Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.495
Filtrar
1.
Anal Chem ; 96(19): 7772-7779, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38698542

RESUMEN

There is growing attention focused toward the problems of ecological sustainability and food safety raised from the abuse of herbicides, which underscores the need for the development of a portable and reliable sensor for simple, rapid, and user-friendly on-site analysis of herbicide residues. Herein, a novel multifunctional hydrogel composite is explored to serve as a portable and flexible sensor for the facile and efficient analysis of atrazine (ATZ) residues. The hydrogel electrode is fabricated by doping graphite-phase carbon nitride (g-C3N4) into the aramid nanofiber reinforced poly(vinyl alcohol) hydrogel via a simple solution-casting procedure. Benefiting from the excellent electroactivity and large specific surface area of the solid nanoscale component, the prepared hydrogel sensor is capable of simple, rapid, and sensitive detection of ATZ with a detection limit down to 0.002 ng/mL and per test time less than 1 min. After combination with a smartphone-controlled portable electrochemical analyzer, the flexible sensor exhibited satisfactory analytical performance for the ATZ assay. We further demonstrated the applications of the sensor in the evaluation of the ATZ residues in real water and soil samples as well as the user-friendly on-site point-of-need detection of ATZ residues on various agricultural products. We envision that this flexible and portable sensor will open a new avenue on the development of next-generation analytical tools for herbicide monitoring in the environment and agricultural products.


Asunto(s)
Atrazina , Técnicas Electroquímicas , Herbicidas , Hidrogeles , Atrazina/análisis , Herbicidas/análisis , Hidrogeles/química , Técnicas Electroquímicas/instrumentación , Grafito/química , Electrodos , Límite de Detección , Nitrilos/química , Nitrilos/análisis , Nanofibras/química , Contaminantes Químicos del Agua/análisis
2.
Bull Environ Contam Toxicol ; 112(6): 77, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758236

RESUMEN

Fulvic acids (FA) are environmentally prevalent components of dissolved organic carbon. Little research has evaluated their potential influence on the bioavailability of herbicides to non-target aquatic plants. This study evaluated the potential impacts of FA on the bioavailability of atrazine (ATZ) to the aquatic plant Lemna minor. Plants were exposed to 0, 15, 30, 60, 125, and 750 µg/L ATZ in media containing three FA concentrations (0, 5, and 15 mg/L) in a factorial study under static conditions. Fronds were counted after 7- and 14-days exposure and intrinsic growth rates (IGR) and total frond yields were calculated for analysis. Atrazine NOAECs and LOAECs within each FA treatment series (0, 5, or 15 mg/L) were identified and EC50s were estimated. NOAEC/LOAECs for yield and IGR were 60/125 µg/L except for yield in the 0 mg/L-FA series (30/60) and IGR in the 5 mg/L-FA series (30/60). NOAEC/LOAECs were 30/60 µg/L for all treatments and both endpoints after 14 days exposure. EC50s ranged from 88.2 to 106.1 µg/L (frond production 7 DAT), 158.0-186.0 µg/L (IGR, 7 DAT), 74.7-86.3 µg/L (frond production, 14 DAT), and 144.1-151.3 µg/L (IGR, 14 DAT). FA concentrations did not influence the toxicity of ATZ.


Asunto(s)
Araceae , Atrazina , Benzopiranos , Herbicidas , Contaminantes Químicos del Agua , Herbicidas/toxicidad , Benzopiranos/toxicidad , Atrazina/toxicidad , Araceae/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad
3.
JAMA Netw Open ; 7(5): e2410056, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38709530

RESUMEN

Importance: The incidence of gastroschisis, a birth defect involving the herniation of the small bowel through the abdominal wall, has increased in the US since the 1960s. The pesticide atrazine is a hypothesized cause of gastroschisis; however, examination of the association between atrazine and gastroschisis has been limited. Objective: To evaluate national trends in gastroschisis incidence, maternal and infant characteristics associated with gastroschisis, and whether county-level atrazine use is associated with gastroschisis. Design, Setting, and Participants: This retrospective, repeated cross-sectional study examined birth certificate data of all live births in the US and data on atrazine use from the US Geological Survey from January 1, 2009, through December 31, 2019. The data analysis was performed between August 5, 2021, and May 26, 2023. Exposures: County-level atrazine use. Main Outcomes and Measures: The primary outcome was gastroschisis incidence. Covariates included maternal age, race and ethnicity, body mass index (measured by weight in kilograms divided by height in meters squared), parity, insurance type, Chlamydia infection during pregnancy, smoking, and rurality. Mixed-effects logistic regression models (year fixed effects and county random effects) were constructed using different county-level atrazine exposure variables (1-, 5-, and 10-year means). Results: Between 2009 and 2019, 39 282 566 live births were identified, with 10 527 infant diagnoses of gastroschisis. Infants with gastroschisis were more likely to have mothers who identified as non-Hispanic White (61% vs 54%; P < .001), had a lower body mass index (median [IQR], 23.4 [20.8-27.2] vs 25.4 [22.0-30.8]; P < .001), were more likely to be nulliparous (median [IQR], 0 [0-1] vs 1 [0-2]; P < .001), and were more commonly covered by Medicaid (63% vs 43%; P < .001). During the study period, the rate (per 1000 live births) of gastroschisis decreased from 0.31 (95% CI, 0.29-0.33) to 0.22 (95% CI, 0.21-0.24). The median (IQR) county-level atrazine use estimates were higher among infants with gastroschisis (1 year, 1389 [IQR, 198-10 162] vs 1023 [IQR, 167-6960] kg; 5 years, 1425 [IQR, 273-9895] vs 1057 [IQR, 199-6926] kg; 10 years, 1508 [IQR, 286-10 271] vs 1113 [IQR, 200-6650] kg; P < .001). In adjusted models, higher county levels of atrazine (each 100 000-kg increase) were associated with a higher incidence of gastroschisis (1 year: adjusted odds ratio [AOR], 1.12 [95% CI, 1.01-1.24]; 5 years: AOR, 1.15 [95% CI, 1.02-1.30]; 10 years: AOR, 1.21 [95% CI, 1.07-1.38]). Conclusions and Relevance: In this cross-sectional study, higher county levels of atrazine were associated with infant diagnoses of gastroschisis. While atrazine is the second-most used herbicide in the US, numerous countries around the world have banned it out of concern for adverse effects on human health. These findings suggest that exploring alternatives to atrazine in the US may be warranted.


Asunto(s)
Atrazina , Gastrosquisis , Gastrosquisis/epidemiología , Gastrosquisis/inducido químicamente , Humanos , Atrazina/efectos adversos , Femenino , Estudios Transversales , Estudios Retrospectivos , Adulto , Embarazo , Incidencia , Estados Unidos/epidemiología , Recién Nacido , Herbicidas/efectos adversos , Masculino , Adulto Joven
4.
Biointerphases ; 19(2)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38602440

RESUMEN

In mass spectrometry imaging (MSI), ion suppression can lead to a misinterpretation of results. Particularly phospholipids, most of which exhibit high gas-phase basicity (GB), are known to suppress the detection of metabolites and drugs. This study was initiated by the observation that the signal of an herbicide, i.e., atrazine, was suppressed in MSI investigations of earthworm tissue sections. Herbicide accumulation in earthworms was investigated by time-of-flight secondary ion mass spectrometry and matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). Additionally, earthworm tissue sections without accumulation of atrazine but with a homogeneous spray deposition of the herbicide were analyzed to highlight region-specific ion suppression. Furthermore, the relationship of signal intensity and GB in binary mixtures of lipids, amino acids, and atrazine was investigated in both MSI techniques. The GB of atrazine was determined experimentally through a linear plot of the obtained intensity ratios of the binary amino acid mixtures, as well as theoretically. The GBs values for atrazine of 896 and 906 kJ/mol in ToF-SIMS and 933 and 987 kJ/mol in MALDI-MSI were determined experimentally and that of 913 kJ/mol by quantum mechanical calculations. Compared with the GB of a major lipid component, phosphatidylcholine (GBPC = 1044.7 kJ/mol), atrazine's experimentally and computationally determined GBs in this work are significantly lower, making it prone to ion suppression in biological samples containing polar lipids.


Asunto(s)
Atrazina , Herbicidas , Oligoquetos , Animales , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Aminoácidos , Fosfatidilcolinas , Rayos Láser
5.
J Environ Manage ; 357: 120767, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38560953

RESUMEN

The enhancing effects of anodes on the degradation of the organochlorine pesticide atrazine (ATR) in soil within microbial electrochemical systems (MES) have been extensively researched. However, the impact and underlying mechanisms of soil microbial electrochemical systems (MES) on ATR degradation, particularly under conditions involving the addition of humic acids (HAs), remain elusive. In this investigation, a soil MES supplemented with humic acids (HAs) was established to assess the promotional effects and mechanisms of HAs on ATR degradation, utilizing EEM-PARAFAC and SEM analyses. Results revealed that the maximum power density of the MES in soil increased by 150%, and the degradation efficiency of ATR improved by over 50% following the addition of HAs. Furthermore, HAs were found to facilitate efficient ATR degradation in the far-anode region by mediating extracellular electron transfer. The components identified as critical in promoting ATR degradation were Like-Protein and Like-Humic acid substances. Analysis of the microbial community structure indicated that the addition of HAs favored the evolution of the soil MES microbial community and the enrichment of electroactive microorganisms. In the ATR degradation process, the swift accumulation of Hydrocarbyl ATR (HYA) was identified as the primary cause for the rapid degradation of ATR in electron-rich conditions. Essentially, HA facilitates the reduction of ATR to HYA through mediated bonded electron transfer, thereby markedly enhancing the efficiency of ATR degradation.


Asunto(s)
Atrazina , Herbicidas , Contaminantes del Suelo , Sustancias Húmicas/análisis , Suelo/química , Microbiología del Suelo , Herbicidas/química , Contaminantes del Suelo/química
6.
Huan Jing Ke Xue ; 45(5): 2678-2685, 2024 May 08.
Artículo en Chino | MEDLINE | ID: mdl-38629531

RESUMEN

Xingkai Lake, located in Heilongjiang Province, is an important fishery and agricultural base and is seriously polluted by agricultural non-point sources. To clarify the residual status of many pesticides in the surface water of Xingkai Lake, 27 types of pesticides, herbicides, and their degradation products were analyzed in rice paddy, drainage, and surface water around Xingkai Lake (China) during the rice heading and maturity periods. The results showed that all 27 types of pesticides, herbicides, and their degradation products were detected during the rice heading period, and the total concentration ranged from 247.97 to 6 094.49 ng·L-1. Additionally, 25 species were detected during the rice maturity period, and the total concentration ranged from 485.36 to 796.23 ng·L-1. In comparison, more pesticides, herbicides, and derived degradation products were detected during the heading period, and their total concentration was higher as well. During the rice heading period, atrazine, simetryn, and paclobutrazol were the main detected pesticides, atrazine and isoprothiolane were the main pesticides detected during the maturity period. The distribution characteristics of pesticides and herbicides in the surface water around Xingkai Lake (China) was similar to that in drainage, so they were probably imported from the drainage and rice paddy. The average risk quotient (RQ) values of atrazine, simetryn, prometryn, butachlor, isoprothiolane, and oxadiazon were higher than 0.1 in drainage and Xingkai Lake (China), which showed a potential risk to aquatic organisms.


Asunto(s)
Atrazina , Herbicidas , Residuos de Plaguicidas , Plaguicidas , Tiofenos , Contaminantes Químicos del Agua , Plaguicidas/análisis , Residuos de Plaguicidas/análisis , Lagos , Monitoreo del Ambiente , Agua/química , China , Medición de Riesgo , Contaminantes Químicos del Agua/análisis
7.
Ying Yong Sheng Tai Xue Bao ; 35(3): 789-796, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38646767

RESUMEN

We established the optimal model by using the automatic machine learning method to predict the degradation efficiency of herbicide atrazine in soil, which could be used to assess the residual risk of atrazine in soil. We collected 494 pairs of data from 49 published articles, and selected seven factors as input features, including soil pH, organic matter content, saturated hydraulic conductivity, soil moisture, initial concentration of atrazine, incubation time, and inoculation dose. Using the first-order reaction rate constant of atrazine in soil as the output feature, we established six models to predict the degradation efficiency of atrazine in soil, and conducted comprehensive analysis of model performance through linear regression and related evaluation indicators. The results showed that the XGBoost model had the best performance in predicting the first-order reaction rate constant (k). Based on the prediction model, the feature importance ranking of each factor was in an order of soil moisture > incubation time > pH > organic matter > initial concentration of atrazine > saturated hydraulic conductivity > inoculation dose. We used SHAP to explain the potential relationship between each feature and the degradation ability of atrazine in soil, as well as the relative contribution of each feature. Results of SHAP showed that time had a negative contribution and saturated hydraulic conductivity had a positive contribution. High values of soil moisture, initial concentration of atrazine, pH, inoculation dose and organic matter content were generally distributed on both sides of SHAP=0, indicating their complex contributions to the degradation of atrazine in soil. The XGBoost model method combined with the SHAP method had high accuracy in predicting the performance and interpretability of the k model. By using machine learning method to fully explore the value of historical experimental data and predict the degradation efficiency of atrazine using environmental parameters, it is of great significance to set the threshold for atrazine application, reduce the residual and diffusion risks of atrazine in soil, and ensure the safety of soil environment.


Asunto(s)
Atrazina , Herbicidas , Modelos Teóricos , Contaminantes del Suelo , Suelo , Atrazina/análisis , Atrazina/química , Contaminantes del Suelo/análisis , Contaminantes del Suelo/química , Herbicidas/análisis , Herbicidas/química , Suelo/química , Biodegradación Ambiental , Aprendizaje Automático , Predicción
8.
J Hazard Mater ; 470: 134216, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38581877

RESUMEN

In vivo monitoring of multiple pesticide contamination is of great significance for evaluating the health risks of different pesticides, agricultural production safety, and ecological and environmental assessment. Here, we report a hydrogel microneedle array coupled light-addressable photoelectrochemical sensor for tracking multiple pesticide uptake and elimination in living animals and plants, holding three prominent merits: i) enables in-situ detection of in vivo pesticides, avoiding cumbersome and complex sample transportation and handling processes; ii) allows repeated in vivo sampling of the same organism, improving tracking test controllability and accuracy; iii) avoids lethal sampling, providing a better understanding of the pesticides fate in living organisms. The coupled sensor is mechanically robust for withstanding more than 0.35 N per needle and highly swellable (800 %) for timely extraction of sufficient in vivo solution for analysis. For proof-of-concept, it achieves in-situ detection of atrazine, acetamiprid, and carbendazim efficiently and quantitatively in artificial agarose skin models, mouse skin interstitial fluids, and plant leaves with little inflammatory reaction. This simple, highly integrated, minimally invasive, and high-throughput in vivo monitoring method is ideal for future field environmental monitoring and plant and animal disease diagnosis.


Asunto(s)
Bencimidazoles , Carbamatos , Agujas , Neonicotinoides , Plaguicidas , Animales , Neonicotinoides/análisis , Plaguicidas/análisis , Atrazina/análisis , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Monitoreo del Ambiente/métodos , Ratones , Hojas de la Planta/química , Luz , Hidrogeles/química , Piel/química
9.
Chemosphere ; 357: 142061, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38642775

RESUMEN

Increasing amounts of amino-functionalized polystyrene nanoplastics (PS-NH2) are entering aquatic ecosystems, raising concerns. Hence, this study investigated 96-h acute toxicity of PS-NH2 and its combination with the pesticide atrazine (ATZ) in the absence/presence of humic acid (HA) on the microalgae Chlorella vulgaris (C. vulgaris). Results showed that both PS-NH2 and PS-NH2+ATZ reduced algal growth, photosynthetic pigments, protein content, and antioxidant capacity, while increasing enzymatic activities. Gene expression related to oxidative stress was altered in C. vulgaris exposed to these treatments. Morphological and intracellular changes were also observed. The combined toxicity of PS-NH2+ATZ demonstrated a synergistic effect, but the addition of environmentally relevant concentration of HA significantly alleviated its toxicity to C. vulgaris, indicating an antagonistic effect due to the emergence of an eco-corona, and entrapment and sedimentation of PS-NH2+ATZ particles by HA. This study firstly highlights the role of HA in mitigating the toxicity of PS-NH2 when combined with other harmful compounds, enhancing our understanding of HA's presence in the environment.


Asunto(s)
Atrazina , Chlorella vulgaris , Herbicidas , Sustancias Húmicas , Microplásticos , Poliestirenos , Contaminantes Químicos del Agua , Chlorella vulgaris/efectos de los fármacos , Atrazina/toxicidad , Herbicidas/toxicidad , Poliestirenos/toxicidad , Poliestirenos/química , Contaminantes Químicos del Agua/toxicidad , Microplásticos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Microalgas/efectos de los fármacos , Antioxidantes/metabolismo , Pruebas de Toxicidad Aguda , Fotosíntesis/efectos de los fármacos
10.
Biochemistry ; 63(9): 1206-1213, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38587893

RESUMEN

Quinone analogue molecules, functioning as herbicides, bind to the secondary quinone site, QB, in type-II photosynthetic reaction centers, including those from purple bacteria (PbRC). Here, we investigated the impact of herbicide binding on electron transfer branches, using herbicide-bound PbRC crystal structures and employing the linear Poisson-Boltzmann equation. In contrast to urea and phenolic herbicides [Fufezan, C. Biochemistry 2005, 44, 12780-12789], binding of atrazine and triazine did not cause significant changes in the redox-potential (Em) values of the primary quinone (QA) in these crystal structures. However, a slight Em difference at the bacteriopheophytin in the electron transfer inactive branch (HM) was observed between the S(-)- and R(+)-triazine-bound PbRC structures. This discrepancy is linked to variations in the protonation pattern of the tightly coupled Glu-L212 and Glu-H177 pairs, crucial components of the proton uptake pathway in native PbRC. These findings suggest the existence of a QB-mediated link between the electron transfer inactive HM and the proton uptake pathway in PbRCs.


Asunto(s)
Atrazina , Herbicidas , Proteínas del Complejo del Centro de Reacción Fotosintética , Triazinas , Herbicidas/química , Herbicidas/metabolismo , Atrazina/química , Atrazina/metabolismo , Transporte de Electrón , Triazinas/química , Triazinas/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Oxidación-Reducción , Modelos Moleculares , Rhodobacter sphaeroides/metabolismo , Cristalografía por Rayos X
11.
J Hazard Mater ; 471: 134336, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38640665

RESUMEN

Microbial herbicide degradation is an efficient bioremediation method. In this study, a strain of Streptomyces nigra, LM01, which efficiently degrades atrazine and nicosulfuron, was isolated from a corn field using a direct isolation method. The degradation effects of the identified strain on two herbicides were investigated and optimized using an artificial neural network. The maximum degradation rates of S. nigra LM01 were 58.09 % and 42.97 % for atrazine and nicosulfuron, respectively. The degradation rate of atrazine in the soil reached 67.94 % when the concentration was 108 CFU/g after 5 d and was less effective than that of nicosulfuron. Whole genome sequencing of strain LM01 helped elucidate the possible degradation pathways of atrazine and nicosulfuron. The protein sequences of strain LM01 were aligned with the sequences of the degraded proteins of the two herbicides by using the National Center for Biotechnology Information platform. The sequence (GE005358, GE001556, GE004212, GE005218, GE004846, GE002487) with the highest query cover was retained and docked with the small-molecule ligands of the herbicides. The results revealed a binding energy of - 6.23 kcal/mol between GE005358 and the atrazine ligand and - 6.66 kcal/mol between GE002487 and the nicosulfuron ligand.


Asunto(s)
Atrazina , Biodegradación Ambiental , Herbicidas , Piridinas , Streptomyces , Compuestos de Sulfonilurea , Atrazina/metabolismo , Atrazina/química , Streptomyces/metabolismo , Streptomyces/genética , Herbicidas/metabolismo , Herbicidas/química , Compuestos de Sulfonilurea/metabolismo , Compuestos de Sulfonilurea/química , Piridinas/metabolismo , Piridinas/química , Contaminantes del Suelo/metabolismo , Genes Bacterianos , Redes Neurales de la Computación
12.
J Hazard Mater ; 471: 134251, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38640669

RESUMEN

Corn planting is often associated with serious atrazine pollution and excessive corn straw amounts, causing severe threats to environmental and ecological security, as well as to green agricultural development. In this context, a Paenarthrobacter sp. KN0901 strain was applied to simultaneously remove atrazine and straw at low temperatures. The results of whole genome sequencing indicated that KN0901 encoded over nine straw biodegradation-related enzymes. In addition, 100 % and 27.3 % of atrazine and straw were simultaneously degraded by KN0901 following an incubation period of seven days at 15 ºC and 180 rpm in darkness. The KN0901 strain maintained high atrazine and straw biodegradation rates under temperature and pH ranges of 4-25 ºC and 5-9, respectively. The simultaneous atrazine and corn straw additions improved the microbial growth and biodegradation rates by increasing the functional gene expression level, cell viability, inner membrane permeability, and extracellular polymeric substance contents of KN0901. The hydroponic experiment results demonstrated the capability of the KN0901 strain to mitigate the toxicity of atrazine to soybeans in four days under the presence of corn straw. The present study provides a new perspective on the development of bioremediation approaches and their application to restore atrazine-polluted cornfields with large straw quantities, particularly in cold areas.


Asunto(s)
Atrazina , Biodegradación Ambiental , Frío , Herbicidas , Zea mays , Atrazina/toxicidad , Atrazina/metabolismo , Herbicidas/toxicidad , Herbicidas/metabolismo , Secuenciación Completa del Genoma , Genoma Bacteriano
13.
Chemosphere ; 358: 142080, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38642773

RESUMEN

Perfluorooctanoic acid (PFOA) and atrazine are two endocrine disruptors that are widely found in waters. Negative effects of PFOA and atrazine have been studied individually, but few data have focused on their combined effects. Here, zebrafish embryos were used as model to investigate the combined toxicity of PFOA and atrazine. The acute toxicity of atrazine (11.9 mg/L) to zebrafish embryos was much higher than that of perfluorooctanoic acid (224.6 mg/L) as shown by the 120h-LC50 value. Developmental effects, including delayed yolk sac absorption, spinal curvature, and liver abnormalities, were observed in both one- and two-component exposures. Notably, the rate of embryonic malformations in the co-exposure group was more than twice as high as that of single component exposure in the concentration range of 1/8-1/2 EC50, which indicated a synergistic effect of the binary mixture. The synergistic effect of PFOA-atrazine was further validated by combinatorial index (CI) modeling. In addition, changes of amino acid metabolites, reactive oxygen species and superoxide dismutase indicated that oxidative stress might be the main pathway for enhanced toxicity under co-exposure condition. Overall, co-exposure of PFOA and atrazine resulted in stronger developmental effects and more complicated amino acid metabolic response toward zebrafish, compared with single component exposure.


Asunto(s)
Atrazina , Caprilatos , Embrión no Mamífero , Fluorocarburos , Contaminantes Químicos del Agua , Pez Cebra , Pez Cebra/embriología , Animales , Atrazina/toxicidad , Fluorocarburos/toxicidad , Caprilatos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Embrión no Mamífero/efectos de los fármacos , Disruptores Endocrinos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Sinergismo Farmacológico
14.
Chemosphere ; 358: 142111, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663677

RESUMEN

In this study, microalgae Chlorella vulgaris (C. vulgaris) were simultaneously exposed to environmental concentrations of amino-functionalized polystyrene nanoplastics (PS-NH2; 0.05, 0.1, 0.2, 0.3 and 0.4 mg/L) and the world's second most used pesticide, the herbicide atrazine (ATZ; 10 µg/L), in the absence and presence of humic acid (HA; 1 mg/L) for 21 days. Due to the low concentrations of PS-NH2, the majority of them could not cause a significant difference in the end-points of biomass, chlorophylls a and b, total antioxidant, total protein, and superoxide dismutase and malondialdehyde compared to the control group (p > 0.05). On the other hand, by adding ATZ to the PS-NH2, all the mentioned end-point values showed a considerable difference from the control (p < 0.05). The exposure of PS-NH2+ATZ treatments to the HA could remarkably reduce their toxicity, additionally, HA was able to decrease the changes in the expression of genes related to oxidative stress (e.g., superoxide dismutase, glutathione reductase, and catalase) in the C. vulgaris in the most toxic treatment group (e.g., PS-NH2+ATZ). The synergistic toxicity of the PS-NH2+ATZ group could be due to their enhanced bioavailability for algal cells. Nevertheless, the toxicity alleviation in the PS-NH2+ATZ treatment group after the addition of HA could be due to the eco-corona formation, and changes in their zeta potential from positive to negative value, which would increase their electrostatic repulsion with the C. vulgaris cells, in such a way that HA also caused a decrease in the formation of C. vulgaris-NPs hetero-aggregates. This research underscores the complex interplay between PS-NH2, ATZ, and HA in aquatic environments and their collective impact on microalgal communities.


Asunto(s)
Atrazina , Chlorella vulgaris , Herbicidas , Sustancias Húmicas , Microplásticos , Estrés Oxidativo , Poliestirenos , Superóxido Dismutasa , Contaminantes Químicos del Agua , Chlorella vulgaris/efectos de los fármacos , Atrazina/toxicidad , Poliestirenos/toxicidad , Poliestirenos/química , Superóxido Dismutasa/metabolismo , Herbicidas/toxicidad , Herbicidas/química , Contaminantes Químicos del Agua/toxicidad , Microplásticos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Microalgas/efectos de los fármacos , Clorofila/metabolismo , Malondialdehído/metabolismo , Antioxidantes/metabolismo , Biomasa , Clorofila A/metabolismo
15.
J Environ Manage ; 359: 120951, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38669877

RESUMEN

Atrazine, a widely used herbicide in modern agriculture, can lead to soil contamination and adverse effects on specific crops. To address this, we investigated the efficacy of biochar loaded with Paenarthrobacter sp. AT5 (an atrazine-degrading bacterial strain) in mitigating atrazine's impact on soybeans in black soil. Bacterially loaded biochar (BBC) significantly enhanced atrazine removal rates in both unplanted and planted soil systems. Moreover, BBC application improved soybean biomass, photosynthetic pigments, and antioxidant systems while mitigating alterations in metabolite pathways induced by atrazine exposure. These findings demonstrate the effectiveness of BBC in reducing atrazine-induced oxidative stress on soybeans in black soil, highlighting its potential for sustainable agriculture.


Asunto(s)
Atrazina , Carbón Orgánico , Glycine max , Estrés Oxidativo , Contaminantes del Suelo , Suelo , Atrazina/toxicidad , Glycine max/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Suelo/química , Carbón Orgánico/química , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo , Herbicidas/toxicidad
16.
Toxicol Appl Pharmacol ; 486: 116929, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608961

RESUMEN

Atrazine (ATZ), a widely used herbicide with potent endocrine-disrupting properties, has been implicated in hormonal disturbances and fertility issues. Sertoli cells (SCs) play a crucial role in providing mechanical and nutritional support of spermatogenesis. Herein, we aimed to study the effects of environmentally relevant ATZ concentrations on the nutritional support of spermatogenesis provided by SCs. For that, mouse SCs (TM4) were exposed to increasing ATZ concentrations (in µg/L: 0.3, 3, 30, 300, or 3000). After 24 h, cellular proliferation and metabolic activity were assessed. Mitochondrial activity and endogenous reactive oxygen species (ROS) production were evaluated using JC-1 and CM-H2DCFDA probes, respectively. We also analyzed protein levels of lactate dehydrogenase (LDH) using Western Blot and live cells glycolytic function through Seahorse XF Glycolysis Stress Test Kit. ATZ exposure decreased the activity of oxidoreductases in SCs, suggesting a decreased metabolic activity. Although ATZ is reported to induce oxidative stress, we did not observe alterations in mitochondrial membrane potential and ROS production across all tested concentrations. When we evaluated the glycolytic function of SCs, we observed that ATZ significantly impaired glycolysis and the glycolytic capacity at all tested concentrations. These results were supported by the decreased expression of LDH in SCs. Overall, our findings suggest that ATZ impairs the glycolytic function of SCs through LDH downregulation. Since lactate is the preferential energetic substrate for germ cells, exposure to ATZ may detrimentally impact the nutritional support crucial for spermatogenesis, hinting for a relationship between ATZ exposure and male infertility.


Asunto(s)
Atrazina , Regulación hacia Abajo , Glucólisis , Herbicidas , L-Lactato Deshidrogenasa , Especies Reactivas de Oxígeno , Células de Sertoli , Animales , Masculino , Células de Sertoli/efectos de los fármacos , Células de Sertoli/metabolismo , Atrazina/toxicidad , Ratones , Glucólisis/efectos de los fármacos , Herbicidas/toxicidad , L-Lactato Deshidrogenasa/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Línea Celular , Relación Dosis-Respuesta a Droga , Estrés Oxidativo/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Espermatogénesis/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo
17.
Environ Pollut ; 350: 124009, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38670423

RESUMEN

Water reuse for potable purposes can represent a realistic source supply of drinking water in areas with water scarcity. Therefore, combining conventional wastewater treatment technologies with advanced technologies is necessary to remove contaminants and obtain high-quality and safe water. In this study, the pesticides and degradation products, atrazine (ATZ), hydroxyatrazine (ATZOH), deethylatrazine (DEA), deisopropylatrazine (DIA), simazine (SMZ), ametryn (AMT), diuron (DIU), 2,4-D, fipronil (FIP), fipronil sulfide (FIP-SF) and fipronil sulfone (FIP-SN) were evaluated in effluent after membrane bioreactor (MBR), effluent after advanced treatment by multiple barriers (MBR, reverse osmosis, UV/H2O2 and activated carbon), in tap water collected in the urban region of Campinas and in the Atibaia River (water supply source from city of Campinas). The pesticide concentrations in the Atibaia River and the post-MBR effluent ranged between 1 and 434 ng L-1 and 1 and 470 ng L-1, respectively. Therefore, the Atibaia River and the post-MBR effluent had the same magnitude pesticide concentrations. In the production of potable water reuse, after the multiple barriers processes, only fipronil (1 ng L-1) and atrazine (3 ng L-1) were quantified in some of the samples. In tap water from Campinas, atrazine, ATZOH, DEA, diuron, and 2,4-D were quantified in concentrations ranging between 3 and 425 ng L-1. Therefore, when comparing drinking water obtained from conventional treatment with potable water reuse, according to the pesticides studied, it is possible to conclude that the advanced treatment used on a pilot scale is promising for use in a potable water reuse plant. However, studies involving more microbiological and chemical parameters should be conducted to classify potable water reuse as drinking water.


Asunto(s)
Plaguicidas , Contaminantes Químicos del Agua , Purificación del Agua , Contaminantes Químicos del Agua/análisis , Plaguicidas/análisis , Purificación del Agua/métodos , Proyectos Piloto , Agua Potable/química , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Atrazina/análisis , Reactores Biológicos
18.
Environ Sci Technol ; 58(15): 6814-6824, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38581381

RESUMEN

Identifying persistent, mobile, and toxic (PMT) substances from synthetic chemicals is critical for chemical management and ecological risk assessment. Inspired by the triazine analogues (e.g., atrazine and melamine) in the original European Union's list of PMT substances, the occurrence and compositions of alkylamine triazines (AATs) in the estuarine sediments of main rivers along the eastern coast of China were comprehensively explored by an integrated strategy of target, suspect, and nontarget screening analysis. A total of 44 AATs were identified, of which 23 were confirmed by comparison with authentic standards. Among the remaining tentatively identified analogues, 18 were emerging pollutants not previously reported in the environment. Tri- and di-AATs were the dominant analogues, and varied geographic distributions of AATs were apparent in the investigated regions. Toxic unit calculations indicated that there were acute and chronic risks to algae from AATs on a large geographical scale, with the antifouling biocide cybutryne as a key driver. The assessment of physicochemical properties further revealed that more than half of the AATs could be categorized as potential PMT and very persistent and very mobile substances at the screening level. These results highlight that AATs are a class of PMT substances posing high ecological impacts on the aquatic environment and therefore require more attention.


Asunto(s)
Atrazina , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Ríos/química , Triazinas/análisis , Atrazina/análisis , China , Monitoreo del Ambiente
19.
Environ Pollut ; 349: 123940, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38599268

RESUMEN

A quantitative multiresidue study of current-use pesticides in multiple matrices was undertaken with field sampling at 32 headwater streams near Lac Saint-Pierre in Québec, Canada. A total of 232 samples were collected in five campaigns of stream waters and streambed sediments from streams varying in size and watershed land use. Novel multiresidue analytical methods from previous work were successfully applied for the extraction of pesticide residues from sediments via pressurized liquid extraction (PLE) and quantitative analysis using ultra high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) with online sample preparation on a hydrophilic-lipophilic balance (HLB) column. Of the 31 target compounds, including 29 pesticides and two degradation products of atrazine, 29 compounds were detected at least once. Consistent with other studies, atrazine and metolachlor were the most widely-detected herbicides. Detections were generally higher in water than sediment samples and the influence of land use on pesticide concentrations was only detectable in water samples. Small streams with a high proportion of agricultural land use in their watershed were generally found to have the highest pesticide concentrations. Corn and soybean monoculture crops, specifically, were found to cause the greatest impact on pesticide concentration in headwater streams and correlated strongly with many of the most frequently detected pesticides. This study highlights the importance of performing multiresidue pesticide monitoring programs in headwater streams in order to capture the impacts of agricultural intensification on freshwater ecosystems.


Asunto(s)
Agricultura , Monitoreo del Ambiente , Plaguicidas , Ríos , Contaminantes Químicos del Agua , Ríos/química , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Quebec , Plaguicidas/análisis , Residuos de Plaguicidas/análisis , Atrazina/análisis , Espectrometría de Masas en Tándem , Sedimentos Geológicos/química , Herbicidas/análisis
20.
Chemosphere ; 356: 141906, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583534

RESUMEN

Atrazine (ATR) is one of the most commonly used herbicides worldwide. As an endocrine disruptor, it causes ovarian dysfunction, but the mechanism is unclear. We hypothesized that ATR could affect ovarian steroidogenesis, oxidative stress, inflammation, and apoptosis. In the current study, rats aged 28 days were treated with PMSG and HCG to obtain amounts of corpora lutea. Then, rats were injected with ATR (50 mg/kg/day) or saline (0.9%) for 7 days. Sera were collected to detect biochemical indices and progesterone (P4) level, ovaries were collected for antioxidant status, HE, qPCR, and WB analysis. Results showed that ATR exposure affected growth performance as well as serum TP, GLB, and ALB levels, increased serum P4 level and ovarian mRNA and protein levels of StAR, CYP11A1, and HSD3B. ATR treatment increased ovarian mRNA and protein levels of CREB but not PKA expression. ATR treatment increased ovarian mRNA abundances of Nrf-2 and Nqo1, MDA level, and decreased SOD, GST, and T-AOC levels. ATR exposure increased the mRNA abundances of pro-inflammatory cytokines including Tnf-α, Il-1ß, Il-6, Il-18, and Inos. ATR exposure increased the mRNA and protein level of Caspase 3 and the ratio of BAX/BCL-2. In conclusion, NRF-2/NQO1 signaling pathway and CREB might be involved in the regulation of ATR in luteal steroidogenesis, oxidative stress, inflammation, and apoptosis in rat ovary.


Asunto(s)
Apoptosis , Atrazina , Herbicidas , Inflamación , Ovario , Estrés Oxidativo , Progesterona , Animales , Atrazina/toxicidad , Femenino , Ovario/efectos de los fármacos , Ovario/metabolismo , Estrés Oxidativo/efectos de los fármacos , Progesterona/sangre , Ratas , Apoptosis/efectos de los fármacos , Inflamación/inducido químicamente , Herbicidas/toxicidad , Seudoembarazo , Disruptores Endocrinos/toxicidad , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA