Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2575-2584, 2024 May.
Artículo en Chino | MEDLINE | ID: mdl-38812158

RESUMEN

Asari Radix et Rhizoma is a common drug for relieving exterior syndrome in clinics, but its toxicity limits its use. In this study, the mechanism of hepatic damage of Asari Radix et Rhizoma was studied by network pharmacology and metabolomics. The hepatic damage-related dataset, namely GSE54257 was downloaded from the GEO database. The Limma package was used to analyze the differentially expressed genes in the dataset GSE54257. Toxic components and target genes of Asari Radix et Rhizoma were screened by TCMSP, ECTM, and TOXNET. The hepatic damage target genes of Asari Radix et Rhizoma were obtained by mapping with the differentially expressed gene of GSE54257, and a PPI network was constructed. GO and KEGG enrichment analysis of target genes were performed, and a "miRNA-target gene-signal pathway" network was drawn with upstream miRNA information. Thirty rats were divided into a blank group, a high-dose Asari Radix et Rhizoma group, and a low-dose Asari Radix et Rhizoma group, which were administered once a day. After continuous administration for 28 days, liver function indexes and liver pathological changes were detected. Five liver tissue samples were randomly collected from the blank group and high-dose Asari Radix et Rhizoma group, and small molecule metabolites were analyzed by ultra-high performance liquid chromatography-mass spectrometry(UHPLC-MS). The orthogonal partial least squares-discriminant analysis(OPLS-DA) method was used to screen differential metabolites, and enrichment analysis, correlation analysis, and cluster analysis were conducted for differential metabolites. Finally, the MetaboAnalyst platform was used to conduct pathway enrichment analysis for differential metabolites. It was found that there were 14 toxic components in Asari Radix et Rhizoma, corresponding to 37 target genes, and 12 genes related to liver toxicity of Asari Radix et Rhizoma were obtained by mapping to differentially expressed genes of GSE54257. The animal test results showed that Asari Radix et Rhizoma could significantly increase the liver function index, reduce the activity of the free radical scavenging enzyme, change the liver oxidative stress level, and induce lipid peroxidation damage in rats. The results of untargeted metabolomics analysis showed that compared with the blank group, nine metabolites were up-regulated, and 16 metabolites were down-regulated in the liver tissue of the Asari Radix et Rhizoma group. These 25 metabolites had strong correlations and good clustering. Pathway enrichment analysis showed that these differential metabolites and the 12 hepatotoxic target genes of Asari Radix et Rhizoma were mainly involved in purine metabolism, as well as the biosynthesis and metabolism of valine, leucine, glycine, serine, and threonine. The study confirmed that the hepatica damage effect of Asari Radix et Rhizoma was the result of multi-component, multi-target, and multi-signaling pathways, and its mechanism may be related to inhibiting nucleotide synthesis and affecting protein metabolism.


Asunto(s)
Medicamentos Herbarios Chinos , Hígado , Metabolómica , Animales , Ratas , Medicamentos Herbarios Chinos/administración & dosificación , Hígado/metabolismo , Hígado/efectos de los fármacos , Masculino , Farmacología en Red , Ratas Sprague-Dawley , Asarum/química , Asarum/genética , Asarum/metabolismo , Rizoma/química , Humanos , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/genética
2.
Phytomedicine ; 115: 154818, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37187105

RESUMEN

BACKGROUND: Atopic dermatitis (AD) is a chronic, relapsing skin disease accompanied by itchy and dry skin. AD is caused by complex interactions between innate and adaptive immune response. AD treatment include glucocorticoids and immunosuppressants. However, long-term treatment can have serious side effects. Thus, an effective AD treatment with fewer side effects is required. Natural materials, including herbal medicines, have potential applications. PURPOSE: This study evaluated the in vivo and in vitro therapeutic effects of BS012, a mixture of Asarum sieboldii, Platycodon grandiflorum, and Cinnamomum cassia extracts, on AD and investigated the underlying metabolic mechanisms. METHODS: The anti-inflammatory effects of BS012 were assessed using a mouse model of AD induced by 1­chloro-2,4-dinitrobenzene (DNCB) and in tumor necrosis factor-alpha/interferon-gamma (TNF-α/IFN-γ) stimulated normal human epidermal keratinocytes (NHEKs). In DNCB-induced mice, total dermatitis score, histopathological analysis, and immune cell factors were assessed to evaluate the anti-atopic activity. In TNF-α/IFN-γ-stimulated NHEKs, pro-inflammatory cytokines, chemokines, and related signaling pathways were investigated. Serum and intracellular metabolomics were performed to identify the metabolic mechanism underlying the therapeutic effects of BS012 treatment. RESULTS: In DNCB-induced mice, BS012 showed potent anti-atopic activity, including reducing AD-like skin lesions and inhibiting the expression of Th2 cytokines and thymic stromal lymphopoietin. In TNF-α/IFN-γ-stimulated keratinocytes, BS012 dose-dependently inhibited the expression of pro-inflammatory cytokines and chemokines by blocking nuclear factor-kappa B and signal transducer and activator of transcription signaling pathways. Serum metabolic profiles of mice revealed significant changes in lipid metabolism related to inflammation in AD. Intracellular metabolome analysis revealed that BS012 treatment affected the metabolism associated with inflammation, skin barrier function, and lipid organization of the stratum corneum. CONCLUSION: BS012 exerts anti-atopic activity by reducing the Th2-specific inflammatory response and improving skin barrier function in AD in vivo and in vitro. These effects are mainly related to the inhibition of inflammation and recovery of metabolic imbalance in lipid organization. BS012, a novel combination with strong activity in suppressing the Th2-immune response, could be a potential alternative for AD treatment. Furthermore, the metabolic mechanism in vivo and in vitro using a metabolomics approach will provide crucial information for the development of natural products for AD treatment.


Asunto(s)
Asarum , Cinnamomum aromaticum , Dermatitis Atópica , Platycodon , Humanos , Animales , Ratones , Dermatitis Atópica/patología , Asarum/metabolismo , Cinnamomum aromaticum/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Dinitroclorobenceno , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Citocinas/metabolismo , Inflamación/tratamiento farmacológico , Quimiocinas/metabolismo , Interferón gamma/metabolismo , Dinitrobencenos , Lípidos , Piel/metabolismo , Ratones Endogámicos BALB C
3.
Ann Bot ; 131(3): 423-436, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36579472

RESUMEN

BACKGROUND AND AIMS: Evergreen herbaceous species in the deciduous forest understorey maintain their photosystems in long-lived leaves under dynamic seasonal changes in light and temperature. However, in evergreen understorey herbs, it is unknown how photosynthetic electron transport acclimates to seasonal changes in forest understorey environments, and what photoprotection systems function in excess energy dissipation under high-light and low-temperature environments in winter. METHODS: Here, we used Asarum tamaense, an evergreen herbaceous species in the deciduous forest understorey with a single-flush and long-lived leaves, and measured photosynthetic CO2 assimilation and electron transport in leaves throughout the year. The contents of photosynthetic proteins, pigments and primary metabolites were determined from regularly collected leaves. KEY RESULTS: Both the rates of CO2 assimilation and electron transport under saturated light were kept low in summer, but increased in autumn and winter in A. tamaense leaves. Although the contents of photosynthetic proteins including Rubisco did not increase in autumn and winter, the proton motive force and ΔpH across the thylakoid membrane were high in summer and decreased from summer to winter to a great extent. These decreases alleviated the suppression by lumen acidification and increased the electron transport rate in winter. The content and composition of carotenoids changed seasonally, which may affect changes in non-photochemical quenching from summer to winter. Winter leaves accumulated proline and malate, which may support cold acclimation. CONCLUSIONS: In A. tamaense leaves, the increase in photosynthetic electron transport rates in winter was not due to an increase in photosynthetic enzyme contents, but due to the activation of photosynthetic enzymes and/or release of limitation of photosynthetic electron flow. These seasonal changes in the regulation of electron transport and also the changes in several photoprotection systems should support the acclimation of photosynthetic C gain under dynamic environmental changes throughout the year.


Asunto(s)
Asarum , Asarum/metabolismo , Estaciones del Año , Dióxido de Carbono/metabolismo , Fotosíntesis/fisiología , Plantas/metabolismo
4.
Chem Biodivers ; 19(6): e202100986, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35502747

RESUMEN

Bioassay-guided fractionation of Asarum heterotropoides var. mandshuricum F. Maekawa (Aristolochiaceae) root extract led to the isolation and characterization of one new ferulic acid glucose ester (1) and nine known lignans (2-10). Their structures were elucidated using extensive spectroscopic methods, including 1D and 2D NMR, and MS spectra. The anti-inflammatory effects of the isolated compounds were investigated via their inhibition against nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 mouse macrophage cells. Among them, compound 7 ((1R,2S,5R,6R)-5'-O-methylpluviatilol) showed the most effective inhibitory activity against NO production and expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein in an exceedingly dose-dependent manner. In addition, further study revealed that the mechanism of anti-inflammatory activity of the most active lignan (7) might be associated with the inhibition of extracellular-signal-regulated kinase (ERK) and nuclear factor kappa B (NF-κB) phosphorylation.


Asunto(s)
Asarum , Lignanos , Animales , Antiinflamatorios/química , Asarum/química , Asarum/metabolismo , Lignanos/química , Lipopolisacáridos/farmacología , Ratones , FN-kappa B/metabolismo , Óxido Nítrico , Óxido Nítrico Sintasa de Tipo II/metabolismo
5.
Int J Mol Sci ; 22(24)2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34948197

RESUMEN

Asarum sieboldii Miq. is a leading economic crop and a traditional medicinal herb in China. Leaf-blade and petiole are the only aerial tissues of A. sieboldii during the vegetative growth, playing a vital role in the accumulation and transportation of biomass energy. They also act as critical indicators of drought in agricultural management, especially for crops having underground stems. During drought, variations in the morphology and gene expression of the leaves and petioles are used to control agricultural irrigation and production. Besides, such stress can also alter the differential gene expression in these tissues. However, little is known about the drought-tolerant character of the aerial parts of A. sieboldii. In this study, we examined the physiological, biochemical and transcriptomic responses to the drought stress in the leaf blades and petioles of A. sieboldii. The molecular mechanism, involving in drought stress response, was elucidated by constructing the cDNA libraries and performing transcriptomic sequencing. Under drought stress, a total of 2912 and 2887 unigenes were differentially expressed in the leaf blade and petiole, respectively. The detection of many transcription factors and functional genes demonstrated that multiple regulatory pathways were involved in drought tolerance. In response to drought, the leaf blade and petiole displayed a general physiological character, a higher SOD and POD activity, a higher MDA content and lower chlorophyll content. Three unigenes encoding POD were up-regulated, which can improve POD activity. Essential oil in petiole was extracted. The relative contents of methyleugenol and safrole in essential oil were increased from 0.01% to 0.05%, and 3.89% to 16.97%, respectively, while myristicin slightly reduced from 24.87% to 21.52%. Additionally, an IGS unigene, involved in eugenol biobiosynthesis, was found up-regulated under drought stress, which was predicated to be responsible for the accumulation of methyleugenol and safrole. Simple sequence repeats (SSRs) were characterized in of A. sieboldii, and a total of 5466 SSRs were identified. Among them, mono-nucleotides were the most abundant repeat units, accounting for 44.09% followed by tri-, tetra-, penta and hexa-nucleotide repeats. Overall, the present work provides a valuable resource for the population genetics studies of A. sieboldii. Besides, it provides much genomic information for the functional dissection of the drought-resistance in A. sieboldii, which will be useful to understand the bio-regulatory mechanisms linked with drought-tolerance to enhance its yield.


Asunto(s)
Asarum/genética , Asarum/metabolismo , Asarum/fisiología , Derivados de Alilbenceno , China , Productos Agrícolas/genética , Dioxolanos , Sequías , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/genética , Repeticiones de Microsatélite/genética , Aceites Volátiles/química , Hojas de la Planta/genética , Plantas Medicinales/genética , Estrés Fisiológico/genética , Transcriptoma/genética
6.
Biomolecules ; 11(8)2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34439899

RESUMEN

Asarum sieboldii Miq., a perennial herb in the family Aristolochiaceae, is widely used to treat colds, fever, headache and toothache in China. However, little is known about the drought-tolerance characteristics of A. sieboldii. In this study, to elucidate the molecular-genetic mechanisms of drought-stress tolerance of A. sieboldii, RNA-seq was conducted. In total, 53,344 unigenes were assembled, and 28,715 unigenes were annotated. A total of 6444 differential-expression unigenes (DEGs) were found, which were mainly enriched in phenylpropanoid, starch and sucrose metabolic pathways. Drought stress revealed significant up-regulation of the unigenes encoding PAL, C4H, HCT, C3H, CCR and IGS in the methyleugenol-biosynthesis pathway. Under the condition of maintaining drought for 15 days and 30 days, drought stress reduced the biosynthesis of volatile oil by 24% and 38%, respectively, while the production of key medicinal ingredients (such as methyl eugenol) was increased. These results provide valuable information about the diverse mechanisms of drought resistance in the A. sieboldii, and the changes in the expression of the genes involved in methyleugenol biosynthesis in response to drought stress.


Asunto(s)
Asarum/metabolismo , Sequías , Eugenol/análogos & derivados , Transcriptoma , Asarum/genética , Eugenol/química , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Redes y Vías Metabólicas , Biología Molecular , Aceites Volátiles , Control de Calidad , RNA-Seq , Estrés Fisiológico/genética , Sacarosa/metabolismo
7.
Genome ; 64(6): 639-653, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33320770

RESUMEN

Asarum sieboldii, a well-known traditional Chinese medicinal herb, is used for curing inflammation and ache. It contains both the bioactive ingredient asarinin and the toxic compound aristolochic acid. To address further breeding demand, genes involved in the biosynthetic pathways of asarinin and aristolochic acid should be explored. Therefore, the full-length transcriptome of A. sieboldii was sequenced using PacBio Iso-Seq to determine the candidate transcripts that encode the biosynthetic enzymes of asarinin and aristolochic acid. In this study, 63 023 full-length transcripts were generated with an average length of 1371 bp from roots, stems, and leaves, of which 49 593 transcripts (78.69%) were annotated against public databases. Furthermore, 555 alternative splicing (AS) events, 10 869 long noncoding RNAs (lncRNAs) as well as their 11 291 target genes, and 17 909 simple sequence repeats (SSRs) were identified. The data also revealed 97 candidate transcripts related to asarinin metabolism, of which six novel genes that encoded enzymes involved in asarinin biosynthesis were initially reported. In addition, 56 transcripts related to aristolochic acid biosynthesis were also identified, including CYP81B. In summary, these transcriptome data provide a useful resource to study gene function and genetic engineering in A. sieboldii.


Asunto(s)
Anticolesterolemiantes/metabolismo , Antihipertensivos/metabolismo , Antioxidantes/metabolismo , Ácidos Aristolóquicos/biosíntesis , Ácidos Aristolóquicos/genética , Asarum/genética , Perfilación de la Expresión Génica , Plantas Medicinales/genética , Empalme Alternativo , Asarum/metabolismo , Vías Biosintéticas/genética , Dioxoles , Regulación de la Expresión Génica de las Plantas , Lignanos , Repeticiones de Microsatélite , Fitomejoramiento , Hojas de la Planta/genética , Raíces de Plantas/genética , Plantas Medicinales/metabolismo , ARN Largo no Codificante/metabolismo , Transcriptoma
8.
PLoS One ; 15(9): e0237952, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32970685

RESUMEN

Asarum heterotropoides Fr. var. mandshuricum (Maxim) Kitag (Chinese wild ginger) is an important medicinal herb. Essential oil extracted from its roots is the key ingredient and is mainly composed of phenylpropanoid compounds. As a skiophyte plant, light is a crucial factor for A. heterotropoides var. mandshuricum growth and metabolism. To investigate the effects of light irradiation on the essential oil biosynthesis in A. heterotropoides var. mandshuricum, the plants were cultivated in four light irradiation treatments (100, 50, 24 and 12% full sunlight). The photosynthetic capacity, essential oil content and composition, activities of several enzymes and levels of some secondary metabolites involved in the shikimic acid and cinnamic acid pathways were analyzed. The leaf mass per area, average diurnal net photosynthetic rate, and the essential oil content increased significantly with increasing light intensity. Phenylalanine, cinnamic acid, and p-coumaric acid in the cinnamic acid pathway were at their highest levels in plants cultivated in 100% full sunlight. The highest content of shikimic acid in the shikimic acid pathway was obtained in plants grown in 50% sunlight transmittance. The activity of the enzymes 3-Deoxy-D-arabino-heptulosonate-7-phosphate synthase, phenylalanine ammonia lyase, cinnamate-4-hydroxylase and 4-coumarate:CoA ligase increased proportionally with light intensity. Overall, we conclude that high light irradiation promotes high net photosynthetic rate, high activity of enzymes and high amounts of phenylpropanoid precursor metabolites leading to significant biosynthesis of essential oil in A. heterotropoides var. mandshuricum.


Asunto(s)
Asarum/metabolismo , Aceites Volátiles/metabolismo , Fotosíntesis , Aceites de Plantas/metabolismo , Raíces de Plantas/metabolismo , Luz Solar , Asarum/crecimiento & desarrollo , Asarum/efectos de la radiación , Aceites Volátiles/efectos de la radiación , Aceites de Plantas/efectos de la radiación , Raíces de Plantas/clasificación , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de la radiación
9.
Sci Rep ; 8(1): 17850, 2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30552399

RESUMEN

Asarum spp. are important medicinal plants that have the potential for use in treating various types of fevers. Aristolochic acid is one of the main toxic compounds present in these plants. To improve our understanding of the biosynthetic pathway of aristolochic acid, we sequenced the transcriptome of the root and leaf tissues of Asarum heterotropoides and performed de novo sequence assembly. The data were stitched together to produce 468,357 transcripts with an N50 of 611 bp. The data were annotated with various databases (RefSeq non-redundant proteins [Nr], Swiss-Prot, Kyoto Encyclopaedia of Genes and Genomes [KEGG], Clusters of Orthologous Groups/EuKaryotic Orthologous Groups [COG/KOG], and Gene Ontology [GO]) and were annotated. There were 205,165 transcripts (43.81%) of differentially expressed genes in the roots and leaves, which were shown to be involved in biosynthesis, transport, and catabolism, and 100 genes in defence mechanisms. Three candidate transcripts (TyrDC1, TyrDC2, and TyrDC3) were discovered in these differential genes. TyrDC may be a key enzyme in the biosynthesis pathway of aristolochic acid identified using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and high-performance liquid chromatography (HPLC). The transcriptome data and analysis presented here lay the foundation for further research into these important medicinal plants.


Asunto(s)
Ácidos Aristolóquicos/biosíntesis , Asarum/genética , Asarum/metabolismo , Vías Biosintéticas/genética , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
10.
Molecules ; 23(12)2018 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-30513938

RESUMEN

Asarum sieboldii Miq., one of the three original plants of TCM ASARI RADIX ET RHIZOMA, is a perennial herb distributed in central and eastern China, the Korean Peninsula, and Japan. Methyleugenol has been considered as the most important constituent of Asarum volatile oil, meanwhile asarinin is also employed as the quality control standard of ASARI RADIX ET RHIZOMA in Chinese Pharmacopeia. They both have shown wide range of biological activities. However, little was known about genes involved in biosynthesis pathways of either methyleugenol or asarinin in Asarum plants. In the present study, we performed de novo transcriptome analysis of plant tissues (e.g., roots, rhizomes, and leaves) at different developmental stages. The sequence assembly resulted in 311,597 transcripts from these plant materials, among which 925 transcripts participated in 'secondary metabolism' with particularly up to 20.22% of them falling into phenylpropanoid biosynthesis pathway. The corresponding enzymes belong to seven families potentially encoding phenylalanine ammonia-lyase (PAL), trans-cinnamate 4-monooxygenase (C4H), p-coumarate 3-hydroxylase (C3H), caffeoyl-CoA O-methyltransferase (CCoAOMT), cinnamoyl-CoA reductase (CCR), cinnamyl alcohol dehydrogenase (CAD), and eugenol synthase (EGS). Moreover, 5 unigenes of DIR (dirigent protein) and 11 unigenes of CYP719A (719A subfamily of cytochrome P450 oxygenases) were speculated to be involved in asarinin pathway. Of the 15 candidate CADs, four unigenes that possessed high FPKM (fragments per transcript kilobase per million fragments mapped) value in roots were cloned and characterized. Only the recombinant AsCAD5 protein efficiently converted p-coumaryl, coniferyl, and sinapyl aldehydes to their corresponding alcohols, which are key intermediates employed not only in biosynthesis of lignin but also in that of methyleugenol and asarinin. qRT-PCR revealed that AsCAD5 had a high expression level in roots at three developmental stages. Our study will provide insight into the potential application of molecular breeding and metabolic engineering for improving the quality of TCM ASARI RADIX ET RHIZOMA.


Asunto(s)
Oxidorreductasas de Alcohol/genética , Asarum/genética , Asarum/metabolismo , Eugenol/análogos & derivados , Perfilación de la Expresión Génica/métodos , Oxidorreductasas de Alcohol/metabolismo , Clonación Molecular , Dioxoles , Eugenol/metabolismo , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Lignanos/biosíntesis , Redes y Vías Metabólicas/genética , Filogenia , Hojas de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rizoma/genética
11.
Protoplasma ; 252(4): 1047-59, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25534256

RESUMEN

Screening and identification of phytotoxic volatile compounds were performed using 71 medicinal plant species to find new natural compounds, and the characterization of the promising compound was investigated to understand the mode of action. The volatile compounds from Asarum sieboldii Miq. showed the strongest inhibitory effect on the hypocotyl growth of lettuce seedlings (Lactuca sativa L.cv. Great Lakes 366), followed by those from Schizonepeta tenuifolia Briquet and Zanthoxylum piperitum (L.) DC.. Gas chromatography-mass spectrometry (GC/MS) identified four volatile compounds, α-pinene (2,6,6-trimethylbicyclo[3.1.1]hept-2-ene), ß-pinene (6,6-dimethyl-2-methylenebicyclo[3.1.1]heptane), 3-carene (3,7,7-trimethylbicyclo[4.1.0]hept-3-ene), and eucarvone (2,6,6-trimethy-2,4-cycloheptadien-1-one), from A. sieboldii, and three volatile compounds, limonene (1-methyl-4-(1-methylethenyl)-cyclohexene), menthone (5-methyl-2-(propan-2-yl)cyclohexan-1-one), and pulegone (5-methyl-2-propan-2-ylidenecyclohexan-1-one), from S. tenuifolia. Among these volatile compounds, eucarvone, menthone, and pulegone exhibited strong inhibitory effects on both the root and shoot growth of lettuce seedlings. Eucarvone-induced growth inhibition was species-selective. Cell death, the generation of reactive oxygen species (ROS), and lipid peroxidation were induced in susceptible finger millet seedlings by eucarvone treatment, whereas this compound (≤158 µM) did not cause the increase of lipid peroxidation and ROS production in tolerant maize. The results of the present study show that eucarvone can have strong phytotoxic activity, which may be due to ROS overproduction and subsequent oxidative damage in finger millet seedlings.


Asunto(s)
Asarum/metabolismo , Plantas Medicinales/metabolismo , Alcaloides/metabolismo , Monoterpenos Bicíclicos , Compuestos Bicíclicos con Puentes/metabolismo , Monoterpenos Ciclohexánicos , Cromatografía de Gases y Espectrometría de Masas , Lactuca/metabolismo , Peroxidación de Lípido/fisiología , Monoterpenos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Plantones/metabolismo
12.
Mol Biol Rep ; 40(8): 4691-9, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23657595

RESUMEN

The paleoherb species Asarum caudigerum (Aristolochiaceae) is important for research into the origin and evolution of angiosperm flowers due to its basal position in the angiosperm phylogeny. In this study, four MADS-box-containing transcripts were isolated from A. caudigerum by rapid amplification of cDNA ends (RACE). Sequence comparisons and phylogenetic analyses indicated that they possess high homology to AP3 subfamily genes, which have been shown previously to be involved in petal and stamen development in eudicots. Reverse-transcription quantitative PCR (RT-qPCR) and in situ hybridization analyses showed AcAP3-A expression mainly in the second whorl (stamens) and AcAP3-B expression in whorls 1 and 3 (perianth and carpels). Compared with eudicot AP3 homologs, premature translation termination codons were caused by an insertion in the K1 domain of AcAP3-C, and by a deletion in the 7th exon of AcAP3-D. Sequence analyses suggested that the A. caudigerum AP3 lineage had undergone gene duplication and subfunctionalization, diverging in expression patterns during perianth, stamen, and carpel development. Based on comparative genomic and phylogenetic analyses, we concluded that subfunctionalization has likely contributed to the persistence of two functional AP3 paralogs, that two other copies may have become pseudogenes, and that these AP3 duplication and subfunctionalization events may have contributed to the evolution of the unusual floral morphology of A. caudigerum.


Asunto(s)
Asarum/genética , Flores/metabolismo , Duplicación de Gen/genética , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Dominio MADS/genética , Filogenia , Asarum/metabolismo , Secuencia de Bases , Análisis por Conglomerados , Codón de Terminación/genética , Cartilla de ADN/genética , Flores/genética , Genómica/métodos , Hibridación in Situ , Funciones de Verosimilitud , Modelos Genéticos , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...