Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 795
Filtrar
1.
PLoS One ; 19(7): e0300213, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38954729

RESUMEN

Rice wine, well known for its unique flavor, rich nutritional value, and health benefits, has potential for extensive market development. Rhizopus and Aspergillus are among several microorganisms used in rice wine brewing and are crucial for determining rice wine quality. The strains were isolated via Rose Bengal and starch as a combined separation medium, followed by oenological property and sensory evaluation screening. The strain exhibiting the best performance can be screened using the traditional rice wine Qu. The strains YM-8, YM-10, and YM-16, which exhibited strong saccharification and fermentation performance along with good flavor and taste, were obtained from traditional rice wine Qu. Based on ITS genetic sequence analysis, the YM-8, YM-10, and YM-16 strains were identified as Rhizopus microsporus, Rhizopus arrhizus, and Aspergillus oryzae. The optimum growth temperature of each of the three strains was 30°C, 32°C, and 30°C, and the optimum initial pH was 6.0, 6.5, and 6.5, respectively. The activities of α-amylase, glucoamylase, and protease of YM-16 were highest at 220.23±1.88, 1,269.04±30.32, and 175.16±1.81 U/g, respectively. The amino acid content of rice wine fermented in a 20-L bioreactor with the three mold strains was higher than that of the control group, except for arginine, which was significantly lower than that of the control group. The total amino acid content and the total content of each type of amino acid were ranked as YM-16 > YM-8 > YM-10 > control group, and the amino acid content varied greatly among the strains. The control group had a higher content, whereas YM-8 and YM-16 had lower contents of volatile aroma components than the control group and had the basic flavor substances needed for rice wine, which is conducive to the formation of rice wine aroma. This selected strain, YM-16, has strong saccharification and fermentation ability, is a rich enzyme system, and improves the flavor of rice wine, thereby demonstrating its suitability as a production strain for brewing.


Asunto(s)
Reactores Biológicos , Fermentación , Oryza , Vino , Vino/análisis , Vino/microbiología , Oryza/microbiología , Oryza/metabolismo , Reactores Biológicos/microbiología , Rhizopus/metabolismo , Gusto , Aspergillus oryzae/metabolismo , Aspergillus oryzae/genética , Concentración de Iones de Hidrógeno
2.
J Agric Food Chem ; 72(28): 15613-15623, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38978453

RESUMEN

Here we describe a complex enzymatic approach to the efficient transformation of abundant waste chitin, a byproduct of the food industry, into valuable chitooligomers with a degree of polymerization (DP) ranging from 6 to 11. This method involves a three-step process: initial hydrolysis of chitin using engineered variants of a novel fungal chitinase from Talaromyces flavus to generate low-DP chitooligomers, followed by an extension to the desired DP using the high-yielding Y445N variant of ß-N-acetylhexosaminidase from Aspergillus oryzae, achieving yields of up to 57%. Subsequently, enzymatic deacetylation of chitooligomers with DP 6 and 7 was accomplished using peptidoglycan deacetylase from Bacillus subtilis BsPdaC. The innovative enzymatic procedure demonstrates a sustainable and feasible route for converting waste chitin into unavailable bioactive chitooligomers potentially applicable as natural pesticides in ecological and sustainable agriculture.


Asunto(s)
Aspergillus oryzae , Quitina , Quitinasas , Proteínas Fúngicas , Oligosacáridos , Talaromyces , Quitina/metabolismo , Quitina/química , Quitinasas/metabolismo , Quitinasas/genética , Quitinasas/química , Talaromyces/enzimología , Talaromyces/genética , Talaromyces/química , Talaromyces/metabolismo , Oligosacáridos/metabolismo , Oligosacáridos/química , Hidrólisis , Aspergillus oryzae/enzimología , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Bacillus subtilis/genética , Bacillus subtilis/enzimología , Bacillus subtilis/química , Bacillus subtilis/metabolismo , Biocatálisis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química
3.
Int J Biol Macromol ; 275(Pt 2): 133714, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38977051

RESUMEN

The synthesis mechanisms and function evaluation of selenium(Se)-enriched microorganism remain relatively unexplored. This study unveils that total Se content within A. oryzae A02 mycelium soared to an impressive 8462 mg/kg DCW, surpassing Se-enriched yeast by 2-3 times. Selenium exists in two predominant forms within A. oryzae A02: selenoproteins (SeMet 32.1 %, SeCys 14.4 %) and selenium nanoparticles (SeNPs; 53.5 %). The extensive quantitative characterization of the elemental composition, surface morphology, and size of SeNPs on A. oryzae A02 mycelium significantly differs from those reported for other microorganisms. Comparative RNA-Seq analysis revealed the upregulation of functional genes implicated in selenium transformation, activating multiple potential pathways for selenium reduction. The assimilatory and dissimilatory reductions of Se oxyanions engaged numerous parallel and interconnected pathways, manifesting a harmonious equilibrium in overall Se biotransformation in A. oryzae A02. Furthermore, selenium-enriched A. oryzae A02 was observed to primarily upregulate peroxisome activity while downregulating estrogen 2-hydroxylase activity in mice hepatocytes, suggesting its potential in fortifying antioxidant physiological functions and upholding metabolic balance.


Asunto(s)
Aspergillus oryzae , Selenio , Aspergillus oryzae/metabolismo , Aspergillus oryzae/genética , Selenio/química , Selenio/metabolismo , Selenio/farmacología , Animales , Ratones , Selenoproteínas/metabolismo , Selenoproteínas/biosíntesis , Micelio/metabolismo , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos , Nanopartículas/química
4.
J Biosci Bioeng ; 138(3): 212-217, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38969547

RESUMEN

We constructed a new Aspergillus expression vector (pSENSU2512nid) under the control of the enolase promoter with 12 tandem repeats of cis-acting elements (region III) and the heat shock protein 12 (Hsp12) 5' untranslated region (UTR). Bilirubin oxidase (EC: 1.3.3.5) from Myrothecium verrucaria, which catalyzes the oxidation of bilirubin to biliverdin, was overexpressed in Aspergillus oryzae and A. niger. The productivity was estimated to be approximately 1.2 g/L in the culture broth, which was approximately 6-fold higher than that of recombinant bilirubin oxidase (BOD) expressed in Pichia pastoris (Komagataella phaffii). BOD was purified using hydrophobic interaction chromatography, followed by ion exchange chromatography. The specific activity of the purified BOD against 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) substrate was 57.6 U/mg and 66.4 U/mg for A. oryzae and A. niger, respectively. l-Ascorbic acid (4 mM) addition and storage under deoxygenated conditions for 3-7 d increased the specific activity of these Aspergillus-expressed BODs approximately 2.3-fold (154.1 U/mg). The BOD specific activity was enhanced by incubation at higher temperature (30-50 °C). Further characterization of the enzyme catalytic efficiency revealed that the Km value remained unchanged, whereas the kcat value improved 3-fold. In conclusion, this high-level of BOD expression meets the requirements for industrial-level production. Additionally, we identified an effective method to enhance the low specific activity during expression, making it advantageous for industrial applications.


Asunto(s)
Hypocreales , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Proteínas Recombinantes , Hypocreales/enzimología , Hypocreales/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/química , Aspergillus/enzimología , Aspergillus/genética , Aspergillus oryzae/enzimología , Aspergillus oryzae/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Aspergillus niger/enzimología , Aspergillus niger/genética , Saccharomycetales/genética , Saccharomycetales/enzimología , Saccharomycetales/metabolismo , Vectores Genéticos/metabolismo , Regiones Promotoras Genéticas
5.
J Agric Food Chem ; 72(30): 16825-16834, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39020512

RESUMEN

Fungi produce various bioactive secondary metabolites (SMs) as protective and weaponized tools to enhance survival in shared ecological niches. By mimicking a competitive ecosystem, cocultivation has been proven to be particularly successful in stimulating SM discovery. Here, we reported the identification of four novel metabolites, epiclactones A and B, epioxochromane and aoergostane, from the coculture of two biotechnologically important strains, Aspergillus oryzae and Epicoccum dendrobii. Transcriptome and metabolome analyses revealed widespread silent gene activation during fungal-fungal interaction. The majority of differentially expressed gene clusters were summarized for both strains. Based on these highly activated biosynthetic pathways, we suggested that a bidirectional chemical defense occurred under cocultivation. E. dendrobii enhanced the production of the spore inhibitor, fumigermin. Moreover, A. oryzae highly accumulated the antifungal agent kojic acid with a yield of up to 1.10 g/L. This study provides an excellent example for the discovery of hidden natural products by cocultivation.


Asunto(s)
Ascomicetos , Aspergillus oryzae , Técnicas de Cocultivo , Aspergillus oryzae/metabolismo , Aspergillus oryzae/genética , Ascomicetos/metabolismo , Ascomicetos/genética , Ascomicetos/crecimiento & desarrollo , Metabolismo Secundario , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética
6.
J Bioinform Comput Biol ; 22(3): 2450017, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39051143

RESUMEN

DNA-binding transcription factors (TFs) play a central role in transcriptional regulation mechanisms, mainly through their specific binding to target sites on the genome and regulation of the expression of downstream genes. Therefore, a comprehensive analysis of the function of these TFs will lead to the understanding of various biological mechanisms. However, the functions of TFs in vivo are diverse and complicated, and the identified binding sites on the genome are not necessarily involved in the regulation of downstream gene expression. In this study, we investigated whether DNA structural information around the binding site of TFs can be used to predict the involvement of the binding site in the regulation of the expression of genes located downstream of the binding site. Specifically, we calculated the structural parameters based on the DNA shape around the DNA binding motif located upstream of the gene whose expression is directly regulated by one TF AoXlnR from Aspergillus oryzae, and showed that the presence or absence of expression regulation can be predicted from the sequence information with high accuracy ([Formula: see text]-1.0) by machine learning incorporating these parameters.


Asunto(s)
Aspergillus oryzae , Regulación Fúngica de la Expresión Génica , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Sitios de Unión , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Aprendizaje Automático , Motivos de Nucleótidos , Biología Computacional/métodos , Modelos Genéticos , ADN de Hongos/metabolismo , ADN de Hongos/genética
7.
Sci Rep ; 14(1): 13797, 2024 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877139

RESUMEN

In filamentous fungi, microtubules are important for polar growth and morphological maintenance and serve as rails for intracellular trafficking. The molecular mechanisms associated with microtubules have been analyzed. However, little is known about when and where tubulin, a component of microtubules, is biosynthesized in multinuclear and multicellular filamentous fungi. In this study, we visualized microtubules based on the enhanced green fluorescence protein (EGFP)-labeled α-tubulin and ß-tubulin mRNA tagged by the EGFP-mediated MS2 system in living yellow Koji mold Aspergillus oryzae cells in order to understand the spatiotemporal production mechanism of tubulin. We found that mRNA of btuA, encoding for ß-tubulin, localized at dot-like structures through the apical, middle and basal regions of the hyphal cells. In addition, some btuA mRNA dots showed microtubule-dependent motor protein-like dynamics in the cells. Furthermore, it was found that btuA mRNA dots were decreased in the cytoplasm just before mitosis but increased immediately after mitosis, followed by a gradual decrease. In summary, the localization and abundance of ß-tubulin mRNA is spatiotemporally regulated in living A. oryzae hyphal cells.


Asunto(s)
Aspergillus oryzae , Microtúbulos , ARN Mensajero , Tubulina (Proteína) , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Microtúbulos/metabolismo , Hifa/genética , Hifa/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
8.
Fungal Genet Biol ; 173: 103909, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38885923

RESUMEN

In the filamentous fungus Aspergillus oryzae, large amounts of amylolytic enzymes are inducibly produced by isomaltose, which is converted from maltose incorporated via the maltose transporter MalP. In contrast, the preferred sugar glucose strongly represses the expression of both amylolytic and malP genes through carbon catabolite repression. Simultaneously, the addition of glucose triggers the endocytic degradation of MalP on the plasma membrane. In budding yeast, the signal-dependent ubiquitin modification of plasma membrane transporters leads to selective endocytosis into the vacuole for degradation. In addition, during glucose-induced MalP degradation, the homologous of E6AP C-terminus-type E3 ubiquitin ligase (HulA) is responsible for the ubiquitin modification of MalP, and the arrestin-like protein CreD is required for HulA targeting. Although CreD-mediated MalP internalization occurs in response to glucose, the mechanism by which CreD regulates HulA-dependent MalP ubiquitination remains unclear. In this study, we demonstrated that three (P/L)PxY motifs present in the CreD protein are essential for functioning as HulA adaptors so that HulA can recognize MalP in response to glucose stimulation, enabling MalP internalization. Furthermore, four lysine residues (three highly conserved among Aspergillus species and yeast and one conserved among Aspergillus species) of CreD were found to be necessary for its ubiquitination, resulting in efficient glucose-induced MalP endocytosis. The results of this study pave the way for elucidating the regulatory mechanism of MalP endocytic degradation through ubiquitination by the HulA-CreD complex at the molecular level.


Asunto(s)
Aspergillus oryzae , Endocitosis , Proteínas Fúngicas , Glucosa , Proteínas de Transporte de Monosacáridos , Ubiquitina-Proteína Ligasas , Ubiquitinación , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Aspergillus oryzae/enzimología , Glucosa/metabolismo , Endocitosis/efectos de los fármacos , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Maltosa/metabolismo , Proteolisis , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética
9.
Sci Rep ; 14(1): 11729, 2024 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778216

RESUMEN

Filamentous fungi are eukaryotic microorganisms that differentiate into diverse cellular forms. Recent research demonstrated that phospholipid homeostasis is crucial for the morphogenesis of filamentous fungi. However, phospholipids involved in the morphological regulation are yet to be systematically analyzed. In this study, we artificially controlled the amount of phosphatidylcholine (PC), a primary membrane lipid in many eukaryotes, in a filamentous fungus Aspergillus oryzae, by deleting the genes involved in PC synthesis or by repressing their expression. Under the condition where only a small amount of PC was synthesized, A. oryzae hardly formed aerial hyphae, the basic structures for asexual development. In contrast, hyphae were formed on the surface or in the interior of agar media (we collectively called substrate hyphae) under the same conditions. Furthermore, we demonstrated that supplying sufficient choline to the media led to the formation of aerial hyphae from the substrate hyphae. We suggested that acyl chains in PC were shorter in the substrate hyphae than in the aerial hyphae by utilizing the strain in which intracellular PC levels were controlled. Our findings suggested that the PC levels regulate hyphal elongation and differentiation processes in A. oryzae and that phospholipid composition varied depending on the hyphal types.


Asunto(s)
Aspergillus oryzae , Hifa , Fosfatidilcolinas , Hifa/crecimiento & desarrollo , Hifa/metabolismo , Fosfatidilcolinas/metabolismo , Aspergillus oryzae/metabolismo , Aspergillus oryzae/genética , Aspergillus oryzae/crecimiento & desarrollo , Colina/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética
10.
Appl Environ Microbiol ; 90(5): e0029424, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38624200

RESUMEN

Aspergillus oryzae spores, when sprinkled onto steamed rice and allowed to propagate, are referred to as rice "koji." Agmatine, a natural polyamine derived from arginine through the action of arginine decarboxylase (ADC), is abundantly produced by solid state-cultivated rice koji of A. oryzae RIB40 under low pH conditions, despite the apparent absence of ADC orthologs in its genome. Mass spectrometry imaging revealed that agmatine was accumulated inside rice koji at low pH conditions, where arginine was distributed. ADC activity was predominantly observed in substrate mycelia and minimally in aerial mycelia. Natural ADC was isolated from solid state-cultivated A. oryzae rice koji containing substrate mycelia, using ammonium sulfate fractionation, ion exchange, and gel-filtration chromatography. The purified protein was subjected to sodium dodecyl sulfate poly-acrylamide gel electrophoresis (SDS-PAGE), and the detected peptide band was digested for identification by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The gene AO090102000327 of strain RIB40 was identified, previously annotated as phosphatidylserine decarboxylase (PSD), and encoded a 483-amino acid peptide. Recombinant protein encoded by AO090102000327 was expressed in Escherichia coli cells cultivated at 20°C, resulting in the detection of 49 kDa and 5 kDa peptides. The protein exhibited pyruvoyl-dependent decarboxylase activity, favoring arginine over ornithine and showing no activity with phosphatidylserine. The gene was designated Ao-adc1. Ao-ADC1 expression in rice koji at pH 4-6 was confirmed through western blotting using the anti-Ao-ADC1 serum. These findings indicate that Ao-adc1 encodes arginine decarboxylase involved in agmatine production.IMPORTANCEGene AO090102000327 in A. oryzae RIB40, previously annotated as a PSD, falls into a distinct clade when examining the phylogenetic distribution of PSDs. Contrary to the initial PSD annotation, our analysis indicates that the protein encoded by AO090102000327 is expressed in the substrate mycelia area of solid state-cultivated A. oryzae rice koji and functions as an arginine decarboxylase (ADC). The clade to which Ao-ADC1 belongs includes three other Ao-ADC1 paralogs (AO090103000445, AO090701000800, and AO090701000802) that presumably encode ADC rather than PSDs. Regarding PSD, AO090012000733 and AO090005001124 were speculated to be nonmitochondrial and mitochondrial PSDs in A. oryzae RIB40, respectively.


Asunto(s)
Aspergillus oryzae , Carboxiliasas , Proteínas Fúngicas , Oryza , Aspergillus oryzae/genética , Aspergillus oryzae/enzimología , Carboxiliasas/genética , Carboxiliasas/metabolismo , Carboxiliasas/química , Oryza/microbiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Agmatina/metabolismo
11.
J Biosci Bioeng ; 138(1): 36-43, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38653596

RESUMEN

Genome co-editing technology is effective in breeding filamentous fungi for applications in the fermentation industry, achieving site-directed mutagenesis, the status of non-genetically modified organisms (non-GMOs), and wild-type-like growth phenotype. Prior to this study, thiI gene was found as a selectable marker for such genome co-editing in the filamentous fungus Aspergillus oryzae, while it cannot be reused via marker recycling. Therefore, we aimed to identify another marker gene to knock out another target gene via genome co-editing in A. oryzae. In this study, we focused on the membrane transporter gene nrtA (AO090012000623), which promotes uptake of nitrate (NO3-). It is known that, in nrtA knockout strain, chlorate (ClO3-), an analog of nitrate with antifungal activity, cannot be imported into the cytosol, which enables the mutant to grow in the presence of chlorate. Based on this information, knockout of the target gene wA was attempted using both nrtA- and wA-specific single-guide RNAs via genome co-editing with KClO3 supplementation in A. oryzae laboratory strain RIB40 and industrial strain KBN616. Resultantly, wA knockout mutant was generated, and nrtA was identified as a selectable marker. Moreover, this genome co-editing system using nrtA was compatible with that using thiI, and thus, a double knockout mutant of two target genes wA and yA was constructed in RIB40 while maintaining non-GMO status and wild-type-like growth. As nrtA homologs have been found in several industrial Aspergillus species, genome co-editing using homolog genes as selectable markers is plausible, which would contribute to the widespread breeding of industrial strains of Aspergilli.


Asunto(s)
Proteínas de Transporte de Anión , Aspergillus oryzae , Proteínas Fúngicas , Edición Génica , Técnicas de Inactivación de Genes , Transportadores de Nitrato , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Edición Génica/métodos , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Nitratos/metabolismo , Marcadores Genéticos , Tiamina/metabolismo , Cloratos/metabolismo , ARN Guía de Sistemas CRISPR-Cas/genética , ARN Guía de Sistemas CRISPR-Cas/metabolismo
12.
Org Lett ; 26(15): 3158-3163, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38588324

RESUMEN

We uncovered the biosynthetic pathway of the lethal mycotoxin 3-nitropropanoic acid (3-NPA) from koji mold Aspergillus oryzae. The biosynthetic gene cluster (BGC) of 3-NPA, which encodes an amine oxidase and a decarboxylase, is conserved in many fungi used in food processing, although most of the strains have not been reported to produce 3-NPA. Our discovery will lead to efforts that improve the safety profiles of these indispensable microorganisms in making food, alcoholic beverages, and seasoning.


Asunto(s)
Aspergillus oryzae , Micotoxinas , Micotoxinas/metabolismo , Nitrocompuestos , Propionatos , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo
13.
J Dairy Sci ; 107(9): 6602-6613, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38670341

RESUMEN

Yogurt usually contains 5% to 7% sugar and 3% to 5% lactose. As ß-galactosidases can hydrolyze lactose and improve sweetness, they have the potential to produce lactose-free (LF) and no-sugar-added (NSA) yogurt. In this study, the ß-galactosidase AoBgal35A from Aspergillus oryzae was engineered by site-saturation mutagenesis. Results of 19 variants of T955 residue showed that the lactose hydrolysis rate of T955R-AoBgal35A was up to 90.7%, which is much higher than the 78.5% of the wild type. Moreover, the optimal pH of T955R-AoBgal35A was shifted from pH 4.5 to pH 5.5, and the optimal temperature decreased from 60°C to 50°C. The mutant T955R-AoBgal35A was successfully expressed in Komagataella pastoris, which produced extracellularly 4,528 U/mL of ß-galactosidase activity. The mutant T955R-AoBgal35A was used to produce LF yogurt. The Streptococcus thermophilus count of LF yogurt increased from 7.9 to 9.5 log cfu/g, which is significantly higher than that of the control group (8.9 log cfu/g). The residual lactose content of LF yogurt was 0.13%, meeting the requirements of the national standard in China for the "lactose-free" label (<0.5%). Furthermore, sugar in yogurt was replaced by whey powder to produce LF-NSA yogurt. The optimal addition content of whey powder was 7.5%. The texture, water-holding capacity, and titratable acidity of LF and LF-NSA yogurt achieved good shelf life stability. Therefore, this study provides an insight for technological implications of ß-galactosidases in the dairy industry.


Asunto(s)
Aspergillus oryzae , Lactosa , Yogur , beta-Galactosidasa , Aspergillus oryzae/enzimología , Aspergillus oryzae/genética , beta-Galactosidasa/metabolismo , beta-Galactosidasa/genética , Lactosa/metabolismo , Concentración de Iones de Hidrógeno , Fermentación
14.
Food Res Int ; 181: 114116, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38448100

RESUMEN

Cantonese soy sauce (CSS) is an important Chinese condiment due to its distinctive flavor. Microorganisms play a significant role in the flavor formation of CSS during fermentation. However, the correlation between microbes and flavor compounds as well as the potential fermentation mechanism remained poorly uncovered. Here we revealed the dynamic changes of microbial structure and characteristics metabolites as well as their correlation of CSS during the fermentation process. Metagenomics sequencing analysis showed that Tetragenococcus halophilus, Weissella confusa, Weissella paramesenteroides, Aspergillus oryzae, Lactiplantibacillus plantarum, Weissella cibaria were top six dominant species from day 0 to day 120. Sixty compounds were either positively or tentatively identified through untargeted metabolomics profile and they were 27 peptides, amino acids and derivatives, 8 carbohydrates and conjugates, 14 organic acids and derivatives, 5 amide compounds, 3 flavonoids and 3 nucleosides. Spearman correlation coefficient indicated that Tetragenococcus halophilus, Zygosaccharomyces rouxii, Pediococcus pentosaceus and Aspergillus oryzae were significantly related with the formation of taste amino acids and derivatives, peptides and functional substances. Additionally, the metabolisms of flavor amino acids including 13 main free amino acids were also profiled. These results provided valuable information for the production practice in the soy sauce industry.


Asunto(s)
Aspergillus oryzae , Enterococcaceae , Alimentos de Soja , Fermentación , Aminoácidos , Aspergillus oryzae/genética , Péptidos
15.
J Biosci Bioeng ; 137(5): 381-387, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38429186

RESUMEN

The adjunct product with enzymatic activity from Aspergillus oryzae is beneficial for flavor enrichment in the ripened cheese. However, an excessive lipolytic reaction leads to the release of volatile free fatty acids. Accordingly, a strong off-flavor (i.e., rancidity) has been detected when A. oryzae AHU 7139 is used. To identify the rancidity-related lipase from this strain, we evaluated the substrate specificity and lipase distribution using five mutants cultured on a whey-based solid medium under different initial pH conditions. The results showed a higher diacylglycerol lipase activity than triacylglycerol lipase activity. Moreover, an initial pH of 6.5 for the culture resulted in higher lipolytic activity than a pH of 4.0, and most of the activity was found in the extracellular fraction. Based on the gene expression analysis by real-time polymerase chain reaction and location and substrate specificity, five genes (No. 1, No. 19, mdlB, tglA, and cutL) were selected among 25 annotated lipase genes to identify the respective knockout strains. Because ΔtglA and ΔmdlB showed an outstanding involvement in the release of free fatty acids, these strains were applied to in vitro cheese curd experiments. In conclusion, we posit that triacylglycerol lipase (TglA) plays a key role as the trigger of rancidity and the resulting diglycerides have to be exposed to diacylglycerol lipase (MdlB) to stimulate rancidity in cheese made with A. oryzae AHU 7139. This finding could help screen suitable A.oryzae strains as cheese adjuncts to prevent the generation of the rancid-off flavor.


Asunto(s)
Aspergillus oryzae , Queso , Lipoproteína Lipasa/metabolismo , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Ácidos Grasos no Esterificados/metabolismo , Lipasa/genética , Lipasa/metabolismo
16.
Nat Commun ; 15(1): 2099, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38485948

RESUMEN

Filamentous fungi are critical in the transition to a more sustainable food system. While genetic modification of these organisms has promise for enhancing the nutritional value, sensory appeal, and scalability of fungal foods, genetic tools and demonstrated use cases for bioengineered food production by edible strains are lacking. Here, we develop a modular synthetic biology toolkit for Aspergillus oryzae, an edible fungus used in fermented foods, protein production, and meat alternatives. Our toolkit includes a CRISPR-Cas9 method for gene integration, neutral loci, and tunable promoters. We use these tools to elevate intracellular levels of the nutraceutical ergothioneine and the flavor-and color molecule heme in the edible biomass. The strain overproducing heme is red in color and is readily formulated into imitation meat patties with minimal processing. These findings highlight the promise of synthetic biology to enhance fungal foods and provide useful genetic tools for applications in food production and beyond.


Asunto(s)
Aspergillus oryzae , Biología Sintética , Biología Sintética/métodos , Edición Génica , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Micelio/genética , Hemo/metabolismo
17.
J Biol Chem ; 300(3): 105749, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38354778

RESUMEN

Protein engineering and screening of processive fungal cellobiohydrolases (CBHs) remain challenging due to limited expression hosts, synergy-dependency, and recalcitrant substrates. In particular, glycoside hydrolase family 7 (GH7) CBHs are critically important for the bioeconomy and typically difficult to engineer. Here, we target the discovery of highly active natural GH7 CBHs and engineering of variants with improved activity. Using experimentally assayed activities of genome mined CBHs, we applied sequence and structural alignments to top performers to identify key point mutations linked to improved activity. From ∼1500 known GH7 sequences, an evolutionarily diverse subset of 57 GH7 CBH genes was expressed in Trichoderma reesei and screened using a multiplexed activity screening assay. Ten catalytically enhanced natural variants were identified, produced, purified, and tested for efficacy using industrially relevant conditions and substrates. Three key amino acids in CBHs with performance comparable or superior to Penicillium funiculosum Cel7A were identified and combinatorially engineered into P. funiculosum cel7a, expressed in T. reesei, and assayed on lignocellulosic biomass. The top performer generated using this combined approach of natural diversity genome mining, experimental assays, and computational modeling produced a 41% increase in conversion extent over native P. funiculosum Cel7A, a 55% increase over the current industrial standard T. reesei Cel7A, and 10% improvement over Aspergillus oryzae Cel7C, the best natural GH7 CBH previously identified in our laboratory.


Asunto(s)
Celulosa 1,4-beta-Celobiosidasa , Pruebas de Enzimas , Genoma Fúngico , Mutación , Ingeniería de Proteínas , Aspergillus oryzae/enzimología , Aspergillus oryzae/genética , Celulosa 1,4-beta-Celobiosidasa/química , Celulosa 1,4-beta-Celobiosidasa/clasificación , Celulosa 1,4-beta-Celobiosidasa/genética , Celulosa 1,4-beta-Celobiosidasa/metabolismo , Genoma Fúngico/genética , Ingeniería de Proteínas/métodos , Especificidad por Sustrato , Talaromyces/enzimología , Talaromyces/genética , Trichoderma/enzimología , Trichoderma/genética , Trichoderma/metabolismo , Biocatálisis
18.
J Biosci Bioeng ; 137(4): 281-289, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38331655

RESUMEN

The white koji fungus Aspergillus luchuensis mut. kawachii secretes substantial amounts of citric acid through the expression of the citric acid exporter CexA, a member of the DHA1 family. In this study, we aimed to characterize 11 CexA homologs (Chl proteins) encoded in the genome of A. luchuensis mut. kawachii to identify novel transporters useful for organic acid production. We constructed overexpression strains of chl genes using a cexA disruptant of the A. luchuensis mut. kawachii as the host strain, which prevented excessive secretion of citric acid into the culture supernatant. Subsequently, we evaluated the effects of overexpression of chl on producing organic acids by analyzing the culture supernatant. All overexpression strains did not exhibit significant citric acid accumulation in the culture supernatant, indicating that Chl proteins are not responsible for citric acid export. Furthermore, the ChlH overexpression strain displayed an accumulation of 2-oxoglutaric and fumaric acids in the culture supernatant, while the ChlK overexpression strain exhibited the accumulation of 2-oxoglutaric, malic and succinic acids. Notably, the ChlH and ChlK overexpression led to a substantial increase in the production of 2-oxoglutaric acid, reaching approximately 25 mM and 50 mM, respectively. Furthermore, ChlH and ChlK overexpression also significantly increased the secretory production of dicarboxylic acids, including 2-oxoglutaric acid, in the yellow koji fungus, Aspergillus oryzae. Our study demonstrates that overexpression of DHA1 family gene results in enhanced secretion of organic acids in koji fungi of the genus Aspergillus.


Asunto(s)
Aspergillus oryzae , Aspergillus , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Ácidos Dicarboxílicos , Ácidos Cetoglutáricos , Ácido Cítrico/metabolismo
19.
J Biosci Bioeng ; 137(4): 231-238, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38346913

RESUMEN

Nitrogen source assimilation is important for the biological functions of fungi, and its pathway has been deeply studied. Aspergillus oryzae mutants defective in nitrogen source assimilation are known to grow poorly on Czapek-Dox (CD) medium. In this study, we found an industrial strain of A. oryzae that grew very poorly on a CD medium containing sodium nitrate as a nitrogen source. We used media with various nitrogen components to examine the steps affecting the nitrogen source assimilation pathway of this strain. The strain grew well on the CD medium supplied with nitrite salt or ammonium salt, suggesting that the strain was defective in nitrate assimilation step. To ascertain the gene causing the defect of nitrate assimilation, a gene expression vector harboring either niaD or crnA of A. oryzae RIB40 was introduced into the industrial strain. The industrial strain containing the crnA vector recovered its growth. This is the first report that a mutation of crnA causes poor growth on CD medium in an industrial strain of A. oryzae, and crnA can be used as a transformation marker for crnA deficient strains.


Asunto(s)
Aspergillus oryzae , Nitratos , Nitratos/metabolismo , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , ARN Complementario , Nitrógeno/metabolismo , Mutación
20.
Appl Microbiol Biotechnol ; 108(1): 90, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38204127

RESUMEN

Aspergillus oryzae PrtR is an ortholog of the transcription factor PrtT, which positively regulates the transcription of extracellular peptidase genes in Aspergillus niger and Aspergillus fumigatus. To identify the genes under the control of PrtR and elucidate its regulatory mechanism in A. oryzae, prtR gene disruption mutants were generated. The control strain clearly showed a halo on media containing skim milk as the nitrogen source, whereas the ΔprtR strain formed a smaller halo. Measurement of acid peptidase activity revealed that approximately 84% of acidic endopeptidase and 86% of carboxypeptidase activities are positively regulated by PrtR. As the transcription of the prtR gene varied depending on culture conditions, especially with or without a protein substrate, it was considered that its transcription would be regulated in response to a nitrogen source. In addition, contrary to previous expectations, PrtR was found to act both in promoting and repressing the transcription of extracellular peptidase genes. The mode of regulation varied from gene to gene. Some genes were regulated in the same manner in both liquid and solid cultures, whereas others were regulated in different ways depending on the culture conditions. Furthermore, PrtR has been suggested to regulate the transcription of peptidase genes that are closely associated with other transcription factors. KEY POINTS: • Almost all peptidase genes in Aspergillus oryzae are positively regulated by PrtR • However, several genes are regulated negatively by PrtR • PrtR optimizes transcription of peptidase genes in response to culture conditions.


Asunto(s)
Aspergillus oryzae , Aspergillus oryzae/genética , Aspergillus fumigatus , Aspergillus niger , Endopeptidasas , Nitrógeno , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...