Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Exp Bot ; 75(9): 2740-2753, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38366668

RESUMEN

Ascorbic acid (AsA) plays an indispensable role in plants, serving as both an antioxidant and a master regulator of the cellular redox balance. Ascorbate oxidase (AO) is a blue copper oxidase that is responsible for the oxidation of AsA with the concomitant production of water. For many decades, AO was erroneously postulated as an enzyme without any obvious advantage, as it decreases the AsA pool size and thus is expected to weaken plant stress resistance. It was only a decade ago that this perspective shifted towards the fundamental role of AO in orchestrating both AsA and oxygen levels by influencing the overall redox balance in the extracellular matrix. Consistent with its localization in the apoplast, AO is involved in cell expansion, division, resource allocation, and overall plant yield. An increasing number of transgenic studies has demonstrated that AO can also facilitate communication between the surrounding environment and the cell, as its gene expression is highly responsive to factors such as hormonal signaling, oxidative stress, and mechanical injury. This review aims to describe the multiple functions of AO in plant growth, development, and stress resilience, and explore any additional roles the enzyme might have in fruits during the course of ripening.


Asunto(s)
Ascorbato Oxidasa , Ascorbato Oxidasa/metabolismo , Ascorbato Oxidasa/genética , Plantas/enzimología , Plantas/metabolismo , Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ácido Ascórbico/metabolismo , Desarrollo de la Planta
2.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201662

RESUMEN

Gene expression and phytohormone contents were measured in response to elevating ascorbate in the absence of other confounding stimuli such as high light and abiotic stresses. Young Arabidopsis plants were treated with 25 mM solutions of l-galactose pathway intermediates l-galactose (l-gal) or l-galactono-1,4-lactone (l-galL), as well as L-ascorbic acid (AsA), with 25 mM glucose used as control. Feeding increased rosette AsA 2- to 4-fold but there was little change in AsA biosynthetic gene transcripts. Of the ascorbate recycling genes, only Dehydroascorbate reductase 1 expression was increased. Some known regulatory genes displayed increased expression and included ANAC019, ANAC072, ATHB12, ZAT10 and ZAT12. Investigation of the ANAC019/ANAC072/ATHB12 gene regulatory network revealed a high proportion of ABA regulated genes. Measurement of a subset of jasmonate, ABA, auxin (IAA) and salicylic acid compounds revealed consistent increases in ABA (up to 4.2-fold) and phaseic acid (PA; up to 5-fold), and less consistently certain jasmonates, IAA, but no change in salicylic acid levels. Increased ABA is likely due to increased transcripts for the ABA biosynthetic gene NCED3. There were also smaller increases in transcripts for transcription factors ATHB7, ERD1, and ABF3. These results provide insights into how increasing AsA content can mediate increased abiotic stress tolerance.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Ácido Ascórbico/metabolismo , Glutatión Transferasa/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Estrés Fisiológico/fisiología , Ácido Abscísico/metabolismo , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/metabolismo , Ascorbato Oxidasa/genética , Ascorbato Oxidasa/metabolismo , Ácido Ascórbico/genética , Ciclopentanos/metabolismo , Galactosa/farmacología , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Glutatión Transferasa/metabolismo , Ácidos Hexurónicos/metabolismo , Ácidos Indolacéticos/metabolismo , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/genética , Sesquiterpenos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Plant Physiol Biochem ; 156: 291-303, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32987259

RESUMEN

Ascorbate oxidase (AO, EC 1.10.3.3) is a copper-containing enzyme localized at the apoplast, where it catalyzes the oxidation of ascorbic acid (AA) to dehydroascorbic acid (DHA) via monodehydroascorbic acid (MDHA) intermediate. Despite it has been extensively studied, no biological roles have been definitively ascribed. To understand the role of AO in plant metabolism, fruit growth and physiology, we suppressed AO expression in melon (Cucumis melo L.) fruit. Reduction of AO activity increased AA content in melon fruit, which is the result of repression of AA oxidation and simultaneous induction of certain biosynthetic and recycling genes. As a consequence, ascorbate redox state was altered in the apoplast. Interestingly, transgenic melon fruit displayed increased ethylene production rate coincided with elevated levels of 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (ACO, EC 1.14.17.4) activity and gene expression, which might contribute to earlier ripening. Moreover, AO suppressed transgenic melon fruit exhibited a dramatic arrest in fruit growth, due to a simultaneous decrease in fruit cell size and in plasmalemma (PM) ATPase activity. All the above, support for the first time, the in vivo AO participation in the rapid fruit growth of Cucurbitaceae and further suggest an alternative route for AA increase in ripening fruit.


Asunto(s)
Ascorbato Oxidasa/genética , Ácido Ascórbico/análisis , Cucurbitaceae/genética , Silenciador del Gen , Cucurbitaceae/crecimiento & desarrollo , Frutas/enzimología , Frutas/fisiología , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/crecimiento & desarrollo
4.
Int J Mol Sci ; 20(24)2019 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-31817730

RESUMEN

Ascorbate oxidase (AO) plays important roles in plant growth and development. Previously, we reported a cotton AO gene that acts as a positive factor in cell growth. Investigations on Gossypium hirsutum AO (GhAO) family genes and their multiple functions are limited. The present study identified eight GhAO family genes and performed bioinformatic analyses. Expression analyses of the tissue specificity and developmental feature of GhAOs displayed their diverse expression patterns. Interestingly, GhAO1A demonstrated the most rapid significant increase in expression after 1 h of light recovery from the dark. Additionally, the transgenic ao1-1/GhAO1A Arabidopsis lines overexpressing GhAO1A in the Arabidopsis ao1-1 late-flowering mutant displayed a recovery to the normal phenotype of wild-type plants. Moreover, compared to the ao1-1 mutant, the ao1-1/GhAO1A transgenic Arabidopsis presented delayed leaf senescence that was induced by the dark, indicating increased sensitivity to hydrogen peroxide (H2O2) under normal conditions that might be caused by a reduction in ascorbic acid (AsA) and ascorbic acid/dehydroascorbate (AsA/DHA) ratio. The results suggested that GhAOs are functionally diverse in plant development and play a critical role in light responsiveness. Our study serves as a foundation for understanding the AO gene family in cotton and elucidating the regulatory mechanism of GhAO1A in delaying dark-induced leaf senescence.


Asunto(s)
Ascorbato Oxidasa/genética , Oscuridad , Gossypium/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Ascorbato Oxidasa/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Gossypium/efectos de los fármacos , Gossypium/efectos de la radiación , Peróxido de Hidrógeno/farmacología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/efectos de la radiación , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/efectos de la radiación
5.
Free Radic Biol Med ; 133: 75-87, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30268889

RESUMEN

This review discusses the chemical mechanisms of ascorbate-dependent reduction and solubilization of ferritin's ferric iron core and subsequent release of ferrous iron. The process is accelerated by low concentrations of Fe(II) that increase ferritin's intrinsic ascorbate oxidase activity, hence increasing the rate of ascorbate radical formation. These increased rates of ascorbate oxidation provide reducing equivalents (electrons) to ferritin's core and speed the core reduction rates with subsequent solubilization and release of Fe(II). Ascorbate-dependent solubilization of ferritin's iron core has consequences relating to the interpretation of 59Fe uptake sourced from 59Fe-lebelled holotransferrin into ferritin. Ascorbate-dependent reduction of the ferritin core iron solubility increases the size of ferritin's iron exchangeable pool and hence the rate and amount of exchange uptake of 59Fe into ferritin, whilst simultaneously increasing net iron release rate from ferritin. This may rationalize the inconsistency that ascorbate apparently stabilizes 59Fe ferritin and retards lysosomal ferritinolysis and whole cell 59Fe release, whilst paradoxically increasing the rate of net iron release from ferritin. This capacity of ascorbate and iron to synergise ferritin iron release has pathological significance, as it lowers the concentration at which ascorbate activates ferritin's iron release to within the physiological range (50-250 µM). These effects have relevance to inflammatory pathology and to the pro-oxidant effects of ascorbate in cancer therapy and cell death by ferroptosis.


Asunto(s)
Ácido Ascórbico/metabolismo , Ferritinas/metabolismo , Inflamación/genética , Hierro/metabolismo , Ascorbato Oxidasa/genética , Ascorbato Oxidasa/metabolismo , Ácido Ascórbico/genética , Ferritinas/genética , Humanos , Inflamación/metabolismo , Inflamación/patología , Radioisótopos de Hierro/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Transferrina/genética , Transferrina/metabolismo
6.
Plant Cell Environ ; 41(5): 1083-1097, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28369975

RESUMEN

The redox state of the apoplast is largely determined by ascorbate oxidase (AO) activity. The influence of AO activity on leaf acclimation to changing irradiance was explored in wild-type (WT) and transgenic tobacco (Nicotiana tobaccum) lines containing either high [pumpkin AO (PAO)] or low [tobacco AO (TAO)] AO activity at low [low light (LL); 250 µmol m-2  s-1 ] and high [high light (HL); 1600 µmol m-2  s-1 ] irradiance and following the transition from HL to LL. AO activities changed over the photoperiod, particularly in the PAO plants. AO activity had little effect on leaf ascorbate, which was significantly higher under HL than under LL. Apoplastic ascorbate/dehydroascorbate (DHA) ratios and threonate levels were modified by AO activity. Despite decreased levels of transcripts encoding ascorbate synthesis enzymes, leaf ascorbate increased over the first photoperiod following the transition from HL to LL, to much higher levels than LL-grown plants. Photosynthesis rates were significantly higher in the TAO leaves than in WT or PAO plants grown under HL but not under LL. Sub-sets of amino acids and fatty acids were lower in TAO and WT leaves than in the PAO plants under HL, and following the transition to LL. Light acclimation processes are therefore influenced by the apoplastic as well as chloroplastic redox state.


Asunto(s)
Ascorbato Oxidasa/metabolismo , Ácido Ascórbico/metabolismo , Nicotiana/fisiología , Aclimatación , Ascorbato Oxidasa/genética , Cloroplastos/metabolismo , Luz , Oxidación-Reducción , Fotosíntesis , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/enzimología , Nicotiana/genética , Nicotiana/efectos de la radiación
7.
Plant Physiol ; 175(1): 259-271, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28743764

RESUMEN

The mechanisms underpinning plant perception of phloem-feeding insects, particularly aphids, remain poorly characterized. Therefore, the role of apoplastic redox state in controlling aphid infestation was explored using transgenic tobacco (Nicotiana tabacum) plants that have either high (PAO) or low (TAO) ascorbate oxidase (AO) activities relative to the wild type. Only a small number of leaf transcripts and metabolites were changed in response to genotype, and cell wall composition was largely unaffected. Aphid fecundity was decreased significantly in TAO plants compared with other lines. Leaf sugar levels were increased and maximum extractable AO activities were decreased in response to aphids in all genotypes. Transcripts encoding the Respiratory Burst Oxidase Homolog F, signaling components involved in ethylene and other hormone-mediated pathways, photosynthetic electron transport components, sugar, amino acid, and cell wall metabolism, were increased significantly in the TAO plants in response to aphid perception relative to other lines. The levels of galactosylated xyloglucan were decreased significantly in response to aphid feeding in all the lines, the effect being the least in the TAO plants. Similarly, all lines exhibited increases in tightly bound (1→4)-ß-galactan. Taken together, these findings identify AO-dependent mechanisms that limit aphid infestation.


Asunto(s)
Áfidos/fisiología , Ascorbato Oxidasa/metabolismo , Herbivoria , Nicotiana/enzimología , Hojas de la Planta/enzimología , Aminoácidos/metabolismo , Animales , Ascorbato Oxidasa/genética , Metabolismo de los Hidratos de Carbono , Pared Celular/metabolismo , Cucurbita/genética , Fertilidad , Oxidación-Reducción , Plantas Modificadas Genéticamente/enzimología , Nicotiana/genética , Transcriptoma
8.
Int J Mol Sci ; 18(7)2017 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-28644407

RESUMEN

Ascorbate oxidase (AO) plays an important role in cell growth through the modulation of reduction/oxidation (redox) control of the apoplast. Here, a cotton (Gossypium hirsutum) apoplastic ascorbate oxidase gene (GhAO1) was obtained from fast elongating fiber tissues. GhAO1 belongs to the multicopper oxidase (MCO) family and includes a signal peptide and several transmembrane regions. Analyses of quantitative real-time polymerase chain reaction (QRT-PCR) and enzyme activity showed that GhAO1 was expressed abundantly in 15-day post-anthesis (dpa) wild-type (WT) fibers in comparison with fuzzless-lintless (fl) mutant ovules. Subcellular distribution analysis in onion cells demonstrated that GhAO1 is localized in the cell wall. In transgenic tobacco bright yellow-2 (BY-2) cells with ectopic overexpression of GhAO1, the enhancement of cell growth with 1.52-fold increase in length versus controls was indicated, as well as the enrichment of both total ascorbate in whole-cells and dehydroascorbate acid (DHA) in apoplasts. In addition, promoted activities of AO and monodehydroascorbate reductase (MDAR) in apoplasts and dehydroascorbate reductase (DHAR) in whole-cells were displayed in transgenic tobacco BY-2 cells. Accumulation of H2O2, and influenced expressions of Ca2+ channel genes with the activation of NtMPK9 and NtCPK5 and the suppression of NtTPC1B were also demonstrated in transgenic tobacco BY-2 cells. Finally, significant induced expression of the tobacco NtAO gene in WT BY-2 cells under indole-3-acetic acid (IAA) treatment appeared; however, the sensitivity of the NtAO gene expression to IAA disappeared in transgenic BY-2 cells, revealing that the regulated expression of the AO gene is under the control of IAA. Taken together, these results provide evidence that GhAO1 plays an important role in fiber cell elongation and may promote cell growth by generating the oxidation of apoplasts, via the auxin-mediated signaling pathway.


Asunto(s)
Ascorbato Oxidasa/genética , Proliferación Celular , Gossypium/enzimología , Nicotiana/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Ascorbato Oxidasa/metabolismo , Línea Celular , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Gossypium/genética , Gossypium/metabolismo , Peróxido de Hidrógeno/metabolismo , Ácidos Indolacéticos/metabolismo , Oxidación-Reducción , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/citología , Plantas Modificadas Genéticamente/metabolismo , Nicotiana/citología , Nicotiana/metabolismo
9.
PLoS One ; 12(2): e0172818, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28245268

RESUMEN

To elucidate metabolism of ascorbic acid (AsA) in sweet cherry fruit (Prunus avium 'Hongdeng'), we quantified AsA concentration, cloned sequences involved in AsA metabolism and investigated their mRNA expression levels, and determined the activity levels of selected enzymes during fruit development and maturation. We found that AsA concentration was highest at the petal-fall period (0 days after anthesis) and decreased progressively during ripening, but with a slight increase at maturity. AsA did nevertheless continue to accumulate over time because of the increase in fruit fresh weight. Full-length cDNAs of 10 genes involved in the L-galactose pathway of AsA biosynthesis and 10 involved in recycling were obtained. Gene expression patterns of GDP-L-galactose phosphorylase (GGP2), L-galactono-1, 4-lactone dehydrogenase (GalLDH), ascorbate peroxidase (APX3), ascorbate oxidase (AO2), glutathione reductase (GR1), and dehydroascorbate reductase (DHAR1) were in accordance with the AsA concentration pattern during fruit development, indicating that genes involved in ascorbic acid biosynthesis, degradation, and recycling worked in concert to regulate ascorbic acid accumulation in sweet cherry fruit.


Asunto(s)
Ácido Ascórbico/metabolismo , Frutas/metabolismo , Prunus avium/metabolismo , Ascorbato Oxidasa/genética , Ascorbato Oxidasa/metabolismo , Ascorbato Peroxidasas/genética , Ascorbato Peroxidasas/metabolismo , Metabolismo de los Hidratos de Carbono/genética , Metabolismo de los Hidratos de Carbono/fisiología , ADN Complementario/genética , Frutas/enzimología , Frutas/genética , Regulación de la Expresión Génica de las Plantas/genética , Glutatión Reductasa/genética , Glutatión Reductasa/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Prunus avium/enzimología , Prunus avium/genética
10.
PLoS One ; 11(9): e0161695, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27597995

RESUMEN

Apoplastic ascorbate oxidase (AO) plays significant roles in plant cell growth. However, the mechanism of underlying the transcriptional regulation of AO in Gossypium hirsutum remains unclear. Here, we obtained a 1,920-bp promoter sequence from the Gossypium hirsutum ascorbate oxidase (GhAO1) gene, and this GhAO1 promoter included a number of known cis-elements. Promoter activity analysis in overexpressing pGhAO1::GFP-GUS tobacco (Nicotiana benthamiana) showed that the GhAO1 promoter exhibited high activity, driving strong reporter gene expression in tobacco trichomes, leaves and roots. Promoter 5'-deletion analysis demonstrated that truncated GhAO1 promoters with serial 5'-end deletions had different GUS activities. A 360-bp fragment was sufficient to activate GUS expression. The P-1040 region had less GUS activity than the P-720 region, suggesting that the 320-bp region from nucleotide -720 to -1040 might include a cis-element acting as a silencer. Interestingly, an auxin-responsive cis-acting element (TGA-element) was uncovered in the promoter. To analyze the function of the TGA-element, tobacco leaves transformed with promoters with different 5' truncations were treated with indole-3-acetic acid (IAA). Tobacco leaves transformed with the promoter regions containing the TGA-element showed significantly increased GUS activity after IAA treatment, implying that the fragment spanning nucleotides -1760 to -1600 (which includes the TGA-element) might be a key component for IAA responsiveness. Analyses of the AO promoter region and AO expression pattern in Gossypium arboreum (Ga, diploid cotton with an AA genome), Gossypium raimondii (Gr, diploid cotton with a DD genome) and Gossypium hirsutum (Gh, tetraploid cotton with an AADD genome) indicated that AO promoter activation and AO transcription were detected together only in D genome/sub-genome (Gr and Gh) cotton. Taken together, these results suggest that the 1,920-bp GhAO1 promoter is a functional sequence with a potential effect on fiber cell development, mediated by TGA-element containing sequences, via the auxin-signaling pathway.


Asunto(s)
Ascorbato Oxidasa/genética , Gossypium/genética , Ácidos Indolacéticos/metabolismo , Regiones Promotoras Genéticas/genética , Ascorbato Oxidasa/biosíntesis , Ascorbato Oxidasa/química , Ascorbato Oxidasa/aislamiento & purificación , Clonación Molecular , Regulación Enzimológica de la Expresión Génica , Gossypium/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Transducción de Señal/genética , Nicotiana/enzimología , Nicotiana/genética
11.
Plant Physiol Biochem ; 108: 222-230, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27459340

RESUMEN

L-Ascorbic acid (AsA, ascorbate) is one of the most abundant natural antioxidants, and it is an important factor in the nutritional quality of cucumber. In this work, key enzymes involved in the ascorbic acid biosynthesis and recycling pathway in cucumber seedlings under nitrogen deficiency were investigated at the levels of transcription and enzyme activity. The activities of myo-inositol oxygenase (MIOX) and transcript levels of MIOXs increased dramatically, while the activities of ascorbate oxidase (AO) and glutathione reductase (GR) and transcript levels of AOs and GR2 decreased significantly in N-limited leaves, as did the ascorbate concentration, in nitrogen-deficient cucumber seedlings. The activities of other enzymes and transcript levels of other genes involved in the ascorbate recycling pathway and ascorbate synthesis pathways decreased or remained unchanged under nitrogen deficiency. These results indicate that nitrogen deficiency induced genes involved in the ascorbate-glutathione recycling and myo-inositol pathway in cucumber leaves. Thus, the AO, GR and MIOX involved in the pathways might play roles in AsA accumulation.


Asunto(s)
Ácido Ascórbico/metabolismo , Cucumis sativus/metabolismo , Nitrógeno/deficiencia , Plantones/metabolismo , Ascorbato Oxidasa/genética , Ascorbato Oxidasa/metabolismo , Ácido Ascórbico/biosíntesis , Regulación de la Expresión Génica de las Plantas , Glutatión Reductasa/genética , Glutatión Reductasa/metabolismo , Nitrógeno/metabolismo , Hojas de la Planta/metabolismo , Plantones/fisiología
12.
Plant Physiol Biochem ; 73: 154-60, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24100076

RESUMEN

Ascorbate oxidase (AO) is an apoplastic enzyme that uses oxygen to catalyse the oxidation of ascorbate (AA) to dehydroascorbate (DHA) via the unstable radical monodehydroascorbate (MDHA). Here, we report that transgenic tobacco plants (Nicotiana tabacum L. cv. Xanthi) with an in vivo lowered apoplastic AA redox state through increased AO expression demonstrate signs of delayed dark-induced senescence compared with wild-type plants, as shown by chlorophyll loss assay. In situ localization of hydrogen peroxide (H2O2) suggests that, although transgenic plants have higher constitutive levels of H2O2 under normal growth conditions, imposed dark-induced senescence results in smaller induction levels of H2O2, an observation which correlates with increased antioxidant enzyme activities and an induction in the expression of AA recycling genes compared with that in wild-type plants. Our current findings, combined with previous studies which showed the contribution of AO in the regulation of AA redox state, suggest that the reduction in AA redox state in the leaf apoplast of these transgenic plants results in an increase in the endogenous levels of H2O2, which provides a form of 'acquired tolerance' to oxidative stress imposed by dark-induced senescence.


Asunto(s)
Adaptación Fisiológica/genética , Ascorbato Oxidasa/genética , Ácido Ascórbico/metabolismo , Senescencia Celular , Nicotiana/genética , Estrés Oxidativo/genética , Hojas de la Planta/fisiología , Antioxidantes/metabolismo , Ascorbato Oxidasa/metabolismo , Clorofila/metabolismo , Oscuridad , Ácido Deshidroascórbico/análogos & derivados , Ácido Deshidroascórbico/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Peróxido de Hidrógeno/metabolismo , Oxidación-Reducción , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Nicotiana/enzimología , Nicotiana/metabolismo , Nicotiana/fisiología
13.
Physiol Plant ; 147(2): 121-34, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22568767

RESUMEN

In pear and apple, depletion of ascorbate has previously been associated with development of stress-related flesh browning. This disorder occurs in intact fruit and differs from browning associated with tissue maceration and processing. We investigated changes in ascorbate content, ascorbate peroxidase (APX) activities and gene expression of l-galactose pathway genes, ascorbate recycling genes and APXs from harvest to 30 days storage for three pear varieties ['Williams Bon Chretien' (WBC), 'Doyenne du Comice' and 'Beurre Bosc']. The pears were stored at 0.5°C in air or controlled atmosphere (CA, 2 kPa O(2) and 5 kPa CO(2)). Storage in CA caused significant amounts of storage disorders in WBC only. Ascorbate content generally declined after harvest, although a transient increase in ascorbate in the form of dehydroascorbate (DHA) between harvest and 3 days was observed in CA stored WBC, possibly due to low at-harvest monodehydroascorbate reductase and CA-decreased dehydroascorbate reductase expression. Quantitative polymerase chain reaction indicated that all cultivars responded to CA storage by increasing transcripts for APXs, and surprisingly the pre-l-galactose pathway gene GDP-mannose pyrophosphorylase, of which the product GDP mannose, is utilized either for cell wall polysaccharides, protein N-glycosylation or ascorbate production. Overall, the small differences in ascorbate we observed suggest how ascorbate is utilized, rather than ascorbate content, determines the potential to develop internal browning. Moreover, a transitory increase in DHA postharvest may indicate that fruits are at risk of developing the disorder.


Asunto(s)
Ácido Ascórbico/metabolismo , Almacenamiento de Alimentos , Frutas/metabolismo , Pyrus/metabolismo , Aire , Ascorbato Oxidasa/genética , Ascorbato Oxidasa/metabolismo , Ácido Ascórbico/análisis , Frío , Frutas/enzimología , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pyrus/enzimología , Pyrus/genética , Transcriptoma
14.
Plant Cell Environ ; 36(1): 159-75, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22725103

RESUMEN

The regulation of carbon allocation between photosynthetic source leaves and sink tissues in response to stress is an important factor controlling plant yield. Ascorbate oxidase is an apoplastic enzyme, which controls the redox state of the apoplastic ascorbate pool. RNA interference was used to decrease ascorbate oxidase activity in tomato (Solanum lycopersicum L.). Fruit yield was increased in these lines under three conditions where assimilate became limiting for wild-type plants: when fruit trusses were left unpruned, when leaves were removed or when water supply was limited. Several alterations in the transgenic lines could contribute to the improved yield and favour transport of assimilate from leaves to fruits in the ascorbate oxidase lines. Ascorbate oxidase plants showed increases in stomatal conductance and leaf and fruit sugar content, as well as an altered apoplastic hexose:sucrose ratio. Modifications in gene expression, enzyme activity and the fruit metabolome were coherent with the notion of the ascorbate oxidase RNAi lines showing altered sink strength. Ascorbate oxidase may therefore be a target for strategies aimed at improving water productivity in crop species.


Asunto(s)
Ascorbato Oxidasa/metabolismo , Metabolismo de los Hidratos de Carbono , Frutas/crecimiento & desarrollo , Solanum lycopersicum/enzimología , Agua/fisiología , Ascorbato Oxidasa/genética , Ácido Ascórbico/metabolismo , Biomasa , Frutas/metabolismo , Hexosas/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Metaboloma , Oxidación-Reducción , Hojas de la Planta/enzimología , Estomas de Plantas/fisiología , Interferencia de ARN , Sacarosa/metabolismo
15.
Plant Physiol Biochem ; 59: 71-9, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22863656

RESUMEN

Ascorbate oxidase (AO, EC 1.10.3.3) catalyzes the oxidation of ascorbate (AsA) to yield water. AO over-expressing plants are prone to ozone and salt stresses, whereas lower expression apparently confers resistance to unfavorable environmental conditions. Previous studies have suggested a role for AO as a regulator of oxygen content in photosynthetic tissues. For the first time we show here that the expression of a Lotus japonicus AO gene is induced in the symbiotic interaction with both nitrogen-fixing bacteria and arbuscular mycorrhizal (AM) fungi. In this framework, high AO expression is viewed as a possible strategy to down-regulate oxygen diffusion in root nodules, and a component of AM symbiosis. A general model of AO function in plants is discussed.


Asunto(s)
Ascorbato Oxidasa/genética , Glomeromycota/fisiología , Lotus/enzimología , Mesorhizobium/fisiología , Micorrizas/enzimología , Simbiosis/fisiología , Ascorbato Oxidasa/metabolismo , Ácido Ascórbico/genética , Regulación hacia Abajo , Regulación de la Expresión Génica de las Plantas , Lotus/genética , Lotus/microbiología , Lotus/fisiología , Modelos Biológicos , Micorrizas/genética , Micorrizas/fisiología , Nitrógeno/metabolismo , Fijación del Nitrógeno , Oxígeno/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/microbiología , Raíces de Plantas/fisiología , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/microbiología , Nódulos de las Raíces de las Plantas/fisiología , Transducción de Señal
16.
C R Biol ; 332(11): 1007-21, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19909923

RESUMEN

Very few reports have studied the interactions between ascorbate and fruit metabolism. In order to get insights into the complex relationships between ascorbate biosynthesis/recycling and other metabolic pathways in the fruit, we undertook a fruit systems biology approach. To this end, we have produced tomato transgenic lines altered in ascorbate content and redox ratio by RNAi-targeting several key enzymes involved in ascorbate biosynthesis (2 enzymes) and recycling (2 enzymes). In the VTC (ViTamin C) Fruit project, we then generated phenotypic and genomic (transcriptome, proteome, metabolome) data from wild type and mutant tomato fruit at two stages of fruit development, and developed or implemented statistical and bioinformatic tools as a web application (named VTC Tool box) necessary to store, analyse and integrate experimental data in tomato. By using Kohonen's self-organizing maps (SOMs) to cluster the biological data, pair-wise Pearson correlation analyses and simultaneous visualization of transcript/protein and metabolites (MapMan), this approach allowed us to uncover major relationships between ascorbate and other metabolic pathways.


Asunto(s)
Ácido Ascórbico/metabolismo , Frutas/crecimiento & desarrollo , Genómica/métodos , Solanum lycopersicum/crecimiento & desarrollo , Análisis de Varianza , Ascorbato Oxidasa/genética , Ascorbato Oxidasa/metabolismo , Carbohidrato Epimerasas/genética , Carbohidrato Epimerasas/metabolismo , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Solanum lycopersicum/genética , Solanum lycopersicum/efectos de la radiación , Redes y Vías Metabólicas , Metaboloma , NADH NADPH Oxidorreductasas/genética , NADH NADPH Oxidorreductasas/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteoma , Integración de Sistemas
17.
J Chem Ecol ; 34(10): 1331-40, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18773241

RESUMEN

Ascorbate is the major water-soluble antioxidant in plants and animals, and it is an essential nutrient for most insect herbivores. Therefore, ascorbate oxidase (AO) has been proposed to function as a plant defense that decreases the availability of ascorbate to insects. This hypothesis was tested by producing transgenic poplar (Populus tremula x Populus alba; Salicaceae) with 14- to 37-fold higher foliar AO activities than control (wild type) leaves and feeding these leaves to Lymantria dispar L. (Lepidoptera: Lymantriidae) caterpillars and Melanoplus sanguinipes (Fabricius) (Orthoptera: Acrididae) grasshoppers. To examine potential mechanisms of activity of AO in these insects, ascorbyl radical and/or ascorbate levels were measured in gut contents. No significant changes in ascorbyl radical or ascorbate levels were found in the midgut contents of L. dispar larvae that ingested the leaves of the AO-overexpressing genotypes compared to the control genotype, and no significant decreases in ascorbate levels were found in the foregut or midgut contents of M. sanguinipes. Treatment of control leaves with commercial AO also produced no changes in the midgut biochemistry of L. dispar larvae, as measured by levels of ascorbyl radicals. Likewise, no increase in oxidative stress was observed in L. dispar that consumed tannin-treated AO-overexpressing leaves compared with tannin-treated control genotype leaves. Performance experiments were carried out on first- and fourth-instar L. dispar larvae on leaf disks and on third instars feeding on intact leaves on trees. In no case was a significant difference found in the contrast between the control and three AO-overexpressing genotypes for relative consumption rate, relative growth rate, or nutritional indices. We conclude that elevated levels of AO in poplar are unlikely to serve as a defense against herbivores such as L. dispar or M. sanguinipes and that the low oxygen levels commonly found in the guts of caterpillars and grasshoppers may limit the activity of ingested AO in these leaf-chewing insects.


Asunto(s)
Ascorbato Oxidasa/metabolismo , Insectos/efectos de los fármacos , Hojas de la Planta/enzimología , Populus/enzimología , Populus/genética , Animales , Ascorbato Oxidasa/genética , Conducta Alimentaria/efectos de los fármacos , Conducta Alimentaria/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Insectos/fisiología , Larva/efectos de los fármacos , Larva/fisiología , Hojas de la Planta/genética
18.
J Exp Bot ; 59(4): 729-37, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18349048

RESUMEN

Control of stomatal aperture is of paramount importance for plant adaptation to the surrounding environment. Here, we report on several parameters related to stomatal dynamics and performance in transgenic tobacco plants (Nicotiana tabacum L., cv. Xanthi) over-expressing cucumber ascorbate oxidase (AO), a cell wall-localized enzyme of uncertain biological function that oxidizes ascorbic acid (AA) to monodehydroascorbic acid which dismutates yielding AA and dehydroascorbic acid (DHA). In comparison to WT plants, leaves of AO over-expressing plants exhibited reduced stomatal conductance (due to partial stomatal closure), higher water content, and reduced rates of water loss on detachment. Transgenic plants also exhibited elevated levels of hydrogen peroxide and a decline in hydrogen peroxide-scavenging enzyme activity. Leaf ABA content was also higher in AO over-expressing plants. Treatment of epidermal strips with either 1 mM DHA or 100 microM hydrogen peroxide resulted in rapid stomatal closure in WT plants, but not in AO-over-expressing plants. This suggests that signal perception and/or transduction associated with stomatal closure is altered by AO over-expression. These data support a specific role for cell wall-localized AA in the perception of environmental cues, and suggest that DHA acts as a regulator of stomatal dynamics.


Asunto(s)
Ascorbato Oxidasa/metabolismo , Ácido Deshidroascórbico/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Estomas de Plantas/fisiología , Transducción de Señal/fisiología , Ascorbato Oxidasa/genética , Conductividad Eléctrica , Peróxido de Hidrógeno/metabolismo , Inmunohistoquímica , Transpiración de Plantas/genética , Transpiración de Plantas/fisiología , Plantas Modificadas Genéticamente , Agua/metabolismo
19.
Planta ; 225(4): 873-85, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17021803

RESUMEN

Ascorbate oxidase (AO, EC 1.10.3.3) is a member of the multicopper oxidases family. It catalyzes the oxidation of ascorbic acid (AA) to dehydroascorbic acid (DHA) via monodehydroascorbate (MDHA), with the concomitant reduction of molecular oxygen to water. In melon (Cucumis melo), ascorbate oxidase is encoded by a multigene family comprising at least four genes. Here, we present the detailed characterization of two melon AO genes, CmAO1 and CmAO4. Gene-specific expression studies of the AO gene family in melon revealed that only CmAO1 and CmAO4 are transcriptionally active and differentially regulated dependent on tissue, developmental stage and external stimuli. Transcripts of the CmAO1 gene are present in floral and fruit tissues, whereas CmAO4 mRNA preferentially accumulates in vegetative tissues. CmAO genes were not detected in melon seeds, but CmAO4 expression is activated upon germination. CmAO4 mRNA steady-state levels are also regulated in response to wounding and heat stress, by hormones (abscisic acid, salicylic acid and jasmonates), AA and copper. These findings suggest that AO gene expression is transcriptionally regulated during fruit development and in response to hormonal cues associated with the control of cell growth and the stress response.


Asunto(s)
Adaptación Fisiológica/genética , Ascorbato Oxidasa/metabolismo , Cucumis melo/enzimología , Frutas/enzimología , Ascorbato Oxidasa/genética , Cobre , Cucumis melo/crecimiento & desarrollo , Cucumis melo/fisiología , Frutas/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Germinación/fisiología , Luz , Datos de Secuencia Molecular , Familia de Multigenes , Reguladores del Crecimiento de las Plantas , Plantones/enzimología , Plantones/crecimiento & desarrollo , Análisis de Secuencia de ADN
20.
J Exp Bot ; 57(14): 3933-43, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16997902

RESUMEN

Ascorbate oxidase (AO) is a cell wall-localized enzyme that uses oxygen to catalyse the oxidation of ascorbate (AA) to the unstable radical monodehydroascorbate (MDHA) which rapidly disproportionates to yield dehydroascorbate (DHA) and AA, and thus contributes to the regulation of the AA redox state. Here, it is reported that in vivo lowering of the apoplast AA redox state, through increased AO expression in transgenic tobacco (Nicotiana tabacum L. cv. Xanthi), exerts no effects on the expression levels of genes involved in AA recycling under normal growth conditions, but plants display enhanced sensitivity to various oxidative stress-promoting agents. RNA blot analyses suggest that this response correlates with a general suppression of the plant's antioxidative metabolism as demonstrated by lower expression levels of AA recycling genes. Furthermore, studies using Botrytis cinerea reveal that transgenic plants exhibit increased sensitivity to fungal infection, although the response is not accompanied by a similar suppression of AA recycling gene expression. Our current findings, combined with previous studies which showed the contribution of AO in the regulation of AA redox state, suggest that the reduction in the AA redox state in the leaf apoplast of these transgenic plants results in shifts in their capacity to withstand oxidative stress imposed by agents imposing oxidative stress.


Asunto(s)
Ascorbato Oxidasa/metabolismo , Ácido Ascórbico/metabolismo , Nicotiana/genética , Estrés Oxidativo , Ascorbato Oxidasa/genética , Botrytis/fisiología , Carotenoides/metabolismo , Clorofila/metabolismo , Cucumis sativus/enzimología , Cucumis sativus/genética , Perfilación de la Expresión Génica , Oxidación-Reducción , Plantas Modificadas Genéticamente/anatomía & histología , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/microbiología , Especies Reactivas de Oxígeno/metabolismo , Nicotiana/anatomía & histología , Nicotiana/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...