RESUMEN
Peanuts and corn are susceptible to various soil-borne fungi, leading to significant economic losses. Atoxigenic Aspergillus flavus have been widely used as biocontrol agents for managing aflatoxin contamination because of their minimal environmental impact, strong competitive ability, and sustained inhibition effect. After multiple identifications and cluster amplification pattern (CAP) analysis, three atoxigenic A. flavus PA04, PA10 and PA67 were isolated from peanut samples in Shandong Province, which can reduce aflatoxin levels by up to 90 %. Our study revealed that atoxigenic A. flavus also competed vigorously with Sclerotium rolfsii and Fusarium proliferatum for nutrition and space, achieving notable inhibition rates of up to 90.4 % and 90.6 %, respectively. The supernatants of atoxigenic A. flavus also inhibited the growth of S. rolfsii and F. proliferatum, with PA67 demonstrating the most significant effect. Whole genome sequencing revealed that PA67 contains multiple glycoside hydrolases and metabolites with antifungal activity. The kojic acid production of PA67 was higher than that of PA04 and PA10, reaching 17.48 g/L, which has a significant inhibition on sclerotia germination. PA67 supernatant significantly inhibited the hyphae growth of S. rolfsii and F. proliferatum, and down-regulated genes related to sclerotia and fumonisin formation. This study demonstrates the biocontrol potential of PA67 against three soil-borne fungi and is the first investigation of atoxigenic A. flavus to inhibit S. rolfsii and F. proliferatum.
Asunto(s)
Aflatoxinas , Arachis , Aspergillus flavus , Fusarium , Aspergillus flavus/crecimiento & desarrollo , Aspergillus flavus/metabolismo , Aspergillus flavus/genética , Arachis/microbiología , China , Antibiosis , Basidiomycota , Agentes de Control Biológico , Control Biológico de Vectores , Microbiología del Suelo , Zea mays/microbiologíaRESUMEN
Transcription factors control genes to maintain normal hemopoiesis, and dysregulation of some factors can lead to acute lymphoblastic leukemia (ALL). Mycoviruses are known to alter the genetics of their fungal host. The present study evaluates the effects of the products of a mycovirus-containing Aspergillus flavus (MCAF), isolated from the home of a patient with ALL, on certain transcription factors of normal and ALL cell lines. Our published studies have shown that ALL patients have antibodies to MCAF, and that exposure of the mononuclear leukocytes of patients in complete remission to its products, unlike controls, results in the re-development of genetic and cell surface phenotypes characteristic of ALL. For the present study, normal, pre-B, and B-cell leukemia cell lines were exposed to the culture of MCAF. Pre- and post-exposure levels of PAX5, Ikaros, and NF-κB were assessed. Exposure to MCAF resulted in apoptosis, cell cycle changes, and complete downregulation of all transcription factors in normal cell lines. In acute leukemia cell lines, cellular apoptosis and alterations in the cell cycle were also noted; however, while there was downregulation of all tested transcription factors, residual levels were retained. The noted alterations in the transcription factors caused by MCAF are novel findings. The possible role of MCAF in leukemogenesis needs to be further investigated. Mycovirus-containing Aspergillus flavus was initially isolated from a leukemia patient's home. Our prior published studies have illuminated intriguing associations of this organism with leukemia. Unlike controls, patients diagnosed with acute lymphoblastic leukemia (ALL) harbor antibodies to this organism. Furthermore, the exposure of mononuclear cells from patients with ALL in complete remission to the products of this organism reproduced genetic and cell phenotypes characteristic of ALL. These findings underscore the potential role of environmental factors in leukemogenesis and hint at novel avenues for therapeutic intervention and preventive strategies.
Asunto(s)
Aspergillus flavus , Virus Fúngicos , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Aspergillus flavus/metabolismo , Aspergillus flavus/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/microbiología , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/virología , Virus Fúngicos/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Línea Celular Tumoral , Apoptosis , Ciclo Celular , FN-kappa B/metabolismo , Factor de Transcripción PAX5/metabolismo , Factor de Transcripción PAX5/genéticaRESUMEN
The peanut seed coat acts as a physical and biochemical barrier against Aspergillus flavus infection; however, the nature of the inhibitory chemicals in the peanut seed coat in general is not known. This study identified and characterized peanut seed coat metabolites that inhibit A. flavus growth and aflatoxin contamination. Selected peanut accessions grown under well-watered and water-deficit conditions were assayed for A. flavus resistance, and seed coats were metabolically profiled using liquid chromatography mass spectrometry. Kyoto Encyclopedia of Genes and Genome phenylpropanoid pathway reference analysis resulted in the identification of several seed coat metabolic compounds, and ten selected metabolites were tested for inhibition of A. flavus growth and aflatoxin contamination. Radial growth bioassay demonstrated that 2,5-dihydroxybenzaldehyde inhibited A. flavus growth (98.7%) and reduced the aflatoxin contamination estimate from 994 to 1 µg/kg. Scanning electron micrographs showed distorted hyphae and conidiophores in cultures of 2,5-dihydroxybenzaldehyde-treated A. flavus, indicating its potential use for field application as well as seed coat metabolic engineering.
Asunto(s)
Aflatoxinas , Arachis , Aspergillus flavus , Metabolismo Secundario , Semillas , Aspergillus flavus/metabolismo , Aspergillus flavus/crecimiento & desarrollo , Aspergillus flavus/efectos de los fármacos , Aspergillus flavus/genética , Semillas/química , Semillas/microbiología , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Arachis/microbiología , Arachis/química , Arachis/metabolismo , Arachis/crecimiento & desarrollo , Aflatoxinas/metabolismo , Contaminación de Alimentos/análisis , Contaminación de Alimentos/prevención & control , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & controlRESUMEN
All major ear rots (F. graminearum, F. verticillioides, and Aspergillus flavus) and their toxins are present in maize of preharvest origin in Hungary. Resistance can be an important tool in reducing the infection and toxin contamination from these rots in maize. Previous results identified resistance differences in maize hybrids that were suitable for use in evaluating their risk from toxigenic fungi and their toxins. During the tests, two methodical improvements were achieved: the use of three isolates of the fungus secured and a more precise estimation of resistance to ear rots and their resistance to toxin accumulation or overproduction. The improvement in sampling and the tests of subsamples made the evaluation for the statistics much more exact. This way, we were able to reduce the Within value, providing a statistically more reliable method of evaluation. Earlier data had confirmed that toxin contamination could not be predicted well from visual ear rot severity data. Contradictory results for hybrid ranking were often identified between isolates. The resistance to disease and toxin contamination is not generally valid. The new suggested methodology compares the performance of hybrids in a large number of epidemic situations to identify adaptable hybrids that can respond to diverse conditions; therefore, the stability of resistance and toxin response is decisive information to evaluate risk analyses. The increased number of disease toxin data allowed for lower LSD 5% values for toxins, a much finer analysis of toxin overproduction and underproduction, and a wider database for stability analyses. This way, we obtained important additional separated information about resistance to accumulation of toxins and about maize resistance to these pathogens that is suitable to provide much more reliable testing than was possible until now. Globally, about 50-100 million metric tons can be saved by excluding susceptible hybrids from commercial production.
Asunto(s)
Aspergillus flavus , Fusarium , Micotoxinas , Enfermedades de las Plantas , Zea mays , Zea mays/microbiología , Aspergillus flavus/metabolismo , Enfermedades de las Plantas/microbiología , Micotoxinas/análisis , Fusarium/metabolismo , Hungría , Resistencia a la EnfermedadRESUMEN
Aflatoxins are the most dangerous mycotoxins for food safety. They are mainly produced by Aspergillus flavus, A. parasiticus, and A. minisclerotigenes. The latter, an understudied species, was the main culprit for outbreaks of fatal aflatoxicosis in Kenya in the past. To determine specific genetic characteristics of these Aspergillus species, their genomes are comparatively analyzed. Differences reflecting the typical habitat are reported, such as an increased number of carbohydrate-active enzymes, including enzymes for lignin degradation, in the genomes of A. minisclerotigenes and A. parasiticus. Further, variations within the aflatoxin gene clusters are described, which are related to different chemotypes of aflatoxin biosynthesis. These include a substitution within the aflL gene of the A. parasiticus isolate, which leads to the translation of a stop codon, thereby switching off the production of the group 1 aflatoxins B1 and G1. In addition, we demonstrate that the inability of the A. minisclerotigenes isolates to produce group G aflatoxins is associated with a 2.2 kb deletion within the aflF and aflU genes. These findings reveal a relatively high genetic homology among the three Aspergillus species investigated. However, they also demonstrate consequential genetic differences that have an important impact on risk-assessment and food safety.
Asunto(s)
Aflatoxinas , Aspergillus , Aflatoxinas/biosíntesis , Aflatoxinas/genética , Aflatoxinas/metabolismo , Aspergillus/genética , Aspergillus/metabolismo , Aspergillus flavus/genética , Aspergillus flavus/metabolismo , Genoma Fúngico , Ecosistema , Familia de Multigenes , Filogenia , Especificidad de la EspecieRESUMEN
The toxicity of the contaminated powder contributed to toxic aflatoxins has been well-known in the literature. However, before this study, the specific fungal strain behind aflatoxin production remained unidentified. Our research aimed to isolate and identify fungi from the tainted sandwiches while also assessing the preservation of sandwiches in ambient conditions. The study pinpointed Aspergillus flavus as the fungus responsible for aflatoxin production. Analysis revealed that the sandwich samples contaminated with pure A. flavus exhibited a significant Aflatoxin B1 (AFB1) concentration of 55.2 ± 0.21 ng/g, accompanied by a spore count of 2 × 106 Colony-Forming Unit (CFU)/g after ten days. In contrast, sandwich samples contaminated with the unspecified fungi displayed a lower AFB1 content of 16.21 ± 0.42 ng/g, with a spore count of 2.2 × 102 CFU/g after the same duration. In the prevention study, the efficacy of the ethanol spray method for inhibiting aflatoxin from A. flavus was investigated. Results demonstrated that a 70 % ethanol concentration at a ratio of 2.0 % total weight of the sandwich proved highly effective, significantly impeding fungal growth. This method extended the preservation time by sevenfold compared to the control. Importantly, tests at 2.0 % ethanol of the sandwich weight did not detect aflatoxin presence.
Asunto(s)
Aflatoxina B1 , Aflatoxinas , Aspergillus flavus , Contaminación de Alimentos , Microbiología de Alimentos , Aspergillus flavus/metabolismo , Aspergillus flavus/crecimiento & desarrollo , Aflatoxina B1/metabolismo , Aflatoxina B1/análisis , Contaminación de Alimentos/análisis , Aflatoxinas/análisis , Aflatoxinas/metabolismo , Esporas Fúngicas/crecimiento & desarrollo , Etanol/metabolismo , Recuento de Colonia Microbiana , Hongos/metabolismo , Hongos/aislamiento & purificación , Hongos/efectos de los fármacos , Conservación de Alimentos/métodosRESUMEN
Aflatoxins are a group of high toxic mycotoxins in food chain. Recent studies showed that aflatoxins might contaminate post-fermented tea, but the result remains controversial. Here, Aspgergillus flavus growth and aflatoxin production were characterized in Puerh tea, peanut and polished rice at different initial water activity (aw) values for long-term storage. As a result, food initial aw value was the critical factor for A. flavus growth and aflatoxin production, and A. flavus almost not grew on foods at aw value lower than 0.8. A. flavus grew best in peanut, followed by rice, but growth on Puerh tea was limited. A. flavus growth was inhibited significantly by adding tea to Potato Dextrose Agar (PDA). Accordingly, aflatoxins produced dramatically in peanut, followed by rice at the first 90 days storage. However, aflatoxin neither produced in Puerh tea nor on tea modified PDA, indicating tea components inhibited A. flavus growth and aflatoxins synthesis.
Asunto(s)
Aflatoxinas , Arachis , Aspergillus flavus , Contaminación de Alimentos , Almacenamiento de Alimentos , Oryza , Aspergillus flavus/metabolismo , Aspergillus flavus/crecimiento & desarrollo , Aflatoxinas/análisis , Aflatoxinas/metabolismo , Oryza/química , Oryza/microbiología , Oryza/metabolismo , Arachis/química , Arachis/microbiología , Arachis/crecimiento & desarrollo , Contaminación de Alimentos/análisis , Contaminación de Alimentos/prevención & control , Té/química , Camellia sinensis/química , Camellia sinensis/microbiología , Camellia sinensis/metabolismo , Camellia sinensis/crecimiento & desarrolloRESUMEN
Application of actinobacteria has grown exponentially in recent years in sustainable agricultural. Most actinobacterial inoculants are tailored to function as either biocontrol agents or biofertilizers. Hence, there is the need to obtain and include multifunctional actinobacterial strains in inocula formulations. In this research, 90 actinobacterial isolates were isolated from rhizospheric and non-rhizospheric soils of Algerian Saharan arid regions and were screened for their activity against the phytopathogenic fungi Alternaria alternata, Aspergillus flavus, Botrytis cinerea, Fusarium oxysporum, and Fusarium solani. Five isolates that inhibited at least three of these fungi were characterized according to morphological, environmental and biochemical parameters, and were preliminarily identified as Streptomyces enissocaesilis A1, Streptomyces olivoverticillatus A5, Streptomyces erumpens A6, Streptomyces cavourensis A8, and Streptomyces microflavus A20. These strains were then screened for plant growth promoting activities. All strains produced siderophores, hydrocyanic acid, ammonia and the auxin indole-3-acetic acid (IAA) and were capable of solubilizing phosphate. The highest producer of siderophores (69.19 percent siderophore units), ammonia (70.56 µg mL-1) and IAA (148.76 µg mL-1) was strain A8, A20, and A5, respectively. These findings showed that the five actinobacteria are multipurpose strains with simultaneous antifungal and plant growth promoting activities and have the potential to be used for sustainable agricultural practices, particularly in arid regions.
Asunto(s)
Actinobacteria , Antifúngicos , Microbiología del Suelo , Antifúngicos/farmacología , Antifúngicos/metabolismo , Actinobacteria/metabolismo , Actinobacteria/clasificación , Actinobacteria/genética , Actinobacteria/aislamiento & purificación , Actinobacteria/crecimiento & desarrollo , Alternaria/efectos de los fármacos , Alternaria/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Sideróforos/metabolismo , Fusarium/efectos de los fármacos , Fusarium/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Streptomyces/clasificación , Streptomyces/aislamiento & purificación , Streptomyces/genética , Streptomyces/metabolismo , Aspergillus flavus/crecimiento & desarrollo , Aspergillus flavus/efectos de los fármacos , Aspergillus flavus/metabolismo , Botrytis/efectos de los fármacos , Botrytis/crecimiento & desarrollo , Filogenia , Argelia , Desarrollo de la Planta , Antibiosis , África del NorteRESUMEN
Food crops around the world are commonly contaminated with Aspergillus flavus, which can produce the carcinogenic mycotoxin aflatoxin B1 (AFB1). The objective of this study is to test an X-ray irradiation sterilization method for studying AFB1 in contaminated maize samples in the laboratory. Maize that had been naturally contaminated with 300 ppb AFB1 by the growth of aflatoxigenic A. flavus was ground and then irradiated at 0.0, 1.0, 1.5, 2.0, 2.5, and 3.0 kGy. A. flavus was quantified by dilution plating on potato dextrose agar (PDA) and modified Rose Bengal media (MDRB) for viability and qPCR for gene presence. AFB1 was quantified by HPLC and ELISA. A. flavus viability, but not gene copies, significantly decreased with increasing doses of radiation (PDA: p < 0.001; MDRB: p < 0.001; qPCR: p = 0.026). AFB1 concentration did not significantly change with increasing doses of radiation (HPLC: p = 0.153; ELISA: p = 0.567). Our results imply that X-ray irradiation is an effective means of reducing viable A. flavus without affecting AFB1 concentrations. Reducing the hazard of fungal spores and halting AFB1 production at the targeted dose are important steps to safely and reproducibly move forward research on the global mycotoxin challenge.
Asunto(s)
Aflatoxina B1 , Aspergillus flavus , Zea mays , Zea mays/microbiología , Zea mays/efectos de la radiación , Aflatoxina B1/efectos de la radiación , Aspergillus flavus/efectos de la radiación , Aspergillus flavus/crecimiento & desarrollo , Aspergillus flavus/metabolismo , Aspergillus flavus/efectos de los fármacos , Rayos X , Contaminación de Alimentos/prevención & control , Irradiación de Alimentos/métodos , Viabilidad Microbiana/efectos de la radiación , Viabilidad Microbiana/efectos de los fármacosRESUMEN
The climate-change-coupled fungal burden in crop management and the need to reduce chemical pesticide usage highlight the importance of finding sustainable ways to control Aspergillus flavus. This study examines the effectiveness of 50 Pseudomonas isolates obtained from corn rhizospheres against A. flavus in both solid and liquid co-cultures. The presence and quantity of aflatoxin B1 (AFB1) and AFB1-related compounds were determined using high-performance liquid chromatography-high resolution mass spectrometry analysis. Various enzymatic- or non-enzymatic mechanisms are proposed to interpret the decrease in AFB1 production, accompanied by the accumulation of biosynthetic intermediates (11-hydroxy-O-methylsterigmatocystin, aspertoxin, 11-hydroxyaspertoxin) or degradation products (the compounds C16H10O6, C16H14O5, C18H16O7, and C19H16O8). Our finding implies the upregulation or enhanced activity of fungal oxidoreductases and laccases in response to bacterial bioactive compound(s). Furthermore, non-enzymatic reactions resulted in the formation of additional degradation products due to acid accumulation in the fermented broth. Three isolates completely inhibited AFB1 or any AFB1-related compounds without significantly affecting fungal growth. These bacterial isolates supposedly block the entire pathway for AFB1 production in the fungus during interaction. Apart from identifying effective Pseudomonas isolates as potential biocontrol agents, this work lays the foundation for exploring new bacterial bioactive compounds.
Asunto(s)
Aflatoxina B1 , Aspergillus flavus , Pseudomonas , Zea mays , Aflatoxina B1/metabolismo , Aflatoxina B1/biosíntesis , Pseudomonas/metabolismo , Aspergillus flavus/metabolismo , Aspergillus flavus/crecimiento & desarrollo , Zea mays/microbiología , RizosferaRESUMEN
Aspergillus flavus conidia are widespread in air; they attach to food and feed crops and secrete aflatoxins, which results in serious contamination. Germination of A. flavus conidia is the most critical step in contamination of food by A. flavus. This study aims to gain an insight into A. flavus conidia through dormancy to germination to provide a theoretical basis for inhibition of A. flavus conidia germination. The morphological changes and regulation mechanism of A. flavus conidia germination at 0, 4, 8, and 12 hours were observed. Transcriptomic and metabolomic analyses showed that conidia became active from dormancy (0 hour) to the initial stage of germination (4 hours), cellular respiration and energy metabolism increased, and amino acids and lipids were synthesized rapidly. The number of differentially expressed genes and differential metabolites was highest at this stage. Besides, we found that conidia germination had selectivity for different carbon and nitrogen sources. Compared with monosaccharides, disaccharides, as the only carbon source, significantly promoted the germination of conidia. Moreover, MepA, one of genes in the ammonium transporter family was studied. The gene deletion mutant ΔMepA had a significant growth defect, and the expression of MeaA was significantly upregulated in ΔMepA compared with the wild-type, indicating that both MepA and MeaA played an important role in transporting ammonium ions.IMPORTANCEThis is the first study to use combined transcriptomic and metabolomics analyses to explore the biological changes during germination of Aspergillus flavus conidia. The biological process with the highest changes occurred in 0-4 hours at the initial stage of germination. Compared with polysaccharides, monosaccharides significantly increased the size of conidia, while significantly decreasing the germination rate of conidia. Both MeaA and MepA were involved in ammonia transport and metabolism during conidia germination.
Asunto(s)
Aspergillus flavus , Regulación Fúngica de la Expresión Génica , Esporas Fúngicas , Aspergillus flavus/metabolismo , Aspergillus flavus/genética , Aspergillus flavus/crecimiento & desarrollo , Aspergillus flavus/fisiología , Esporas Fúngicas/metabolismo , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Transcriptoma , Nitrógeno/metabolismo , Carbono/metabolismo , Aflatoxinas/metabolismo , Aflatoxinas/genética , Metabolómica , Metabolismo EnergéticoRESUMEN
Aspergillus flavus infects important crops and produces carcinogenic aflatoxins, posing a serious threat to food safety and human health. Biochemical analysis and RNA-seq were performed to investigate the effects and mechanisms of piperitone on A. flavus growth and aflatoxin B1 biosynthesis. Piperitone significantly inhibited the growth of A. flavus, AFB1 production, and its pathogenicity on peanuts and corn flour. Differentially expressed genes (DEGs) associated with the synthesis of chitin, glucan, and ergosterol were markedly down-regulated, and the ergosterol content was reduced, resulting in a disruption in the integrity of the cell wall and cell membrane. Moreover, antioxidant genes were down-regulated, the correspondingly activities of antioxidant enzymes such as catalase, peroxidase, and superoxide dismutase were reduced, and levels of superoxide anion and hydrogen peroxide were increased, leading to a burst of reactive oxygen species (ROS). Accompanied by ROS accumulation, DNA fragmentation and cell autophagy were observed, and 16 aflatoxin cluster genes were down-regulated. Overall, piperitone disrupts the integrity of the cell wall and cell membrane, triggers the accumulation of ROS, causes DNA fragmentation and cell autophagy, ultimately leading to defective growth and impaired AFB1 biosynthesis.
Asunto(s)
Aflatoxina B1 , Antifúngicos , Aspergillus flavus , Especies Reactivas de Oxígeno , Zea mays , Aspergillus flavus/efectos de los fármacos , Aspergillus flavus/genética , Aspergillus flavus/crecimiento & desarrollo , Aspergillus flavus/metabolismo , Zea mays/microbiología , Antifúngicos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Arachis/microbiología , Pared Celular/efectos de los fármacos , Pared Celular/metabolismoRESUMEN
Aspergillus flavus, the primary mold that causes food spoilage, poses significant health and economic problems worldwide. Eliminating A. flavus growth is essential to ensure the safety of agricultural products, and extracellular compounds (ECCs) produced by Bacillus spp. have been demonstrated to inhibit the growth of this pathogen. In this study, we aimed to identify microorganisms efficient at inhibiting A. flavus growth and degrading aflatoxin B1. We isolated microorganisms from soil samples using a culture medium containing coumarin (CM medium) as the sole carbon source. Of the 498 isolates grown on CM medium, only 132 bacterial strains were capable of inhibiting A. flavus growth. Isolate 3BS12-4, identified as Bacillus siamensis, exhibited the highest antifungal activity with an inhibition ratio of 43.10%, and was therefore selected for further studies. The inhibition of A. flavus by isolate 3BS12-4 was predominantly attributed to ECCs, with a minimum inhibitory concentration and minimum fungicidal concentration of 0.512 g/ml. SEM analysis revealed that the ECCs disrupted the mycelium of A. flavus. The hydrolytic enzyme activity of the ECCs was assessed by protease, ß-1,3-glucanase, and chitinase activity. Our results demonstrate a remarkable 96.11% aflatoxin B1 degradation mediated by ECCs produced by isolate 3BS12-4. Furthermore, treatment with these compounds resulted in a significant 97.93% inhibition of A. flavus growth on peanut seeds. These findings collectively present B. siamensis 3BS12-4 as a promising tool for developing environmentally friendly products to manage aflatoxin-producing fungi and contribute to the enhancement of agricultural product safety and food security.
Asunto(s)
Aflatoxina B1 , Antifúngicos , Aspergillus flavus , Bacillus , Agentes de Control Biológico , Microbiología del Suelo , Aspergillus flavus/efectos de los fármacos , Aspergillus flavus/crecimiento & desarrollo , Aspergillus flavus/metabolismo , Bacillus/metabolismo , Bacillus/efectos de los fármacos , Aflatoxina B1/metabolismo , Aflatoxina B1/biosíntesis , Agentes de Control Biológico/farmacología , Antifúngicos/farmacología , Pruebas de Sensibilidad Microbiana , Medios de Cultivo/química , Micelio/efectos de los fármacos , Micelio/crecimiento & desarrolloRESUMEN
Chemical pesticides help reduce crop loss during production and storage. However, the carbon footprints and ecological costs associated with this strategy are unsustainable. Here, we used three in vitro models to characterize how different Trichoderma species interact with two aflatoxin producers, Aspergillus flavus and Aspergillus parasiticus, to help develop a climate-resilient biological control strategy against aflatoxigenic Aspergillus species. The growth rate of Trichoderma species is a critical factor in suppressing aflatoxigenic strains via physical interactions. The dual plate assay suggests that Trichoderma mainly suppresses A. flavus via antibiosis, whereas the suppression of A. parasiticus occurs through mycoparasitism. Volatile organic compounds (VOCs) produced by Trichoderma inhibited the growth of A. parasiticus (34.6 ± 3.3%) and A. flavus (20.9 ± 1.6%). The VOCs released by T. asperellum BTU and T. harzianum OSK-34 were most effective in suppressing A. flavus growth. Metabolites secreted by T. asperellum OSK-38, T. asperellum BTU, T. virens OSK-13, and T. virens OSK-36 reduced the growth of both aflatoxigenic species. Overall, T. asperellum BTU was the most effective at suppressing the growth and aflatoxin B1 production of both species across all models. This work will guide efforts to screen for effective biological control agents to mitigate aflatoxin accumulation.
Asunto(s)
Aflatoxinas , Aspergillus flavus , Aspergillus , Trichoderma , Compuestos Orgánicos Volátiles , Aspergillus flavus/crecimiento & desarrollo , Aspergillus flavus/metabolismo , Aspergillus flavus/efectos de los fármacos , Aspergillus/metabolismo , Aspergillus/crecimiento & desarrollo , Aspergillus/efectos de los fármacos , Aflatoxinas/biosíntesis , Trichoderma/metabolismo , Trichoderma/fisiología , Compuestos Orgánicos Volátiles/farmacología , Compuestos Orgánicos Volátiles/metabolismo , Control Biológico de Vectores/métodos , Agentes de Control Biológico/farmacología , Antibiosis , Modelos BiológicosRESUMEN
Non-genetic variation limits the identification of novel maize germplasm with genetic markers for reduced Aspergillus flavus infection and aflatoxin contamination. Aflatoxin measurements can vary substantially within fields containing the same germplasm following inoculation with A. flavus. While some variation is expected due to microenvironmental differences, components of field screening methodologies may also contribute to variability in collected data. Therefore, the objective of this study is to test the effects of three different shelling methods (whole ear (WE), ear end removal (EER), and inoculation site-surrounding (ISS)) to obtain bulk samples from maize on aflatoxin measurements. Five ears per row of three inbred lines and two hybrids were inoculated with A. flavus, then shelled using the three different methods, and aflatoxin was quantified. Overall, EER and ISS resulted in reduced coefficients of variance (CVs) in comparison to WE for both inbred and hybrid maize lines, with two exceptions. Susceptible B73 showed increased CVs with both EER and ISS compared to WE, and resistant Mp719's EER CVs marginally increased compared to WE. While WE is the standard practice for most breeding programs due to its technical simplicity, EER and ISS may allow for finely phenotyping parental lines for further breeding applications.
Asunto(s)
Aflatoxinas , Aspergillus flavus , Zea mays , Zea mays/microbiología , Aflatoxinas/análisis , Aspergillus flavus/genética , Aspergillus flavus/metabolismo , Contaminación de Alimentos/análisis , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & controlRESUMEN
Aspergillus flavus and its carcinogenic secondary metabolites, aflatoxins, not only cause serious losses in the agricultural economy, but also endanger human health. Rhein, a compound extracted from the Chinese herbal medicine Rheum palmatum L. (Dahuang), exhibits good anti-inflammatory, anti-tumor, and anti-oxidative effects. However, its effect and underlying mechanisms against Aspergillus flavus have not yet been fully illustrated. In this study, we characterized the inhibition effect of rhein on A. flavus mycelial growth, sporulation, and aflatoxin B1 (AFB1) biosynthesis and the potential mechanism using RNA-seq analysis. The results indicate that A. flavus mycelial growth and AFB1 biosynthesis were significantly inhibited by 50 µM rhein, with a 43.83% reduction in colony diameter and 87.2% reduction in AFB1 production. The RNA-seq findings demonstrated that the differentially expressed genes primarily participated in processes such as spore formation and development, the maintenance of cell wall and membrane integrity, management of oxidative stress, the regulation of the citric acid cycle, and the biosynthesis of aflatoxin. Biochemical verification experiments further confirmed that 50 µM rhein effectively disrupted cell wall and membrane integrity and caused mitochondrial dysfunction through disrupting energy metabolism pathways, leading to decreased ATP synthesis and ROS accumulation, resulting in impaired aflatoxin biosynthesis. In addition, a pathogenicity test showed that 50 µM rhein inhibited A. flavus spore growth in peanut and maize seeds by 34.1% and 90.4%, while AFB1 biosynthesis was inhibited by 60.52% and 99.43%, respectively. In conclusion, this research expands the knowledge regarding the antifungal activity of rhein and provides a new strategy to mitigate A. flavus contamination.
Asunto(s)
Aflatoxina B1 , Antraquinonas , Aspergillus flavus , Especies Reactivas de Oxígeno , Aspergillus flavus/efectos de los fármacos , Aspergillus flavus/metabolismo , Aspergillus flavus/crecimiento & desarrollo , Antraquinonas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Aflatoxina B1/biosíntesis , Aflatoxina B1/toxicidad , Metabolismo Energético/efectos de los fármacos , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/crecimiento & desarrollo , Micelio/efectos de los fármacos , Micelio/crecimiento & desarrollo , Antifúngicos/farmacologíaRESUMEN
Phellinus caribaeo-quercicola is a basidiomycetous fungus, isolated as an endophyte in this study from the healthy and symptomless leaves of Inula racemosa Hook. f., an important medicinal herb growing in Kashmir Himalaya. This study combines morphological, molecular and phylogenetic techniques to identify the fungal endophyte, using the ITS sequence of nrDNA. A detached leaf assay was conducted to assess the pathogenicity of the fungal endophyte suggesting its mutually symbiotic relationship with the host. The authors also investigated the antifungal potential of the isolated endophytic strain to ascertain its use as a biocontrol agent. The study shows that P. caribaeo-quercicola INL3-2 strain exhibits biocontrol activity against four key fungal phytopathogens that cause significant agronomic and economic losses: Aspergillus flavus, Aspergillus niger, Fusarium solani, and Fusarium oxysporum. Notably, P. caribaeo-quercicola INL3-2 strain is highly effective against A. flavus, with an inhibition percentage of 57.63%. In addition, this study investigates the antioxidant activity of P. caribaeo-quercicola INL3-2 strain crude extracts using ethyl acetate and methanol as solvents. The results showed that the methanolic fraction of P. caribaeo-quercicola exhibits potential as an antioxidant agent, with an IC50 value of 171.90 ± 1.15 µg/mL. This investigation is first of its kind and marks the initial report of this fungal basidiomycete, P. caribaeo-quercicola, as an endophyte associated with a medicinal plant. The findings of this study highlight the potential of P. caribaeo-quercicola INL3-2 strain as a dual-action agent with both biocontrol and antioxidant properties consistent with the medicinal properties of Inula racemosa. This endophytic fungus could be a promising source of natural compounds for use in agriculture, medicine, and beyond.
Asunto(s)
Antifúngicos , Antioxidantes , Basidiomycota , Endófitos , Filogenia , Hojas de la Planta , Endófitos/aislamiento & purificación , Endófitos/metabolismo , Endófitos/fisiología , Endófitos/genética , Antioxidantes/farmacología , Antioxidantes/metabolismo , Basidiomycota/efectos de los fármacos , Hojas de la Planta/microbiología , Antifúngicos/farmacología , Antifúngicos/metabolismo , Fusarium/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Agentes de Control Biológico/farmacología , Aspergillus/metabolismo , Aspergillus/efectos de los fármacos , India , Aspergillus flavus/efectos de los fármacos , Aspergillus flavus/metabolismo , Aspergillus flavus/crecimiento & desarrollo , ADN de Hongos/genética , SimbiosisRESUMEN
The target of rapamycin (TOR) signaling pathway is highly conserved and plays a crucial role in diverse biological processes in eukaryotes. Despite its significance, the underlying mechanism of the TOR pathway in Aspergillus flavus remains elusive. In this study, we comprehensively analyzed the TOR signaling pathway in A. flavus by identifying and characterizing nine genes that encode distinct components of this pathway. The FK506-binding protein Fkbp3 and its lysine succinylation are important for aflatoxin production and rapamycin resistance. The TorA kinase plays a pivotal role in the regulation of growth, spore production, aflatoxin biosynthesis, and responses to rapamycin and cell membrane stress. As a significant downstream effector molecule of the TorA kinase, the Sch9 kinase regulates aflatoxin B1 (AFB1) synthesis, osmotic and calcium stress response in A. flavus, and this regulation is mediated through its S_TKc, S_TK_X domains, and the ATP-binding site at K340. We also showed that the Sch9 kinase may have a regulatory impact on the high osmolarity glycerol (HOG) signaling pathway. TapA and TipA, the other downstream components of the TorA kinase, play a significant role in regulating cell wall stress response in A. flavus. Moreover, the members of the TapA-phosphatase complexes, SitA and Ppg1, are important for various biological processes in A. flavus, including vegetative growth, sclerotia formation, AFB1 biosynthesis, and pathogenicity. We also demonstrated that SitA and Ppg1 are involved in regulating lipid droplets (LDs) biogenesis and cell wall integrity (CWI) signaling pathways. In addition, another phosphatase complex, Nem1/Spo7, plays critical roles in hyphal development, conidiation, aflatoxin production, and LDs biogenesis. Collectively, our study has provided important insight into the regulatory network of the TOR signaling pathway and has elucidated the underlying molecular mechanisms of aflatoxin biosynthesis in A. flavus.
Asunto(s)
Aspergillus flavus , Transducción de Señal , Serina-Treonina Quinasas TOR , Aspergillus flavus/metabolismo , Aspergillus flavus/genética , Aspergillus flavus/crecimiento & desarrollo , Aspergillus flavus/patogenicidad , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Aflatoxinas/biosíntesis , Aflatoxinas/metabolismo , Regulación Fúngica de la Expresión Génica , VirulenciaRESUMEN
Contamination of crop seeds and feed with Aspergillus flavus and its associated aflatoxins presents a significant threat to human and animal health due to their hepatotoxic and carcinogenic properties. To address this challenge, researchers have screened for potential biological control agents in peanut soil and pods. This study identified a promising candidate, a strain of the nonpigmented bacterium, Achromobacter xylosoxidans ZJS2-1, isolated from the peanut rhizosphere in Zhejiang Province, China, exhibiting notable antifungal and antiaflatoxin activities. Further investigations demonstrated that ZJS2-1 active substances (ZAS) effectively inhibited growth at a MIC of 60 µL/mL and nearly suppressed AFB1 production by 99%. Metabolomic analysis revealed that ZAS significantly affected metabolites involved in cell wall and membrane biosynthesis, leading to compromised cellular integrity and induced apoptosis in A. flavus through the release of cytochrome c. Notably, ZAS targeted SrbA, a key transcription factor involved in ergosterol biosynthesis and cell membrane integrity, highlighting its crucial role in ZJS2-1's biocontrol mechanism. Moreover, infection of crop seeds and plant wilt caused by A. flavus can be efficiently alleviated by ZAS. Additionally, ZJS2-1 and ZAS demonstrated significant inhibitory effects on various Aspergillus species, with inhibition rates ranging from 80 to 99%. These findings highlight the potential of ZJS2-1 as a biocontrol agent against Aspergillus species, offering a promising solution to enhance food safety and protect human health.
Asunto(s)
Achromobacter denitrificans , Aflatoxinas , Apoptosis , Arachis , Aspergillus flavus , Membrana Celular , Rizosfera , Aspergillus flavus/metabolismo , Aspergillus flavus/crecimiento & desarrollo , Arachis/microbiología , Arachis/química , Membrana Celular/metabolismo , Membrana Celular/efectos de los fármacos , Aflatoxinas/biosíntesis , Aflatoxinas/metabolismo , Apoptosis/efectos de los fármacos , Achromobacter denitrificans/metabolismo , Semillas/microbiología , Semillas/química , Semillas/metabolismo , Antifúngicos/farmacología , Antifúngicos/metabolismo , China , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Microbiología del SueloRESUMEN
This study systematically analyzed the effect of Aspergillus flavus infection on the maize starch multi-scale structure, physicochemical properties, processing characteristics, and synthesis regulation. A. flavus infection led to a decrease in the content of starch, an increase in the content of reactive oxygen species (ROS) and malondialdehyde (MDA), a significant decrease in the activities of peroxidase (POD) and superoxide dismutase (SOD). In addition, A. flavus infection had a significant destructive effect on the double helix structure, relative crystallinity and lamellar structure of starch, resulting in the reduction of starch viscosity, affecting the viscoelastic properties of starch, and complicating the gel formation process. However, the eugenol treatment group significantly inhibited the growth of A. flavus during maize storage, protecting the multi-scale structure and processing characteristics of maize starch from being damaged. Transcriptome analysis showed that genes involved in carbohydrate synthesis in maize were significantly downregulated and genes involved in energy synthesis were significantly upregulated, indicating that maize converted its energy storage into energy synthesis to fight the invasion of A. flavus. These results of this study enriched the mechanism of quality deterioration during maize storage, and provide theoretical and technical support for the prevention of A. flavus infection during maize storage.