Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 927: 172069, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38582117

RESUMEN

Ferroptosis is a newly recognized type of programmed cell death that is implicated in the pathophysiological process of neurological disorders. Our previous studies have revealed that exposure to high concentrations of fluoride for long periods of time induces hippocampal neural injury and cognitive deficits. However, whether ferroptosis is involved in fluoride-induced neuronal death and the underlying mechanism remain unknown. In this study, the results indicated that exposure to high fluoride triggered ferroptosis in SH-SY5Y cells and in the hippocampus of mice. Fluoride exposure accelerated the lysosomal degradation of GPX4 and led to neuronal ferroptosis, while GPX4 overexpression protected SH-SY5Y cells against fluoride-induced neurotoxicity. Intriguingly, the enhanced chaperone-mediated autophagy (CMA) induced by fluoride stimulation was responsible for GPX4 degradation because the inhibition of CMA activity by LAMP2A knockdown effectively prevented fluoride-induced GPX4 loss. Furthermore, mitochondrial ROS (mtROS) accumulation caused by fluoride contributed to CMA activation-mediated GPX4 degradation and subsequent neuronal ferroptosis. Notably, the ferroptosis-specific inhibitor ferrostatin-1 (Fer-1) or the ROS scavenger N-acetyl-L-cysteine (NAC) alleviated fluoride-evoked hippocampal neuronal death and synaptic injury as well as cognitive deficits in mice. The present studies indicates that ferroptosis is a novel mechanism of fluoride-induced neurotoxicity and that chronic fluoride exposure facilitates GPX4 degradation via mtROS chaperone-mediated autophagy, leading to neuronal ferroptosis and cognitive impairment.


Asunto(s)
Autofagia Mediada por Chaperones , Disfunción Cognitiva , Ferroptosis , Fluoruros , Neuronas , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Especies Reactivas de Oxígeno , Animales , Humanos , Ratones , Autofagia/efectos de los fármacos , Autofagia Mediada por Chaperones/fisiología , Autofagia Mediada por Chaperones/efectos de los fármacos , Disfunción Cognitiva/inducido químicamente , Ferroptosis/efectos de los fármacos , Ferroptosis/fisiología , Fluoruros/toxicidad , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neuronas/efectos de los fármacos , Fosfolípido Hidroperóxido Glutatión Peroxidasa/efectos de los fármacos , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo
2.
Biochem Pharmacol ; 197: 114899, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34968496

RESUMEN

The accumulation of aggregated α-synuclein (α-syn) has been identified as the primary component of Lewy bodies that are the pathological hallmarks of Parkinson's disease (PD). Several preclinical studies have shown α-syn aggregation, and particularly the intermediates formed during the aggregation process to be toxic to cells. Current PD treatments only provide symptomatic relief, and α-syn serves as a promising target to develop a disease-modifying therapy for PD. Our previous studies have revealed that a small-molecular inhibitor for prolyl oligopeptidase (PREP), KYP-2047, increases α-syn degradation by accelerating macroautophagy (MA) leading to disease-modifying effects in preclinical PD models. However, α-syn is also degraded by chaperone-mediated autophagy (CMA). In the present study, we tested the effects of PREP inhibition or deletion on CMA activation and α-syn degradation. HEK-293 cells were transfected with α-syn and incubated with 1 & 10 µM KYP-2047 for 24 h. Both 1 & 10 µM KYP-2047 increased LAMP-2A levels, induced α-syn degradation and reduced the expression of Hsc70, suggesting that the PREP inhibitor prevented α-syn aggregation by activating the CMA pathway. Similarly, KYP-2047 increased the LAMP-2A immunoreactivity and reduced the Hsc70 levels in mouse primary cortical neurons. When LAMP-2A was silenced by a siRNA, KYP-2047 increased the LC3BII/LC3BI ratio and accelerated the clearance of α-syn. Additionally, KYP-2047 induced CMA effectively also when MA was blocked by bafilomycin A1. Based on our results, we suggest that PREP might function as a core network node in MA-CMA crosstalk, and PREP inhibition can reduce α-syn levels via both main autophagy systems.


Asunto(s)
Autofagia Mediada por Chaperones/fisiología , Macroautofagia/fisiología , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/metabolismo , Serina Endopeptidasas/metabolismo , Animales , Células Cultivadas , Autofagia Mediada por Chaperones/efectos de los fármacos , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Macroautofagia/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Prolina/análogos & derivados , Prolina/farmacología
3.
Cells ; 10(12)2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34943972

RESUMEN

Background: Multiple myeloma (MM) remains incurable despite high-dose chemotherapy, autologous stem cell transplants and novel agents. Even with the improved survival of MM patients treated with novel agents, including bortezomib (Bz), the therapeutic options in relapsed/refractory MM remain limited. The majority of MM patients eventually develop resistance to Bz, although the mechanisms of the resistance are poorly understood. Methods: Lysosomal associated membrane protein 2A (LAMP2A) mRNA and protein expression levels were assessed in ex vivo patient samples and a Bz-resistant MM cell line model by in real-rime PCR, western blotting and immunohistochemistry. In vitro modelling of chaperone-mediated autophagy (CMA) activity in response to ER stress were assessed by western blotting and confocal microscopy. The effects of CMA inhibition on MM cell viability and Bz sensitivity in MM cells were assessed by Annexin V/7AAD apoptosis assays using flow cytometry. Results: In this study, there is evidence that CMA, a chaperone-mediated protein degradation pathway, is upregulated in Bz-resistant MM and the inhibition of CMA sensitises resistant cells to Bz. The protein levels of LAMP2A, the rate-limiting factor of the CMA pathway, are significantly increased in MM patients resistant to Bz and within our Bz-resistant cell line model. Bz-resistant cell lines also possessed higher basal CMA activity than the Bz-sensitive parent cell line. In MM cell lines, CMA activity was upregulated in response to ER stress induced by Bz. The inhibition of CMA sensitises Bz-resistant cells to Bz and the combination of CMA inhibition and Bz in vitro had a more cytotoxic effect on myeloma cells than Bz alone. Conclusion: In summary, the upregulation of CMA is a potential mechanism of resistance to Bz and a novel target to overcome Bz-resistant MM.


Asunto(s)
Bortezomib/administración & dosificación , Autofagia Mediada por Chaperones/genética , Resistencia a Antineoplásicos/genética , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Mieloma Múltiple/tratamiento farmacológico , Anciano , Apoptosis/efectos de los fármacos , Bortezomib/efectos adversos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Autofagia Mediada por Chaperones/efectos de los fármacos , Femenino , Citometría de Flujo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Persona de Mediana Edad , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Proteolisis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
4.
J Neuroinflammation ; 18(1): 295, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34930303

RESUMEN

BACKGROUND: Parkinson's disease (PD) is characterized by degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc), accompanied by accumulation of α-synuclein, chronic neuroinflammation and autophagy dysfunction. Previous studies suggested that misfolded α-synuclein induces the inflammatory response and autophagy dysfunction in microglial cells. The NLRP3 inflammasome signaling pathway plays a crucial role in the neuroinflammatory process in the central nervous system. However, the relationship between autophagy deficiency and NLRP3 activation induced by α-synuclein accumulation is not well understood. METHODS: Through immunoblotting, immunocytochemistry, immunofluorescence, flow cytometry, ELISA and behavioral tests, we investigated the role of p38-TFEB-NLRP3 signaling pathways on neuroinflammation in the α-synuclein A53T PD models. RESULTS: Our results showed that increased protein levels of NLRP3, ASC, and caspase-1 in the α-synuclein A53T PD models. P38 is activated by overexpression of α-synuclein A53T mutant, which inhibited the master transcriptional activator of autophagy TFEB. And we found that NLRP3 was degraded by chaperone-mediated autophagy (CMA) in microglial cells. Furthermore, p38-TFEB pathways inhibited CMA-mediated NLRP3 degradation in Parkinson's disease. Inhibition of p38 had a protective effect on Parkinson's disease model via suppressing the activation of NLRP3 inflammasome pathway. Moreover, both p38 inhibitor SB203580 and NLRP3 inhibitor MCC950 not only prevented neurodegeneration in vivo, but also alleviated movement impairment in α-synuclein A53T-tg mice model of Parkinson's disease. CONCLUSION: Our research reveals p38-TFEB pathways promote microglia activation through inhibiting CMA-mediated NLRP3 degradation in Parkinson's disease, which could be a potential therapeutic strategy for PD. p38-TFEB pathways promote microglia activation through inhibiting CMA-mediated NLRP3 degradation in Parkinson's disease. In this model, p38 activates NLRP3 inflammasome via inhibiting TFEB in microglia. TFEB signaling negatively regulates NLRP3 inflammasome through increasing LAMP2A expression, which binds to NLRP3 and promotes its degradation via chaperone-mediated autophagy (CMA). NLRP3-mediated microglial activation promotes the death of dopaminergic neurons.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Autofagia Mediada por Chaperones/fisiología , Microglía/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedad de Parkinson/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Autofagia Mediada por Chaperones/efectos de los fármacos , Imidazoles/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Enfermedad de Parkinson/genética , Proteolisis/efectos de los fármacos , Piridinas/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores
5.
Food Chem Toxicol ; 158: 112706, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34848256

RESUMEN

α-Synuclein, which is associated with Parkinson's disease, is cleared by the ubiquitin-proteasome system and autophagy lysosome system. Chaperon-mediated autophagy (CMA) and macroautophagy are major subtypes of autophagy and play a critical role in pesticide-induced α-synucleinopathy. In this study, we explored the role of CMA in diquat (DQ)-induced α-synucleinopathy and characterized the relationship between CMA and macroautophagy in the clearance of pathologic α-synuclein for the prevention of DQ neurotoxicity. DQ was cytotoxic to SH-SY5Y cells in a concentration-dependent manner, as shown by decreased cell viability and increased cytotoxicity. DQ treatment was also found to induce autophagy such as CMA and macroautophagy by monitoring the expression of Lamp2A and microtubule-associated protein 1A/1B light chain 3B (LC3-II) respectively. Following DQ treatment, SH-SY5Y cells were found to have induced phosphorylated and detergent-insoluble α-synuclein deposits, and MG132, a proteasome inhibitor, effectively potentiated both CMA and macroautophagy for preventing α-synuclein aggregation. Interestingly, CMA impairment by Lamp2A-knock down decreased the LC3II expression compared to in DQ-treated cells transfected with control siRNA. In Lamp2-knock down cells, pathologic α-synuclein was increased 12 h after DQ treatment, but there was no change observed at 24 h. In DQ-treated cells, macroautophagy by 3-methyladenine and bafilomycin inhibition increased Lamp2A expression, indicating an increase in CMA activity. In addition, CMA modulation affected apoptosis, and inhibiting lysosome activity by NH4Cl increased apoptosis in DQ-treated cells. An increase in autophagy was confirmed to compensate for the decrease in lysosome activity. Pretreatment with z-VAD-fmk, a pan-caspase inhibitor, significantly enhanced the macroautophagy response of DQ-exposed cells without alterations in Lamp2A expression. Our results suggest that CMA can regulate DQ-induced α-synucleinopathy cooperatively with macroautophagy, and crosstalk between macroautophagy and CMA plays an important role in DQ-induced cytotoxicity. Taken together, autophagy modulation may be a useful treatment strategy in pesticide-induced neurodegenerative disorders through preventing α-synucleinopathy.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia Mediada por Chaperones , Diquat/toxicidad , Macroautofagia , alfa-Sinucleína , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Autofagia Mediada por Chaperones/efectos de los fármacos , Autofagia Mediada por Chaperones/fisiología , Humanos , Macroautofagia/efectos de los fármacos , Macroautofagia/fisiología , alfa-Sinucleína/antagonistas & inhibidores , alfa-Sinucleína/metabolismo
6.
Protein Cell ; 12(10): 769-787, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34291435

RESUMEN

Chaperone-mediated autophagy (CMA) is a lysosome-dependent selective degradation pathway implicated in the pathogenesis of cancer and neurodegenerative diseases. However, the mechanisms that regulate CMA are not fully understood. Here, using unbiased drug screening approaches, we discover Metformin, a drug that is commonly the first medication prescribed for type 2 diabetes, can induce CMA. We delineate the mechanism of CMA induction by Metformin to be via activation of TAK1-IKKα/ß signaling that leads to phosphorylation of Ser85 of the key mediator of CMA, Hsc70, and its activation. Notably, we find that amyloid-beta precursor protein (APP) is a CMA substrate and that it binds to Hsc70 in an IKKα/ß-dependent manner. The inhibition of CMA-mediated degradation of APP enhances its cytotoxicity. Importantly, we find that in the APP/PS1 mouse model of Alzheimer's disease (AD), activation of CMA by Hsc70 overexpression or Metformin potently reduces the accumulated brain Aß plaque levels and reverses the molecular and behavioral AD phenotypes. Our study elucidates a novel mechanism of CMA regulation via Metformin-TAK1-IKKα/ß-Hsc70 signaling and suggests Metformin as a new activator of CMA for diseases, such as AD, where such therapeutic intervention could be beneficial.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Precursor de Proteína beta-Amiloide/genética , Autofagia Mediada por Chaperones/efectos de los fármacos , Proteínas del Choque Térmico HSC70/genética , Quinasas Quinasa Quinasa PAM/genética , Metformina/farmacología , Fármacos Neuroprotectores/farmacología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Benzotiazoles/farmacología , Bencilaminas/farmacología , Línea Celular Tumoral , Autofagia Mediada por Chaperones/genética , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Células HEK293 , Proteínas del Choque Térmico HSC70/metabolismo , Células HeLa , Humanos , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Masculino , Ratones , Ratones Transgénicos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Células PC12 , Compuestos de Fenilurea/farmacología , Quinazolinas/farmacología , Ratas , Transducción de Señal
7.
Neurochem Int ; 149: 105141, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34298079

RESUMEN

Histone deacetylase 6 (HDAC6) has been shown to control major cell response pathways to the cytotoxic ubiquitinated aggregates in some protein aggregation diseases. However, it is not well known whether HDAC6 affects the aggregation process of α-synuclein (α-syn) in Parkinson's disease (PD). Previously, we demonstrated that HDAC6 inhibition exacerbated the nigrostriatal dopamine neurodegeneration and up-regulated α-syn oligomers in a heat shock protein 90 (Hsp90)-dependent manner in PD mouse model. Here, we further showed that HDAC6 overexpression partly improved the behavior deficits of the PD model and alleviated the nigrostriatal dopamine (DA) neurons injury. Furthermore, HDAC6 was found to regulate α-syn oligomers levels through activation of chaperone-mediated autophagy (CMA). During this process, Hsp90 deacetylation mediated the crosstalk between HDAC6 and lysosome-associated membrane protein type 2A. Liquid chromatography-tandem mass spectrometry and mutational analysis showed that acetylation status Hsp90 at the K489 site was a strong determinant for HDAC6-induced CMA activation, α-syn oligomers levels, and cell survival in the cell model of PD. Therefore, our findings uncovered the mechanism of HDAC6 in the PD model that HDAC6 regulated α-syn oligomers levels and DA neurons survival partly through modulating CMA, and Hsp90 deacetylation at the K489 site mediated the crosstalk between HDAC6 and CMA. HDAC6 and its downstream effectors appear as key modulators of the cytotoxic α-syn aggregates, which deserve further investigations to evaluate their values as potential therapeutic targets in PD.


Asunto(s)
Autofagia Mediada por Chaperones/fisiología , Proteínas HSP90 de Choque Térmico/metabolismo , Histona Desacetilasa 6/metabolismo , Trastornos Parkinsonianos/metabolismo , Agregado de Proteínas/fisiología , alfa-Sinucleína/metabolismo , Acetilcisteína/análogos & derivados , Acetilcisteína/toxicidad , Animales , Autofagia Mediada por Chaperones/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/patología , Agregado de Proteínas/efectos de los fármacos , alfa-Sinucleína/antagonistas & inhibidores
8.
Mol Med Rep ; 23(5)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33760140

RESUMEN

Chaperone­mediated autophagy (CMA) is a selective type of autophagy whereby a specific subset of intracellular proteins is targeted to the lysosome for degradation. The present study investigated the mechanisms underlying the response and resistance to 5­fluorouracil (5­FU) in colorectal cancer (CRC) cell lines. In engineered 5­FU­resistant CRC cell lines, a significant elevation of lysosome­associated membrane protein 2A (LAMP2A), which is the key molecule in the CMA pathway, was identified. High expression of LAMP2A was found to be responsible for 5­FU resistance and to enhance PLD2 expression through the activation of NF­κB pathway. Accordingly, loss or gain of function of LAMP2A in 5­FU­resistant CRC cells rendered them sensitive or resistant to 5­FU, respectively. Taken together, the results of the present study suggested that chemoresistance in patients with CRC may be mediated by enhancing CMA. Thus, CMA is a promising predictor of chemosensitivity to 5­FU treatment and anti­CMA therapy may be a novel therapeutic option for patients with CRC.


Asunto(s)
Autofagia Mediada por Chaperones/genética , Neoplasias Colorrectales/tratamiento farmacológico , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , eIF-2 Quinasa/genética , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Autofagia Mediada por Chaperones/efectos de los fármacos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Resistencia a Antineoplásicos/efectos de los fármacos , Fluorouracilo/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/genética , Metástasis de la Neoplasia , Transducción de Señal/efectos de los fármacos
9.
Int J Mol Sci ; 22(4)2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33672324

RESUMEN

Chaperone-mediated autophagy (CMA) is a catabolic pathway fundamental for cell homeostasis, by which specific damaged or non-essential proteins are degraded. CMA activity has three main levels of regulation. The first regulatory level is based on the targetability of specific proteins possessing a KFERQ-like domain, which can be recognized by specific chaperones and delivered to the lysosomes. Target protein unfolding and translocation into the lysosomal lumen constitutes the second level of CMA regulation and is based on the modulation of Lamp2A multimerization. Finally, the activity of some accessory proteins represents the third regulatory level of CMA activity. CMA's role in oncology has not been fully clarified covering both pro-survival and pro-death roles in different contexts. Taking all this into account, it is possible to comprehend the actual complexity of both CMA regulation and the cellular consequences of its activity allowing it to be elected as a modulatory and not only catabolic machinery. In this review, the role covered by CMA in oncology is discussed with a focus on its relevance in glioma. Molecular correlates of CMA importance in glioma responsiveness to treatment are described to identify new early efficacy biomarkers and new therapeutic targets to overcome resistance.


Asunto(s)
Autofagia Mediada por Chaperones , Glioma/tratamiento farmacológico , Glioma/patología , Antineoplásicos Alquilantes/farmacología , Autofagia Mediada por Chaperones/efectos de los fármacos , Autofagia Mediada por Chaperones/fisiología , Glioma/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas/metabolismo , Temozolomida/farmacología
10.
Nature ; 591(7848): 117-123, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33442062

RESUMEN

The activation of mostly quiescent haematopoietic stem cells (HSCs) is a prerequisite for life-long production of blood cells1. This process requires major molecular adaptations to allow HSCs to meet the regulatory and metabolic requirements for cell division2-4. The mechanisms that govern cellular reprograming upon stem-cell activation, and the subsequent return of stem cells to quiescence, have not been fully characterized. Here we show that chaperone-mediated autophagy (CMA)5, a selective form of lysosomal protein degradation, is involved in sustaining HSC function in adult mice. CMA is required for protein quality control in stem cells and for the upregulation of fatty acid metabolism upon HSC activation. We find that CMA activity in HSCs decreases with age and show that genetic or pharmacological activation of CMA can restore the functionality of old mouse and human HSCs. Together, our findings provide mechanistic insights into a role for CMA in sustaining quality control, appropriate energetics and overall long-term HSC function. Our work suggests that CMA may be a promising therapeutic target for enhancing HSC function in conditions such as ageing or stem-cell transplantation.


Asunto(s)
Autofagia Mediada por Chaperones/fisiología , Células Madre Hematopoyéticas/fisiología , Adulto , Anciano , Envejecimiento , Animales , Autorrenovación de las Células , Células Cultivadas , Autofagia Mediada por Chaperones/efectos de los fármacos , Autofagia Mediada por Chaperones/genética , Metabolismo Energético , Femenino , Glucólisis , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Humanos , Ácido Linoleico/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Mieloma Múltiple/patología , Rejuvenecimiento , Adulto Joven
11.
Cell Mol Immunol ; 18(6): 1476-1488, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-31900460

RESUMEN

Macroautophagy has been implicated in modulating the therapeutic function of mesenchymal stromal cells (MSCs). However, the biological function of chaperone-mediated autophagy (CMA) in MSCs remains elusive. Here, we found that CMA was inhibited in MSCs in response to the proinflammatory cytokines interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α). In addition, suppression of CMA by knocking down the CMA-related lysosomal receptor lysosomal-associated membrane protein 2 (LAMP-2A) in MSCs significantly enhanced the immunosuppressive effect of MSCs on T cell proliferation, and as expected, LAMP-2A overexpression in MSCs exerted the opposite effect on T cell proliferation. This effect of CMA on the immunosuppressive function of MSCs was attributed to its negative regulation of the expression of chemokine C-X-C motif ligand 10 (CXCL10), which recruits inflammatory cells, especially T cells, to MSCs, and inducible nitric oxide synthase (iNOS), which leads to the subsequent inhibition of T cell proliferation via nitric oxide (NO). Mechanistically, CMA inhibition dramatically promoted IFN-γ plus TNF-α-induced activation of NF-κB and STAT1, leading to the enhanced expression of CXCL10 and iNOS in MSCs. Furthermore, we found that IFN-γ plus TNF-α-induced AKT activation contributed to CMA inhibition in MSCs. More interestingly, CMA-deficient MSCs exhibited improved therapeutic efficacy in inflammatory liver injury. Taken together, our findings established CMA inhibition as a critical contributor to the immunosuppressive function of MSCs induced by inflammatory cytokines and highlighted a previously unknown function of CMA.


Asunto(s)
Autofagia Mediada por Chaperones , Terapia de Inmunosupresión , Inflamación/inmunología , Inflamación/patología , Células Madre Mesenquimatosas/inmunología , Animales , Autofagia Mediada por Chaperones/efectos de los fármacos , Quimiocina CXCL10/metabolismo , Activación Enzimática/efectos de los fármacos , Interferón gamma/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor de Transcripción STAT1/metabolismo , Bazo/metabolismo , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Factor de Necrosis Tumoral alfa/farmacología
12.
Cells ; 9(10)2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33092174

RESUMEN

The phosphopeptide P140/Lupuzor, which improves the course of lupus disease in mice and patients, targets chaperone-mediated autophagy (CMA), a selective form of autophagy that is abnormally upregulated in lupus-prone MRL/lpr mice. Administered intravenously to diseased mice, P140 reduces the expression level of two major protein players of CMA, LAMP2A and HSPA8, and inhibits CMA in vitro in a cell line that stably expresses a CMA reporter. Here, we aimed to demonstrate that P140 also affects CMA in vivo and to unravel the precise cellular mechanism of how P140 interacts with the CMA process. MRL/lpr mice and CBA/J mice used as control received P140 or control peptides intravenously. Lysosome-enriched fractions of spleen or liver were prepared to examine lysosomal function. Highly purified lysosomes were further isolated and left to incubate with the CMA substrate to study at which cellular step P140 interacts with the CMA process. The data show that P140 effectively regulates CMA in vivo in MRL/lpr mice at the step of substrate lysosomal uptake and restores some alterations of defective lysosomes. For the first time, it is demonstrated that by occluding the intralysosome uptake of CMA substrates, a therapeutic molecule can attenuate excessive CMA activity in a pathological pro-inflammatory context and protect against hyperinflammation. This recovery effect of P140 on hyperactivated CMA is not only important for lupus therapy but potentially also for treating other (auto)inflammatory diseases, including neurologic and metabolic disorders, where CMA modulation would be highly beneficial.


Asunto(s)
Autofagia , Lupus Eritematoso Sistémico/patología , Lisosomas/metabolismo , Fosfopéptidos/farmacología , Animales , Autofagia/efectos de los fármacos , Autofagia Mediada por Chaperones/efectos de los fármacos , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Ratones Endogámicos CBA , Ratones Endogámicos MRL lpr , Modelos Biológicos , Fragmentos de Péptidos/farmacología , Bazo/metabolismo
13.
Biochimie ; 176: 110-116, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32623049

RESUMEN

Obesity is a major health problem worldwide. Overweight and obesity directly affect health-related quality of life and also have an important economic impact on healthcare systems. In experimental models, obesity leads to hypothalamic inflammation and loss of metabolic homeostasis. It is known that macroautophagy is decreased in the hypothalamus of obese mice but the role of chaperone-mediated autophagy is still unknown. In this study, we aimed to investigate the role of hypothalamic chaperone-mediated autophagy in response to high-fat diet and also the direct effect of palmitate on hypothalamic neurons. Mice received chow or high-fat diet for 3 days or 1 week. At the end of the experimental protocol, chaperone-mediated autophagy in hypothalamus was investigated, as well as cytokines expression. In other set of experiments, neuronal cell lines were treated with palmitic acid, a saturated fatty acid. We show that chaperone-mediated autophagy is differently regulated in response to high-fat diet intake for 3 days or 1 week. Also, when hypothalamic neurons are directly exposed to palmitate there is activation of chaperone-mediated autophagy. High-fat diet causes hypothalamic inflammation concomitantly to changes in the content of chaperone-mediated autophagy machinery. It remains to be studied the direct role of inflammation and lipids itself on the activation of chaperone-mediated autophagy in the hypothalamus in vivo and also the neuronal implications of chaperone-mediated autophagy inhibition in response to obesity.


Asunto(s)
Autofagia Mediada por Chaperones/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Hipotálamo/metabolismo , Neuronas/metabolismo , Obesidad/metabolismo , Ácido Palmítico/farmacología , Animales , Línea Celular , Hipotálamo/patología , Ratones , Neuronas/patología , Obesidad/inducido químicamente , Obesidad/patología , Ácido Palmítico/metabolismo
14.
J Clin Endocrinol Metab ; 105(10)2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32556197

RESUMEN

CONTEXT: Papillary thyroid carcinoma (PTC) is the most common endocrine malignancy. Chaperone-mediated autophagy (CMA), 1 type of autophagy, is thought to promote or suppress cancer development in different cancer types. However, the effect of CMA on PTC development and the underlying mechanisms remain unknown. OBJECTIVE: To determine whether CMA plays implied critical roles in the development of PTC. DESIGN: We investigated the association between CMA and PTC development in PTC tissues and normal thyroid tissues by detecting the key protein of CMA, lysosome-associated membrane protein type 2A (LAMP2A), using quantitative polymerase chain reaction (PCR) and immunohistochemistry, which were further validated in the TGCA dataset. The effect of CMA on PTC development was studied by cell proliferation, migration, and apoptosis assays. The underlying mechanisms of peroxisome proliferator-activated receptor γ (PPARγ)-stromal cell-derived factor 1 (SDF1)/ C-X-C motif chemokine receptor 4 (CXCR4) signaling were clarified by western blotting, quantitative PCR, and rescue experiments. Knockdown and tamoxifen were used to analyze the effect of estrogen receptor (ER) α on CMA. RESULTS: Our study confirmed that CMA, indicated by LAMP2A expression, was significantly increased in PTC tumor tissues and cell lines, and was associated with tumor size and lymph node metastasis of patients. Higher CMA in PTC promoted tumor cell proliferation and migration, thereby promoting tumor growth and metastasis. These effects of CMA on PTC were exerted by decreasing PPARγ protein expression to enhance SDF1 and CXCR4 expression. Furthermore, CMA was found positively regulated by ERα signaling in PTC. CONCLUSION: Our investigation identified CMA regulated by ERα promoting PTC tumor progression that enhanced tumor cell proliferation and migration by targeting PPARγ-SDF1/CXCR4 signaling, representing a potential target for treatment of PTC.


Asunto(s)
Antineoplásicos Hormonales/farmacología , Carcinogénesis/patología , Autofagia Mediada por Chaperones/fisiología , Receptor alfa de Estrógeno/metabolismo , Cáncer Papilar Tiroideo/patología , Neoplasias de la Tiroides/patología , Animales , Antineoplásicos Hormonales/uso terapéutico , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Autofagia Mediada por Chaperones/efectos de los fármacos , Autofagia Mediada por Chaperones/genética , Quimiocina CXCL12/metabolismo , Conjuntos de Datos como Asunto , Progresión de la Enfermedad , Receptor alfa de Estrógeno/antagonistas & inhibidores , Receptor alfa de Estrógeno/genética , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Ratones , Persona de Mediana Edad , PPAR gamma/metabolismo , Receptores CXCR4/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico , Cáncer Papilar Tiroideo/tratamiento farmacológico , Cáncer Papilar Tiroideo/cirugía , Glándula Tiroides/patología , Glándula Tiroides/cirugía , Neoplasias de la Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/cirugía , Tiroidectomía , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Biochem Biophys Res Commun ; 528(1): 199-205, 2020 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-32487317

RESUMEN

Glucocorticoids are released from the adrenal cortex and are important for regulating various physiological functions. However, a persistent increase in glucocorticoids due to chronic stress causes various dysfunctions in the central nervous system which can lead to mental disorders such as depression. Macroautophagy, one of the pathways of the autophagy-lysosome protein degradation system, is dysregulated in psychiatric disorders, implicating a disturbance of protein degradation in the pathogenesis of psychiatric disorders. In the present study, we investigated whether glucocorticoids affect the activity of chaperone-mediated autophagy (CMA) and microautophagy (mA), the other two pathways of the autophagy-lysosome system. Treatment of human-derived AD293 cells and primary cultured rat cortical neurons with dexamethasone, a potent glucocorticoid receptor agonist, and endogenous glucocorticoids decreased both CMA and mA activities. However, this decrease was significantly suppressed by treatment with RU-486, a glucocorticoid receptor antagonist. In addition, dexamethasone significantly decreased lysosomal Hsc70. These findings suggest that glucocorticoids negatively regulate CMA and mA in a glucocorticoid receptor-dependent manner, and provide evidence for CMA and mA as novel therapeutic targets for depression.


Asunto(s)
Autofagia Mediada por Chaperones/efectos de los fármacos , Glucocorticoides/farmacología , Microautofagia/efectos de los fármacos , Animales , Línea Celular , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Ratas
16.
Biochem Biophys Res Commun ; 524(4): 923-928, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32057360

RESUMEN

Amyloid ß (Aß) oligomers may be a real culprit in the pathogenesis of Alzheimer's disease (AD); therefore, the elimination of these toxic oligomers may be of great significance for AD therapy. Autophagy is the catabolic process by which lysosomes degrade cytosolic components, and heat shock cognate 70 kDa protein (Hsc70) binds to proteins with their KFERQ-like motifs [also known as chaperone-mediated autophagy (CMA) motifs] and carries them to lysosomes through CMA or late endosomes through endosomal microautophagy (eMI) for degradation. In this study, our strategy is to make the pathological Aß become one selective and suitable substrate for CMA and eMI (termed as Hsc70-based autophagy) by tagging its oligomers with multiple CMA motifs. First, we design and synthesize Aß oligomer binding peptides with three CMA motifs. Second, we determine that the peptide can help Aß oligomers enter endosomes and lysosomes, which can be further enhanced by ketone. More importantly, we find that the peptide can dramatically reduce Aß oligomers in induced pluripotent stem cell (iPSC) cortical neurons derived from AD patient fibroblasts and protect primary cultured cortical neurons against the Aß oligomer-induced neurotoxicity. In conclusion, we demonstrate that the peptide targeting Hsc70-based autophagy can effectively eliminate Aß oligomers and have superior neuroprotective activity.


Asunto(s)
Péptidos beta-Amiloides/antagonistas & inhibidores , Autofagia Mediada por Chaperones/efectos de los fármacos , Proteínas del Choque Térmico HSC70/metabolismo , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Péptidos/farmacología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/terapia , Secuencias de Aminoácidos , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/farmacología , Animales , Diferenciación Celular , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Proteínas del Choque Térmico HSC70/genética , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Terapia Molecular Dirigida , Neuronas/metabolismo , Neuronas/patología , Fármacos Neuroprotectores/síntesis química , Péptidos/síntesis química , Cultivo Primario de Células , Unión Proteica , Proteolisis , Ratas , Ratas Long-Evans
17.
Mycotoxin Res ; 36(1): 23-30, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31264166

RESUMEN

The mycotoxin enniatin B1 (ENN B1) is widely present in grain-based feed and food products. In the present study, we have investigated how this lipophilic and ionophoric molecule can affect the lysosomal stability and chaperone-mediated autophagy (CMA) in wild-type (WT) and in lysosome-associated membrane proteins (LAMP)-1/2 double-deficient (DD) mouse embryonic fibroblasts (MEF). The cell viability and lysosomal pH were assessed using the Neutral Red (NR) cytotoxicity assay and the LysoSensor® Yellow/Blue DND-160, respectively. Changes in the expression of the CMA-related components LAMP-2 and the chaperones heat shock cognate (hsc) 70 and heat shock protein (hsp) 90 were determined in cytosolic extracts by immunoblotting. In the NR assay, LAMP-1/2 DD MEF cells were significantly less sensitive to ENN B1 than WT MEF cells after 24 h exposure to ENN B1 at levels of 2.5-10 µmol/L. Exposure to ENN B1 at concentrations below the half maximal effective concentration (EC50) (1.5-1.7 µmol/L) increased the lysosomal pH in WT MEF, but not in LAMP-1/2 DD cells, suggesting that lysosomal LAMP-2 is an early target of ENN B1-induced lysosomal alkalization and cytotoxicity in MEF cells. Additionally, cytosolic hsp90 and LAMP-2 levels slightly increased after exposure for 4 h, indicating lysosomal membrane permeabilization (LMP). In summary, it appeared that ENN B1 can destabilize the LAMP-2 complex in the lysosomal membrane at concentrations close to the EC50, resulting in the alkalinization of lysosomes, partial LMP, and thereby leakage of CMA-associated components into the cytosol.


Asunto(s)
Depsipéptidos/toxicidad , Membranas Intracelulares/efectos de los fármacos , Lisosomas/patología , Micotoxinas/toxicidad , Permeabilidad/efectos de los fármacos , Animales , Autofagia Mediada por Chaperones/efectos de los fármacos , Fibroblastos , Eliminación de Gen , Proteínas del Choque Térmico HSC70/efectos de los fármacos , Proteínas del Choque Térmico HSC70/metabolismo , Proteínas HSP90 de Choque Térmico/efectos de los fármacos , Proteínas HSP90 de Choque Térmico/metabolismo , Concentración de Iones de Hidrógeno/efectos de los fármacos , Proteína 2 de la Membrana Asociada a los Lisosomas/efectos de los fármacos , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Ratones , Chaperonas Moleculares/efectos de los fármacos , Chaperonas Moleculares/metabolismo
18.
Cells ; 8(11)2019 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-31653091

RESUMEN

Glioblastoma (GBM) is the most common astrocytic-derived brain tumor in adults, characterized by a poor prognosis mainly due to the resistance to the available therapy. The study of mitochondria-derived oxidative stress, and of the biological events that orbit around it, might help in the comprehension of the molecular mechanisms at the base of GBM responsiveness to Temozolomide (TMZ). Sensitive and resistant GBM cells were used to test the role of mitochondrial ROS release in TMZ-resistance. Chaperone-Mediated Autophagy (CMA) activation in relation to reactive oxygen species (ROS) release has been measured by monitoring the expression of specific genes. Treatments with H2O2 were used to test their potential in reverting resistance. Fluctuations of cytoplasmic ROS levels were accountable for CMA induction and cytotoxic effects observed in TMZ sensitive cells after treatment. On the other hand, in resistant cells, TMZ failed in producing an increase in cytoplasmic ROS levels and CMA activation, preventing GBM cell toxicity. By increasing oxidative stress, CMA activation was recovered, as also cell cytotoxicity, especially in combination with TMZ treatment. Herein, for the first time, it is shown the relation between mitochondrial ROS release, CMA activation and TMZ-responsiveness in GBM.


Asunto(s)
Autofagia Mediada por Chaperones/fisiología , Glioblastoma/metabolismo , Estrés Oxidativo/fisiología , Apoptosis , Autofagia/efectos de los fármacos , Autofagia/fisiología , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Autofagia Mediada por Chaperones/efectos de los fármacos , Citoplasma/metabolismo , Resistencia a Antineoplásicos/genética , Glioblastoma/tratamiento farmacológico , Humanos , Peróxido de Hidrógeno , Mitocondrias/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Temozolomida/metabolismo , Temozolomida/farmacología
19.
Biol Pharm Bull ; 42(8): 1394-1401, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31366874

RESUMEN

Autophagy-lysosome proteolysis is involved in protein quality control and classified into macroautophagy (MA), microautophagy (mA) and chaperone-mediated autophagy (CMA), by the routes of substrate delivery to lysosomes. Both autophagy-lysosome proteolysis and exosome release are strongly associated with membrane trafficking. In the present study, we investigated how chemical and small interfering RNA (siRNA)-mediated activation and inhibition of these autophagic pathways affect exosome release in AD293 cells. Activation of MA and mA by rapamycin and activation of CMA by mycophenolic acid significantly decreased exosome release. Although lysosomal inhibitors, NH4Cl and bafilomycin A1, significantly increased exosome release, a MA inhibitor, 3-methyladenine, did not affect. Exosome release was significantly increased by the siRNA-mediated knockdown of LAMP2A, which is crucial for CMA. Inversely, activity of CMA/mA was significantly increased by the prevention of exosome release, which was induced by siRNA-mediated knockdown of Rab27a. These findings indicate that CMA/mA and exosome release are reciprocally regulated. This regulation would be the molecular basis of extracellular release and propagation of misfolded proteins in various neurodegenerative diseases.


Asunto(s)
Autofagia Mediada por Chaperones , Exosomas , Microautofagia , Adenina/análogos & derivados , Adenina/farmacología , Cloruro de Amonio/farmacología , Línea Celular , Autofagia Mediada por Chaperones/efectos de los fármacos , Autofagia Mediada por Chaperones/genética , Exosomas/efectos de los fármacos , Exosomas/genética , Humanos , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Macrólidos/farmacología , Microautofagia/efectos de los fármacos , Microautofagia/genética , Ácido Micofenólico/farmacología , ARN Interferente Pequeño/genética , Sirolimus/farmacología
20.
J Pharmacol Sci ; 140(2): 201-204, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31178328

RESUMEN

Autophagy-lysosome proteolysis is classified into macroautophagy (MA), microautophagy (mA) and chaperone-mediated autophagy (CMA). In contrast to MA and CMA, mA have been mainly studied in yeast. In 2011, mammalian mA was identified as a pathway to deliver cytosolic proteins into multivesicular bodies. However, its molecular mechanism is quite different from yeast mA. Using a cell-based method to evaluate mA and CMA, we revealed that rapamycin, an activator of yeast mA, significantly activated mammalian mA. Although rapamycin activates MA, mA was also activated by rapamycin in MA-deficient cells. These findings suggest that rapamycin is a first-identified activator of mammalian mA.


Asunto(s)
Microautofagia/efectos de los fármacos , Sirolimus/farmacología , Animales , Células Cultivadas , Autofagia Mediada por Chaperones/efectos de los fármacos , Ratones , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA