Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 7815, 2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33837238

RESUMEN

Polyglutamine (polyQ) expansion of proteins can trigger protein misfolding and amyloid-like aggregation, which thus lead to severe cytotoxicities and even the respective neurodegenerative diseases. However, why polyQ aggregation is toxic to cells is not fully elucidated. Here, we took the fragments of polyQ-expanded (PQE) ataxin-7 (Atx7) and huntingtin (Htt) as models to investigate the effect of polyQ aggregates on the cellular proteostasis of endogenous ataxin-3 (Atx3), a protein that frequently appears in diverse inclusion bodies. We found that PQE Atx7 and Htt impair the cellular proteostasis of Atx3 by reducing its soluble as well as total Atx3 level but enhancing formation of the aggregates. Expression of these polyQ proteins promotes proteasomal degradation of endogenous Atx3 and accumulation of its aggregated form. Then we verified that the co-chaperone HSJ1 is an essential factor that orchestrates the balance of cellular proteostasis of Atx3; and further discovered that the polyQ proteins can sequester HSJ1 into aggregates or inclusions in a UIM domain-dependent manner. Thereby, the impairment of Atx3 proteostasis may be attributed to the sequestration and functional loss of cellular HSJ1. This study deciphers a potential mechanism underlying how PQE protein triggers proteinopathies, and also provides additional evidence in supporting the hijacking hypothesis that sequestration of cellular interacting partners by protein aggregates leads to cytotoxicity or neurodegeneration.


Asunto(s)
Ataxina-3/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Chaperonas Moleculares/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Péptidos/metabolismo , Agregado de Proteínas/genética , Agregación Patológica de Proteínas/metabolismo , Proteostasis/genética , Proteínas Represoras/metabolismo , Amiloide/metabolismo , Proteínas Amiloidogénicas/metabolismo , Ataxina-3/química , Ataxina-3/genética , Células HEK293 , Humanos , Proteína Huntingtina/metabolismo , Cuerpos de Inclusión/metabolismo , Espacio Intracelular/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Agregación Patológica de Proteínas/genética , Dominios Proteicos/genética , Proteolisis , Proteínas Represoras/química , Proteínas Represoras/genética , Transducción de Señal/genética , Solubilidad , Transfección
2.
SLAS Discov ; 26(3): 373-382, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32981414

RESUMEN

The throughput level currently reached by automatic liquid handling and assay monitoring techniques is expected to facilitate the discovery of new modulators of enzyme activity. Judicious and dependable ways to interpret vast amounts of information are, however, required to effectively answer this challenge. Here, the 3-point method of kinetic analysis is proposed as a means to significantly increase the hit success rates and decrease the number of falsely identified compounds (false positives). In this post-Michaelis-Menten approach, each screened reaction is probed in three different occasions, none of which necessarily coincide with the initial period of constant velocity. Enzymology principles rather than subjective criteria are applied to identify unwanted outliers such as assay artifacts, and then to accurately distinguish true enzyme modulation effects from false positives. The exclusion and selection criteria are defined based on the 3-point reaction coordinates, whose relative positions along the time-courses may change from well to well or from plate to plate, if necessary. The robustness and efficiency of the new method is illustrated during a small drug repurposing screening of potential modulators of the deubiquinating activity of ataxin-3, a protein implicated in Machado-Joseph disease. Apparently, intractable Z factors are drastically enhanced after (1) eliminating spurious results, (2) improving the normalization method, and (3) increasing the assay resilience to systematic and random variability. Numerical simulations further demonstrate that the 3-point analysis is highly sensitive to specific, catalytic, and slow-onset modulation effects that are particularly difficult to detect by typical endpoint assays.


Asunto(s)
Activadores de Enzimas/farmacología , Inhibidores Enzimáticos/farmacología , Enzimas/química , Ensayos Analíticos de Alto Rendimiento , Artefactos , Ataxina-3/química , Cumarinas/química , Enzimas Desubicuitinizantes/química , Descubrimiento de Drogas/métodos , Reposicionamiento de Medicamentos , Activadores de Enzimas/química , Inhibidores Enzimáticos/química , Humanos , Cinética , Proteínas Represoras/química , Sensibilidad y Especificidad , Ubiquitina/química
3.
Structure ; 29(1): 70-81.e5, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33065068

RESUMEN

Ataxin-3 is a deubiquitinase involved in protein quality control and other essential cellular functions. It preferentially interacts with polyubiquitin chains of four or more units attached to proteins delivered to the ubiquitin-proteasome system. Ataxin-3 is composed of an N-terminal Josephin domain and a flexible C terminus that contains two or three ubiquitin-interacting motifs (UIMs) and a polyglutamine tract, which, when expanded beyond a threshold, leads to protein aggregation and misfolding and causes spinocerebellar ataxia type 3. The high-resolution structure of the Josephin domain is available, but the structural and dynamical heterogeneity of ataxin-3 has so far hindered the structural description of the full-length protein. Here, we characterize non-expanded and expanded variants of ataxin-3 in terms of conformational ensembles adopted by the proteins in solution by jointly using experimental data from nuclear magnetic resonance and small-angle X-ray scattering with coarse-grained simulations. Our results pave the way to a molecular understanding of polyubiquitin recognition.


Asunto(s)
Ataxina-3/química , Enfermedad de Machado-Joseph/genética , Pliegue de Proteína , Ataxina-3/genética , Humanos , Simulación de Dinámica Molecular , Mutación , Péptidos/química , Péptidos/genética , Conformación Proteica
4.
Elife ; 92020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32955441

RESUMEN

Spinocerebellar ataxia type 3 (SCA3) belongs to the family of polyglutamine neurodegenerations. Each disorder stems from the abnormal lengthening of a glutamine repeat in a different protein. Although caused by a similar mutation, polyglutamine disorders are distinct, implicating non-polyglutamine regions of disease proteins as regulators of pathogenesis. SCA3 is caused by polyglutamine expansion in ataxin-3. To determine the role of ataxin-3's non-polyglutamine domains in disease, we utilized a new, allelic series of Drosophila melanogaster. We found that ataxin-3 pathogenicity is saliently controlled by polyglutamine-adjacent ubiquitin-interacting motifs (UIMs) that enhance aggregation and toxicity. UIMs function by interacting with the heat shock protein, Hsc70-4, whose reduction diminishes ataxin-3 toxicity in a UIM-dependent manner. Hsc70-4 also enhances pathogenicity of other polyglutamine proteins. Our studies provide a unique insight into the impact of ataxin-3 domains in SCA3, identify Hsc70-4 as a SCA3 enhancer, and indicate pleiotropic effects from HSP70 chaperones, which are generally thought to suppress polyglutamine degeneration.


Asunto(s)
Ataxina-3 , Proteínas de Drosophila/metabolismo , Proteínas del Choque Térmico HSC70/metabolismo , Péptidos , Ubiquitina/metabolismo , Secuencias de Aminoácidos , Animales , Ataxina-3/química , Ataxina-3/genética , Ataxina-3/metabolismo , Ataxina-3/toxicidad , Drosophila , Proteínas de Drosophila/química , Proteínas del Choque Térmico HSC70/química , Humanos , Larva/metabolismo , Enfermedad de Machado-Joseph/genética , Péptidos/química , Péptidos/genética , Péptidos/metabolismo , Péptidos/toxicidad , Ubiquitina/química
5.
Biomolecules ; 10(5)2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32455657

RESUMEN

The 26S proteasome is a large (~2.5 MDa) protein complex consisting of at least 33 different subunits and many other components, which form the ubiquitin proteasomal system (UPS), an ATP-dependent protein degradation system in the cell. UPS serves as an essential component of the cellular protein surveillance machinery, and its dysfunction leads to cancer, neurodegenerative and immunological disorders. Importantly, the functions and regulations of proteins are governed by the combination of ordered regions, intrinsically disordered protein regions (IDPRs) and molecular recognition features (MoRFs). The structure-function relationships of UPS components have not been identified completely; therefore, in this study, we have carried out the functional intrinsic disorder and MoRF analysis for potential neurodegenerative disease and anti-cancer targets of this pathway. Our report represents the presence of significant intrinsic disorder and disorder-based binding regions in several UPS proteins, such as extraproteasomal polyubiquitin receptors (UBQLN1 and UBQLN2), proteasome-associated polyubiquitin receptors (ADRM1 and PSMD4), deubiquitinating enzymes (DUBs) (ATXN3 and USP14), and ubiquitinating enzymes (E2 (UBE2R2) and E3 (STUB1) enzyme). We believe this study will have implications for the conformation-specific roles of different regions of these proteins. This will lead to a better understanding of the molecular basis of UPS-associated diseases.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Neoplasias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Complejo de la Endopetidasa Proteasomal/química , Ubiquitinación , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Ataxina-3/química , Ataxina-3/metabolismo , Proteínas Relacionadas con la Autofagia/química , Proteínas Relacionadas con la Autofagia/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Pliegue de Proteína , Mapas de Interacción de Proteínas , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Ubiquitina Tiolesterasa/química , Ubiquitina Tiolesterasa/metabolismo , Enzimas Activadoras de Ubiquitina/química , Enzimas Activadoras de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo
6.
Aging (Albany NY) ; 13(3): 3680-3698, 2020 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-33411688

RESUMEN

DNA methylation has recently been linked to transcriptional dysregulation and neuronal dysfunction in polyglutamine (polyQ) disease. This study aims to determine whether (CAG)n expansion in ATXN3 perturbs DNA methylation status and affects gene expression. We analyzed DNA methylation throughout the genome using reduced representation bisulfite sequencing (RRBS) and confirmed the results using MethylTarget sequencing. Dynamic changes in DNA methylation, transcriptional and translational levels of specific genes were detected using BSP, qRT-PCR and western blot. In total, 135 differentially methylated regions (DMRs) were identified between SCA3/MJD and WT mouse cerebellum. KEGG analysis revealed differentially methylated genes involved in amino acid metabolism, Hedgehog signaling pathway, thyroid cancer, tumorigenesis and other pathways. We focused on DMRs that were directly associated with gene expression. On this basis, we further assessed 7 genes, including 13 DMRs, for DNA methylation validation and gene expression. We found that the methylation status of the DMRs of En1 and Nkx2-1 was negatively associated with their transcriptional and translational levels and that alteration of the DNA methylation status of DMRs and the corresponding transcription occurred before dyskinesia in SCA3/MJD mice. These results revealed novel DNA methylation-regulated genes, En1 and Nkx2-1, which may be useful for understanding the pathogenesis of SCA3/MJD.


Asunto(s)
Ataxina-3 , Metilación de ADN/genética , Regulación de la Expresión Génica/genética , Proteínas Represoras , Animales , Ataxina-3/química , Ataxina-3/genética , Ataxina-3/metabolismo , Expansión de las Repeticiones de ADN/genética , Humanos , Masculino , Ratones , Ratones Transgénicos , Péptidos/genética , Proteínas Represoras/química , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
7.
Biomolecules ; 8(4)2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30287796

RESUMEN

Drug discovery frequently relies on the kinetic analysis of physicochemical reactions that are at the origin of the disease state. Amyloid fibril formation has been extensively investigated in relation to prevalent and rare neurodegenerative diseases, but thus far no therapeutic solution has directly arisen from this knowledge. Other aggregation pathways producing smaller, hard-to-detect soluble oligomers are increasingly appointed as the main reason for cell toxicity and cell-to-cell transmissibility. Here we show that amyloid fibrillation kinetics can be used to unveil the protein oligomerization state. This is illustrated for human insulin and ataxin-3, two model proteins for which the amyloidogenic and oligomeric pathways are well characterized. Aggregation curves measured by the standard thioflavin-T (ThT) fluorescence assay are shown to reflect the relative composition of protein monomers and soluble oligomers measured by nuclear magnetic resonance (NMR) for human insulin, and by dynamic light scattering (DLS) for ataxin-3. Unconventional scaling laws of kinetic measurables were explained using a single set of model parameters consisting of two rate constants, and in the case of ataxin-3, an additional order-of-reaction. The same fitted parameters were used in a discretized population balance that adequately describes time-course measurements of fibril size distributions. Our results provide the opportunity to study oligomeric targets using simple, high-throughput compatible, biophysical assays.


Asunto(s)
Amiloide/química , Proteínas Amiloidogénicas/química , Ataxina-3/química , Insulina/química , Amiloidosis/genética , Amiloidosis/patología , Humanos , Cinética , Multimerización de Proteína , Termodinámica
8.
Proc Natl Acad Sci U S A ; 115(45): E10748-E10757, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30348793

RESUMEN

Neurodegenerative disorders, such as Huntington's diseases and spinocerebellar ataxias (SCAs), are driven by proteins with expanded polyglutamine (polyQ) tracts. Recently, coiled-coil structures in polyQ regions of such proteins were shown to facilitate aggregate formation and ultimately lead to cell death. However, the molecular mechanism linking these structural domains to neuronal toxicity of polyQ proteins remains elusive. Here, we demonstrate that coiled-coil structures in the Q repeat region of SCA type 3 (SCA3) polyQ proteins confer protein toxicity in Drosophila neurons. To functionally characterize coiled-coil structures in the Q repeat regions, we generated three structural variants of SCA3 polyQ proteins: (i) MJDtr-76Q, containing both α-helical coiled-coil and ß-sheet hairpin structures in the Q repeat region; (ii) MJDtr-70Q_cc0, possessing only α-helical coiled-coil structures due to the incorporation of ß-sheet-breaking residues (Q-to-N or Q-to-E mutations); and (iii) MJDtr-70Q_pQp, with no secondary structure due to the introduced proline residues (Q-to-P mutations). Through comparative analysis of these variants, we found that coiled-coil structures facilitated nuclear localization of SCA3 polyQ proteins and induced dendrite defects in Drosophila dendritic arborization neurons. Furthermore, genetic and functional screening identified the transcription factor Foxo as a target of polyQ proteins, and coiled-coil-mediated interactions of Foxo and polyQ proteins in the nucleus resulted in the observed dendrite and behavioral defects in Drosophila These results demonstrate that coiled-coil structures of polyQ proteins are crucial for their neuronal toxicity, which is conferred through coiled-coil to coiled-coil interactions with the nuclear targets of these proteins.


Asunto(s)
Ataxina-3/química , Proteínas de Drosophila/química , Drosophila melanogaster/genética , Factores de Transcripción Forkhead/química , Neuronas/metabolismo , Péptidos/química , Ataxias Espinocerebelosas/genética , Secuencia de Aminoácidos , Animales , Ataxina-3/genética , Ataxina-3/metabolismo , Conducta Animal , Sitios de Unión , Núcleo Celular/metabolismo , Modelos Animales de Enfermedad , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Humanos , Mutación , Neuronas/ultraestructura , Péptidos/genética , Péptidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Ataxias Espinocerebelosas/metabolismo , Ataxias Espinocerebelosas/patología
9.
Int J Mol Sci ; 19(8)2018 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-30042316

RESUMEN

The protein ataxin-3 contains a polyglutamine stretch that triggers amyloid aggregation when it is expanded beyond a critical threshold. This results in the onset of the spinocerebellar ataxia type 3. The protein consists of the globular N-terminal Josephin domain and a disordered C-terminal tail where the polyglutamine stretch is located. Expanded ataxin-3 aggregates via a two-stage mechanism: first, Josephin domain self-association, then polyQ fibrillation. This highlights the intrinsic amyloidogenic potential of Josephin domain. Therefore, much effort has been put into investigating its aggregation mechanism(s). A key issue regards the conformational requirements for triggering amyloid aggregation, as it is believed that, generally, misfolding should precede aggregation. Here, we have assayed the effect of 2,2,2-trifluoroethanol, a co-solvent capable of stabilizing secondary structures, especially α-helices. By combining biophysical methods and molecular dynamics, we demonstrated that both secondary and tertiary JD structures are virtually unchanged in the presence of up to 5% 2,2,2-trifluoroethanol. Despite the preservation of JD structure, 1% of 2,2,2-trifluoroethanol suffices to exacerbate the intrinsic aggregation propensity of this domain, by slightly decreasing its conformational stability. These results indicate that in the case of JD, conformational fluctuations might suffice to promote a transition towards an aggregated state without the need for extensive unfolding, and highlights the important role played by the environment on the aggregation of this globular domain.


Asunto(s)
Amiloide/efectos de los fármacos , Ataxina-3/metabolismo , Agregado de Proteínas/efectos de los fármacos , Proteínas Represoras/metabolismo , Trifluoroetanol/farmacología , Ataxina-3/química , Dicroismo Circular , Humanos , Conformación Molecular , Simulación de Dinámica Molecular , Péptidos/metabolismo , Conformación Proteica/efectos de los fármacos , Dominios Proteicos/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Estructura Secundaria de Proteína/efectos de los fármacos , Estructura Terciaria de Proteína/efectos de los fármacos , Proteínas Represoras/química
10.
Protein Expr Purif ; 152: 40-45, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30036587

RESUMEN

An expansion of the polyglutamine (polyQ) tract within the deubiquitinase ataxin-3 protein is believed to play a role in a neurodegenerative disorder. Ataxin-3 contains a Josephin catalytic domain and a polyQ tract that renders it intrinsically prone to aggregate, and thus full-length protein is difficult to characterize structurally by high-resolution methods. We established a robust protocol for expression and purification of wild-type and expanded ataxin-3, presenting 19Q and 74Q, respectively. Both proteins are monodisperse as assessed by analytical size exclusion chromatography. Initial biophysical characterization was performed, with apparent transition melting temperature of expanded ataxin-3 lower than the wild-type counterpart. We further characterize the molecular envelope of wild-type and expanded polyQ tract in ataxin-3 using small angle X-ray scattering (SAXS). Characterization of protein-protein interactions between ataxin-3 and newly identified binding partners will benefit from our protocol.


Asunto(s)
Ataxina-3/química , Enfermedad de Machado-Joseph/genética , Péptidos/química , Proteínas Recombinantes/química , Proteínas Represoras/química , Ataxina-3/biosíntesis , Ataxina-3/genética , Ataxina-3/aislamiento & purificación , Cromatografía en Gel/métodos , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/patología , Enfermedad de Machado-Joseph/metabolismo , Enfermedad de Machado-Joseph/patología , Modelos Moleculares , Péptidos/metabolismo , Dominios Proteicos , Pliegue de Proteína , Estructura Secundaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Represoras/biosíntesis , Proteínas Represoras/genética , Proteínas Represoras/aislamiento & purificación , Dispersión del Ángulo Pequeño , Difracción de Rayos X
11.
Biophys J ; 115(1): 59-71, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29972812

RESUMEN

It has increasingly become clear over the last two decades that proteins can contain both globular domains and intrinsically unfolded regions that can both contribute to function. Although equally interesting, the disordered regions are difficult to study, because they usually do not crystallize unless bound to partners and are not easily amenable to cryo-electron microscopy studies. NMR spectroscopy remains the best technique to capture the structural features of intrinsically mixed folded proteins and describe their dynamics. These studies rely on the successful assignment of the spectrum, a task not easy per se given the limited spread of the resonances of the disordered residues. Here, we describe the structural properties of ataxin-3, the protein responsible for the neurodegenerative Machado-Joseph disease. Ataxin-3 is a 42-kDa protein containing a globular N-terminal Josephin domain and a C-terminal tail that comprises 13 polyglutamine repeats within a low complexity region. We developed a strategy that allowed us to achieve 87% assignment of the NMR spectrum using a mixed protocol based on high-dimensionality, high-resolution experiments and different labeling schemes. Thanks to the almost complete spectral assignment, we proved that the C-terminal tail is flexible, with extended helical regions, and interacts only marginally with the rest of the protein. We could also, for the first time to our knowledge, observe the structural propensity of the polyglutamine repeats within the context of the full-length protein and show that its structure is stabilized by the preceding region.


Asunto(s)
Ataxina-3/química , Secuencia de Aminoácidos , Ataxina-3/genética , Mutación , Resonancia Magnética Nuclear Biomolecular , Dominios Proteicos , Pliegue de Proteína , Soluciones
12.
Ann Neurol ; 84(1): 64-77, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29908063

RESUMEN

OBJECTIVE: Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease, is the most common dominantly inherited ataxia. Despite advances in understanding this CAG repeat/polyglutamine expansion disease, there are still no therapies to alter its progressive fatal course. Here, we investigate whether an antisense oligonucleotide (ASO) targeting the SCA3 disease gene, ATXN3, can prevent molecular, neuropathological, electrophysiological, and behavioral features of the disease in a mouse model of SCA3. METHODS: The top ATXN3-targeting ASO from an in vivo screen was injected intracerebroventricularly into early symptomatic transgenic SCA3 mice that express the full human disease gene and recapitulate key disease features. Following a single ASO treatment at 8 weeks of age, mice were evaluated longitudinally for ATXN3 suppression and rescue of disease-associated pathological changes. Mice receiving an additional repeat injection at 21 weeks were evaluated longitudinally up to 29 weeks for motor performance. RESULTS: The ATXN3-targeting ASO achieved sustained reduction of polyglutamine-expanded ATXN3 up to 8 weeks after treatment and prevented oligomeric and nuclear accumulation of ATXN3 up to at least 14 weeks after treatment. Longitudinal ASO therapy rescued motor impairment in SCA3 mice, and this rescue was associated with a recovery of defects in Purkinje neuron firing frequency and afterhyperpolarization. INTERPRETATION: This preclinical study established efficacy of ATXN3-targeted ASOs as a disease-modifying therapeutic strategy for SCA3. These results support further efforts to develop ASOs for human clinical trials in this polyglutamine disease as well as in other dominantly inherited disorders caused by toxic gain of function. Ann Neurol 2018;83:64-77.


Asunto(s)
Ataxina-3/química , Regulación de la Expresión Génica/efectos de los fármacos , Enfermedad de Machado-Joseph/tratamiento farmacológico , Oligonucleótidos Antisentido/uso terapéutico , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Factores de Edad , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Ataxina-3/genética , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Proteínas de Unión al Calcio/metabolismo , Modelos Animales de Enfermedad , Conducta Exploratoria/efectos de los fármacos , Femenino , Regulación de la Expresión Génica/genética , Gliosis/tratamiento farmacológico , Gliosis/etiología , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/patología , Enfermedad de Machado-Joseph/fisiopatología , Masculino , Ratones , Ratones Transgénicos , Proteínas de Microfilamentos/metabolismo , Actividad Motora/efectos de los fármacos , Actividad Motora/genética , Mutación/genética , Células de Purkinje/efectos de los fármacos , Células de Purkinje/patología , Proteínas de Unión al ARN/metabolismo
13.
J Biol Chem ; 293(17): 6337-6348, 2018 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-29530980

RESUMEN

Autosomal recessive juvenile Parkinsonism (ARJP) is an inherited neurodegenerative disease in which 50% of affected individuals harbor mutations in the gene encoding the E3 ligase parkin. Parkin regulates the mitochondrial recycling pathway, which is induced by oxidative stress. In its native state, parkin is auto-inhibited by its N-terminal ubiquitin-like (Ubl) domain, which blocks the binding site for an incoming E2∼ubiquitin conjugate, needed for parkin's ubiquitination activity. Parkin is activated via phosphorylation of Ser-65 in its Ubl domain by PTEN-induced putative kinase 1 (PINK1) and a ubiquitin molecule phosphorylated at a position equivalent to Ser-65 in parkin. Here we have examined the underlying molecular mechanism of phosphorylation of parkin's Ubl domain carrying ARJP-associated substitutions and how altered phosphorylation modulates parkin activation and ubiquitination. We found that three substitutions in the Ubl domain (G12R, R33Q, and R42P) significantly decrease PINK1's ability to phosphorylate the Ubl domain. We noted that two basic loss-of-function substitutions (R33Q and R42P) are close to acidic patches in the proposed PINK1-parkin interface, indicating that ionic interactions at this site may be important for efficient parkin phosphorylation. Increased auto-ubiquitination with unique ubiquitin chain patterns was observed for two other Ubl domain substitutions (G12R and T55I), suggesting that these substitutions, along with phosphorylation, increase parkin degradation. Moreover, Ubl domain phosphorylation decreased its affinity for the potential effector protein ataxin-3, which edits ubiquitin chain building by parkin. Overall, our work provides a framework for the mechanisms of parkin's loss-of-function, indicating an interplay between ARJP-associated substitutions and phosphorylation of its Ubl domain.


Asunto(s)
Mutación Missense , Trastornos Parkinsonianos/enzimología , Ubiquitina-Proteína Ligasas/química , Sustitución de Aminoácidos , Ataxina-3/química , Ataxina-3/genética , Humanos , Trastornos Parkinsonianos/genética , Fosforilación/genética , Dominios Proteicos , Proteínas Represoras/química , Proteínas Represoras/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinas/química , Ubiquitinas/genética
14.
Adv Exp Med Biol ; 1049: 275-288, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29427109

RESUMEN

The expansion of a trinucleotide (CAG) repeat, translated into a polyglutamine expanded sequence in the protein encoded by the MJD gene, was identified over 20 years ago as the causative mutation in a severe neurodegenerative disorder originally diagnosed in individuals of Portuguese ancestry. This incapacitating disease, called Machado-Joseph disease or spinocebellar ataxia type 3, is integrated into a larger group of neurodegenerative disorders-the polyglutamine expansion disorders-caused by extension of a CAG repeat in the coding sequence of otherwise unrelated genes. These diseases are generally linked with the appearance of intracellular inclusions , which despite having a controversial role in disease appearance and development represent a characteristic common fingerprint in all polyglutamine-related disorders. Although polyglutamine expansion is an obvious trigger for neuronal dysfunction, the role of the different domains of these complex proteins in the function and aggregation properties of the carrier proteins is being uncovered in recent studies. In this review the current knowledge about the structural and functional features of full-length ataxin-3 protein will be discussed. The intrinsic conformational dynamics and interplay between the globular and intrinsically disordered regions of ataxin-3 will be highlighted, and a perspective picture of the role of known ataxin-3 post-translational modifications on regulating ataxin-3 aggregation and function will be drawn.


Asunto(s)
Ataxina-3 , Simulación de Dinámica Molecular , Procesamiento Proteico-Postraduccional , Proteínas Represoras , Ataxina-3/química , Ataxina-3/genética , Ataxina-3/metabolismo , Humanos , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/metabolismo , Enfermedad de Machado-Joseph/patología , Péptidos , Proteínas Represoras/química , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Expansión de Repetición de Trinucleótido
15.
Eur J Mass Spectrom (Chichester) ; 24(1): 129-140, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29334808

RESUMEN

Amyloid diseases represent a growing social and economic burden in the developed world. Understanding the assembly pathway and the inhibition of amyloid formation is key to developing therapies to treat these diseases. The neurodegenerative condition Machado-Joseph disease is characterised by the self-aggregation of the protein ataxin-3. Ataxin-3 consists of a globular N-terminal Josephin domain, which can aggregate into curvilinear protofibrils, and an unstructured, dynamically disordered C-terminal domain containing three ubiquitin interacting motifs separated by a polyglutamine stretch. Upon expansion of the polyglutamine region above 50 residues, ataxin-3 undergoes a second stage of aggregation in which long, straight amyloid fibrils form. A peptide inhibitor of polyglutamine aggregation, known as polyQ binding peptide 1, has been shown previously to prevent the maturation of ataxin-3 fibrils. However, the mechanism of this inhibition remains unclear. Using nanoelectrospray ionisation-mass spectrometry, we demonstrate that polyQ binding peptide 1 binds to monomeric ataxin-3. By investigating the ability of polyQ binding peptide 1 to bind to truncated ataxin-3 constructs lacking one or more domains, we localise the site of this interaction to a 39-residue sequence immediately C-terminal to the Josephin domain. The results suggest a new mechanism for the inhibition of polyglutamine aggregation by polyQ binding peptide 1 in which binding to a region outside of the polyglutamine tract can prevent fibril formation, highlighting the importance of polyglutamine flanking regions in controlling aggregation and disease.


Asunto(s)
Amiloide/química , Amiloide/metabolismo , Ataxina-3/química , Ataxina-3/metabolismo , Péptidos/metabolismo , Sitios de Unión , Humanos , Enfermedad de Machado-Joseph/diagnóstico , Enfermedad de Machado-Joseph/metabolismo , Espectrometría de Masas , Péptidos/química , Unión Proteica
16.
J Struct Biol ; 201(2): 139-154, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28928079

RESUMEN

Polyglutamine (polyQ) repeat-containing proteins are widespread in the human proteome but only nine of them are associated with highly incapacitating neurodegenerative disorders. The genetic expansion of the polyQ tract in disease-related proteins triggers a series of events resulting in neurodegeneration. The polyQ tract plays the leading role in the aggregation mechanism, but other elements modulate the aggregation propensity in the context of the full-length proteins, as implied by variations in the length of the polyQ tract required to trigger the onset of a given polyQ disease. Intrinsic features such as the presence of aggregation-prone regions (APRs) outside the polyQ segments and polyQ-flanking sequences, which synergistically participate in the aggregation process, are emerging for several disease-related proteins. The inherent polymorphic structure of polyQ stretches places the polyQ proteins in a central position in protein-protein interaction networks, where interacting partners may additionally shield APRs or reshape the aggregation course. Expansion of the polyQ tract perturbs the cellular homeostasis and contributes to neuronal failure by modulating protein-protein interactions and enhancing toxic oligomerization. Post-translational modifications further regulate self-assembly either by directly altering the intrinsic aggregation propensity of polyQ proteins, by modulating their interaction with different macromolecules or by modifying their withdrawal by the cell quality control machinery. Here we review the recent data on the multifaceted aggregation pathways of disease-related polyQ proteins, focusing on ataxin-3, the protein mutated in Machado-Joseph disease. Further mechanistic understanding of this network of events is crucial for the development of effective therapies for polyQ diseases.


Asunto(s)
Ataxina-3/metabolismo , Proteína Huntingtina/metabolismo , Péptidos/química , Péptidos/metabolismo , Proteínas Represoras/metabolismo , Animales , Ataxina-3/química , Ataxina-3/genética , Humanos , Proteína Huntingtina/química , Proteína Huntingtina/genética , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/patología , Péptidos/genética , Fosforilación , Procesamiento Proteico-Postraduccional , Proteínas Represoras/química , Proteínas Represoras/genética , Repeticiones de Trinucleótidos
17.
Sci Rep ; 7(1): 13417, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-29042637

RESUMEN

The protein ataxin-3 carries a polyglutamine stretch close to the C-terminus that triggers a neurodegenerative disease in humans when its length exceeds a critical threshold. A role as a transcriptional regulator but also as a ubiquitin hydrolase has been proposed for this protein. Here, we report that, when expressed in the yeast Pichia pastoris, full-length ataxin-3 enabled almost normal growth at 37 °C, well above the physiological optimum of 30 °C. The N-terminal Josephin domain (JD) was also effective but significantly less, whereas catalytically inactive JD was completely ineffective. Based on MudPIT proteomic analysis, we observed that the strain expressing full-length, functional ataxin-3 displayed persistent upregulation of enzymes involved in mitochondrial energy metabolism during growth at 37 °C compared with the strain transformed with the empty vector. Concurrently, in the transformed strain intracellular ATP levels at 37 °C were even higher than normal ones at 30 °C. Elevated ATP was also paralleled by upregulation of enzymes involved in both protein biosynthesis and biosynthetic pathways, as well as of several stress-induced proteins. A similar pattern was observed when comparing a strain expressing JD with another expressing its catalytically inactive counterpart. We suggest that such effects mostly result from mechanisms of transcriptional regulation.


Asunto(s)
Ataxina-3/genética , Proteínas Fúngicas/genética , Respuesta al Choque Térmico , Pichia/metabolismo , Adenosina Trifosfato/metabolismo , Ataxina-3/química , Ataxina-3/metabolismo , Metabolismo Energético , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Pichia/genética
18.
Angew Chem Int Ed Engl ; 56(45): 14042-14045, 2017 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-28906069

RESUMEN

Amyloid fibrils and soluble oligomers are two types of protein aggregates associated with neurodegeneration. Classic therapeutic strategies try to prevent the nucleation and spread of amyloid fibrils, whilst diffusible oligomers have emerged as promising drug targets affecting downstream pathogenic processes. We developed a generic protein aggregation model and validate it against measured compositions of fibrillar and non-fibrillar assemblies of ataxin-3, a protein implicated in Machado-Joseph disease. The derived analytic rate-law equations can be used to 1) identify the presence of parallel aggregation pathways and 2) estimate the critical sizes of amyloid fibrils. The discretized population balance supporting our model is the first to quantitatively fit time-resolved measurements of size and composition of both amyloid-like and oligomeric species. The new theoretical framework can be used to screen a new class of drugs specifically targeting toxic oligomers.


Asunto(s)
Amiloide/química , Proteínas/química , Ataxina-3/química , Biopolímeros/química , Cromatografía en Gel , Cinética , Microscopía Electrónica de Transmisión , Unión Proteica , Proteínas Represoras/química
19.
J Biol Chem ; 292(45): 18392-18407, 2017 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-28939772

RESUMEN

p97 is an essential ATPase associated with various cellular activities (AAA+) that functions as a segregase in diverse cellular processes, including the maintenance of proteostasis. p97 interacts with different cofactors that target it to distinct pathways; an important example is the deubiquitinase ataxin3, which collaborates with p97 in endoplasmic reticulum-associated degradation. However, the molecular details of this interaction have been unclear. Here, we characterized the binding of ataxin3 to p97, showing that ataxin3 binds with low-micromolar affinity to both wild-type p97 and mutants linked to degenerative disorders known as multisystem proteinopathy 1 (MSP1); we further showed that the stoichiometry of binding is one ataxin3 molecule per p97 hexamer. We mapped the binding determinants on each protein, demonstrating that ataxin3's p97/VCP-binding motif interacts with the inter-lobe cleft in the N-domain of p97. We also probed the nucleotide dependence of this interaction, confirming that ataxin3 and p97 associate in the presence of ATP and in the absence of nucleotide, but not in the presence of ADP. Our experiments suggest that an ADP-driven downward movement of the p97 N-terminal domain dislodges ataxin3 by inducing a steric clash between the D1-domain and ataxin3's C terminus. In contrast, MSP1 mutants of p97 bind ataxin3 irrespective of their nucleotide state, indicating a failure by these mutants to translate ADP binding into a movement of the N-terminal domain. Our model provides a mechanistic explanation for how nucleotides regulate the p97-ataxin3 interaction and why atypical cofactor binding is observed with MSP1 mutants.


Asunto(s)
Ataxina-3/metabolismo , Coenzimas/metabolismo , Miopatías Distales/metabolismo , Modelos Moleculares , Deficiencias en la Proteostasis/metabolismo , Proteínas Represoras/metabolismo , Proteína que Contiene Valosina/metabolismo , Adenosina Difosfato/química , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Sustitución de Aminoácidos , Ataxina-3/química , Ataxina-3/genética , Sitios de Unión , Unión Competitiva , Coenzimas/química , Coenzimas/genética , Cristalografía por Rayos X , Bases de Datos de Proteínas , Miopatías Distales/enzimología , Miopatías Distales/genética , Humanos , Microscopía Electrónica de Transmisión , Mutación , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Multimerización de Proteína , Deficiencias en la Proteostasis/enzimología , Deficiencias en la Proteostasis/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genética , Proteína que Contiene Valosina/química , Proteína que Contiene Valosina/genética
20.
Autophagy ; 13(9): 1613-1614, 2017 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-28722507

RESUMEN

Expansions of polyglutamine (polyQ) tracts in different proteins cause 9 neurodegenerative conditions, such as Huntington disease and various ataxias. However, many normal mammalian proteins contain shorter polyQ tracts. As these are frequently conserved in multiple species, it is likely that some of these polyQ tracts have important but unknown biological functions. Here we review our recent study showing that the polyQ domain of the deubiquitinase ATXN3/ataxin-3 enables its interaction with BECN1/beclin 1, a key macroautophagy/autophagy initiator. ATXN3 regulates autophagy by deubiquitinating BECN1 and protecting it from proteasomal degradation. Interestingly, expanded polyQ tracts in other polyglutamine disease proteins compete with the shorter ATXN3 polyQ stretch and interfere with the ATXN3-BECN1 interaction. This competition results in decreased BECN1 levels and impaired starvation-induced autophagy, which phenocopies the loss of autophagic function mediated by ATXN3. Our findings describe a new autophagy-protective mechanism that may be altered in multiple neurodegenerative diseases.


Asunto(s)
Autofagia/efectos de los fármacos , Péptidos/farmacología , Animales , Ataxina-3/química , Ataxina-3/metabolismo , Humanos , Modelos Biológicos , Proteínas Mutantes/metabolismo , Polimorfismo Genético , Expansión de Repetición de Trinucleótido/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA