerolipids, and plasmalogens. Integrating with pathway analysis, network pharmacology, and molecular docking, the potential targets of LR anthocyanins for treating gouty arthritis were predicted, while pathways in cancer, prostate cancer, sphingolipid signaling, choline metabolism in cancer, arachidonic acid metabolism, and ovarian steroidogenesis were involved as shared critical pathways of lipidomic analysis and network pharmacology. Furthermore, the binding sites and patterns of 3 active components and 4 core targets with the lowest binding energies were explored. Western blotting was finally used to verify the expression levels of 4 core proteins: MMP2, MMP9, MAP2K1, and MAPK14. These results provide new insights into our understanding of gouty arthritis and the anti-gout mechanism of LR anthocyanins.


Asunto(s)
Artritis Gotosa , Gota , Lycium , Masculino , Ratones , Animales , Artritis Gotosa/inducido químicamente , Artritis Gotosa/tratamiento farmacológico , Artritis Gotosa/metabolismo , Antocianinas/farmacología , Antocianinas/química , Simulación del Acoplamiento Molecular , Lycium/química , Lipidómica , Farmacología en Red
17.
Int J Rheum Dis ; 26(9): 1697-1703, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37421186

RESUMEN

OBJECTIVE: To explore the performance and effect of dual-energy computed tomography (CT) and ultrasound in the diagnosis of gouty arthritis and to provide a reference for the clinical diagnosis of gouty arthritis. METHODS: A retrospective analysis of 76 patients with gouty arthritis admitted to the hospital from June 2020 to June 2022 was conducted. Patients were diagnosed with gouty arthritis using ultrasound and dual-energy CT technology. The accuracy of diagnosis by different imaging techniques was analyzed along with the imaging findings of ultrasound and dual-energy CT. RESULTS: Seventy-six patients, 60 men and 16 women, ranging in age from 20 to 77 years (mean age 50.8 ± 10.92 years), presented with uric acid levels of 254.1-720.05 µmol/L (mean 482.17 ± 105.06 µmol/L) and C-reactive protein levels ranging from 4.25 to 10.3 mg/L. The receiver operating characteristic curve showed that the area under the curve and specificity of serum uric acid were higher by dual-energy CT than those of ultrasound in the diagnosis of gouty arthritis. The dual-energy CT detection rate of tophi was significantly higher than the ultrasound detection rate (p < .05). For inflammatory effusion and synovial thickening, the ultrasound detection rates were significantly higher than the dual-energy CT detection rates (p < .05). Regarding soft-tissue edema, the detection rate of the two methods was not significantly different (p > .05). CONCLUSION: Compared with ultrasound, dual-energy CT has increased accuracy in the diagnosis of gouty arthritis.


Asunto(s)
Artritis Gotosa , Masculino , Humanos , Femenino , Adulto , Persona de Mediana Edad , Adulto Joven , Anciano , Artritis Gotosa/metabolismo , Ácido Úrico/análisis , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos , Curva ROC
18.
J Innate Immun ; 15(1): 614-628, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37385228

RESUMEN

PR domain-containing 1 with zinc finger domain (PRDM1) has been reported as a promoter of inflammation, which is a critical process involved in the pathogenesis of acute gouty arthritis. Herein, we sought to ascertain the function of PRDM1 in the development of acute gouty arthritis and related mechanisms. At first, peripheral blood-derived monocytes from patients with acute gouty arthritis and healthy individuals were collected as experimental samples. Then, macrophages were induced from monocytes using phorbol myristate acetate (PMA). The expression patterns of PRDM1, sirtuin 2 (SIRT2), and NLR family, pyrin domain-containing 3 (NLRP3) were characterized by RT-qPCR and Western blot assay. PMA-induced macrophages were stimulated by monosodium urate (MSU) for in vitro experimentation. Meanwhile, a murine model of MSU-induced acute gouty arthritis was established for in vivo validation. PRDM1 was highly expressed while SIRT2 poorly expressed in patients with acute gouty arthritis. Loss of PRDM1 could reduce NLRP3 inflammasome and mature IL-1ß levels and downregulate inflammatory cytokines in macrophages, which contributed to protection against acute gouty arthritis. Furthermore, results showed that PRDM1 could inhibit SIRT2 expression via binding to the deacetylase SIRT2 promoter. Finally, the in vivo experiments demonstrated that PRDM1 increased NLRP3 inflammasome and mature IL-1ß through transcriptional inhibition of SIRT2, whereby aggravating MSU-induced acute gouty arthritis. To sum up, PRDM1 increased NLRP3 inflammasome through inhibiting SIRT2, consequently aggravating MSU-induced acute gouty arthritis.


Asunto(s)
Artritis Gotosa , Animales , Humanos , Ratones , Artritis Gotosa/inducido químicamente , Artritis Gotosa/metabolismo , Artritis Gotosa/patología , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Sirtuina 2/genética , Ácido Úrico
19.
Crit Rev Eukaryot Gene Expr ; 33(5): 1-16, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37199310

RESUMEN

Gouty arthritis (GA), one of the most common forms of inflammatory arthritis, is characterized by elevated serum uric acid concentrations and the consequent deposition of monosodium urate crystals. Under low-grade inflammatory stress, cells tend to adapt to the microenvironment by reprogramming their metabolic pathways. Here we review the aberrant metabolic responses to the inflammatory environment in immune and tissue cells in distinct phases of GA. Regulation of these pathways is implicated in metabolic alterations including mitochondrial dysfunction, changes in the glycolytic pathway, and alteration of lipid, uric acid, and bone metabolism among others. Investigations of how these alterations lead to proinflammatory and anti-inflammatory effects in each period of GA have revealed links to its pathogenesis. Knowledge gained may open up new opportunities for diagnosis, treatment and prognosis of GA and offer rationale for further investigation into the mechanisms underlying the progression of the disease.


Asunto(s)
Artritis Gotosa , Humanos , Artritis Gotosa/metabolismo , Artritis Gotosa/patología , Ácido Úrico/metabolismo , Inmunidad
20.
Life Sci ; 326: 121766, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37209866

RESUMEN

AIMS: Polygonum cuspidatum Sieb. et Zucc is one of the commonly used herbs for the treatment of gouty arthritis, and polydatin is one of its main effective components. This study evaluated the therapeutic potential of polydatin for the treatment of gout. MAIN METHODS: The ankle joint of C57BL/6 mice were injected with MSU suspensions to simulate human gouty arthritis, and oral treatment with polydatin (25, 50, and 100 mg/kg body weight) was performed at 1 h after MSU crystal injection. The effect of polydatin on model mice was evaluated by measuring ankle swelling, gait, histopathological analysis, proinflammatory cytokine expression, as well as the contents of NO, MDA and GSH. The targets of polydatin were explored by Real-Time PCR and IHC. KEY FINDINGS: Treatment with polydatin inhibited ankle swelling, improved abnormal gait, and reduced ankle lesions dose-dependently. Moreover, polydatin decreased pro-inflammatory cytokine expression, and promoted expression of anti-inflammatory cytokine. In addition, polydatin inhibited MSU-induced oxidative stress by decreasing oxidative product (NO, MDA) generation and promote the antioxidant (GSH). Further, we found that polydatin reduced inflammation by decreasing the expression of NLRP3 inflammasome component via activating PPAR-γ. Moreover, polydatin can protect against iron overload and attenuate oxidative stress by promoting the activation of ferritin. SIGNIFICANCE: Our findings indicates that polydatin ameliorates MSU-induced inflammation and oxidative stress by regulating PPAR-γ and ferritin activation in gouty arthritis model mice, and this research result suggests that polydatin has therapeutic potential for the treatment of gout in humans through multiple targets.


Asunto(s)
Artritis Gotosa , Gota , Ratones , Humanos , Animales , Artritis Gotosa/inducido químicamente , Artritis Gotosa/tratamiento farmacológico , Artritis Gotosa/metabolismo , PPAR gamma/metabolismo , Ácido Úrico/toxicidad , Ratones Endogámicos C57BL , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Gota/tratamiento farmacológico , Estrés Oxidativo , Inflamasomas/metabolismo , Citocinas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA