Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.304
Filtrar
1.
Methods Mol Biol ; 2845: 15-25, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39115654

RESUMEN

The selective degradation of nuclear components via autophagy, termed nucleophagy, is an essential process observed from yeasts to mammals and crucial for maintaining nucleus homeostasis and regulating nucleus functions. In the budding yeast Saccharomyces cerevisiae, nucleophagy occurs in two different manners: one involves autophagosome formation for the sequestration and vacuolar transport of nucleus-derived vesicles (NDVs), and the other proceeds with the invagination of the vacuolar membrane for the uptake of NDVs into the vacuole, termed macronucleophagy and micronucleophagy, respectively. This chapter describes methods to analyze and quantify activities of these nucleophagy pathways in yeast.


Asunto(s)
Autofagia , Núcleo Celular , Saccharomyces cerevisiae , Vacuolas , Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Núcleo Celular/metabolismo , Autofagia/fisiología , Autofagosomas/metabolismo
2.
Methods Mol Biol ; 2845: 1-14, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39115653

RESUMEN

Selective removal of excess or damaged mitochondria is an evolutionarily conserved process that contributes to mitochondrial quality and quantity control. This catabolic event relies on autophagy, a membrane trafficking system that sequesters cytoplasmic constituents into double membrane-bound autophagosomes and delivers them to lysosomes (vacuoles in yeast) for hydrolytic degradation and is thus termed mitophagy. Dysregulation of mitophagy is associated with various diseases, highlighting its physiological relevance. In budding yeast, the pro-mitophagic single-pass membrane protein Atg32 is upregulated under prolonged respiration or nutrient starvation, anchored on the surface of mitochondria, and activated to recruit the autophagy machinery for the formation of autophagosomes surrounding mitochondria. In this chapter, we provide protocols to assess Atg32-mediated mitophagy using fluorescence microscopy and immunoblotting.


Asunto(s)
Microscopía Fluorescente , Mitocondrias , Mitofagia , Saccharomycetales , Microscopía Fluorescente/métodos , Saccharomycetales/metabolismo , Mitocondrias/metabolismo , Immunoblotting/métodos , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Autofagia/fisiología , Autofagosomas/metabolismo , Receptores Citoplasmáticos y Nucleares
3.
Methods Mol Biol ; 2841: 189-197, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39115778

RESUMEN

Macroautophagy, hereafter autophagy, plays a crucial role in the degradation of harmful or unwanted cellular components through a double-membrane autophagosome. Upon autophagosome fusion with the vacuole, the degraded materials are subsequently recycled to generate macromolecules, contributing to cellular homeostasis, metabolism, and stress tolerance in plants. A hallmark during autophagy is the formation of isolation membrane structure named as phagophore, which undergoes multiple steps to become as a complete double-membrane autophagosome. Methodologies have been developed in recent years to observe and quantify the autophagic process, which greatly advance knowledge of autophagosome biogenesis in plant cells. In this chapter, we will introduce two methods to dissect the autophagosome-related structures in the Arabidopsis plant cells, including the correlative light and electron microscopy, to map the ultrastructural feature of autophagosomal structures, and time-lapse imaging to monitor the temporal recruitment of autophagy machinery during autophagosome formation.


Asunto(s)
Arabidopsis , Autofagosomas , Autofagia , Células Vegetales , Autofagosomas/metabolismo , Autofagosomas/ultraestructura , Arabidopsis/metabolismo , Arabidopsis/ultraestructura , Autofagia/fisiología , Células Vegetales/metabolismo , Células Vegetales/ultraestructura , Imagen de Lapso de Tiempo/métodos , Fagosomas/metabolismo , Fagosomas/ultraestructura , Microscopía Electrónica/métodos
4.
Methods Mol Biol ; 2841: 215-224, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39115781

RESUMEN

Macroautophagy/autophagy is a highly conserved process for the degradation of cellular components and plays an essential role in cellular homeostasis maintenance. During autophagy, specialized double-membrane vesicles known as autophagosomes are formed and sequester cytoplasmic cargoes and deliver them to lysosomes or vacuoles for breakdown. Central to this process are autophagy-related (ATG) proteins, with the ATG9-the only integral membrane protein in this core machinery-playing a central role in mediating autophagosome formation. Recent years have witnessed the maturation of cryo-electron microscopy (cryo-EM) and single-particle analysis into powerful tools for high-resolution structural determination of protein complexes. These advancements have significantly deepened our understanding of the intricate molecular mechanisms underlying autophagosome biogenesis. In this study, we present a protocol detailing the acquisition of the three-dimensional structure of ATG9 from Arabidopsis thaliana. The structural resolution achieved 7.8 Å determined by single-particle cryo-electron microscopy (cryo-EM).


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Relacionadas con la Autofagia , Microscopía por Crioelectrón , Microscopía por Crioelectrón/métodos , Arabidopsis/metabolismo , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/ultraestructura , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/química , Autofagosomas/metabolismo , Autofagosomas/ultraestructura , Autofagia , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/ultraestructura
5.
Int J Mol Sci ; 25(15)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39125836

RESUMEN

Regulation of autophagy through the 62 kDa ubiquitin-binding protein/autophagosome cargo protein sequestosome 1 (p62/SQSTM1), whose level is generally inversely proportional to autophagy, is crucial in microglial functions. Since autophagy is involved in inflammatory mechanisms, we investigated the actions of pro-inflammatory lipopolysaccharide (LPS) and anti-inflammatory rosuvastatin (RST) in secondary microglial cultures with or without bafilomycin A1 (BAF) pretreatment, an antibiotic that potently inhibits autophagosome fusion with lysosomes. The levels of the microglia marker protein Iba1 and the autophagosome marker protein p62/SQSTM1 were quantified by Western blots, while the number of p62/SQSTM1 immunoreactive puncta was quantitatively analyzed using fluorescent immunocytochemistry. BAF pretreatment hampered microglial survival and decreased Iba1 protein level under all culturing conditions. Cytoplasmic p62/SQSTM1 level was increased in cultures treated with LPS+RST but reversed markedly when BAF+LPS+RST were applied together. Furthermore, the number of p62/SQSTM1 immunoreactive autophagosome puncta was significantly reduced when RST was used but increased significantly in BAF+RST-treated cultures, indicating a modulation of autophagic flux through reduction in p62/SQSTM1 degradation. These findings collectively indicate that the cytoplasmic level of p62/SQSTM1 protein and autophagocytotic flux are differentially regulated, regardless of pro- or anti-inflammatory state, and provide context for understanding the role of autophagy in microglial function in various inflammatory settings.


Asunto(s)
Autofagosomas , Autofagia , Lipopolisacáridos , Macrólidos , Microglía , Proteína Sequestosoma-1 , Animales , Proteína Sequestosoma-1/metabolismo , Microglía/metabolismo , Microglía/efectos de los fármacos , Macrólidos/farmacología , Autofagia/efectos de los fármacos , Ratas , Autofagosomas/metabolismo , Autofagosomas/efectos de los fármacos , Lipopolisacáridos/farmacología , Células Cultivadas , Inflamación/metabolismo , Biomarcadores/metabolismo
6.
Cells ; 13(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39120287

RESUMEN

Autophagy engulfs cellular components in double-membrane-bound autophagosomes for clearance and recycling after fusion with lysosomes. Thus, autophagy is a key process for maintaining proteostasis and a powerful cell-intrinsic host defense mechanism, protecting cells against pathogens by targeting them through a specific form of selective autophagy known as xenophagy. In this context, ubiquitination acts as a signal of recognition of the cargoes for autophagic receptors, which direct them towards autophagosomes for subsequent breakdown. Nevertheless, autophagy can carry out a dual role since numerous viruses including members of the Orthoherpesviridae family can either inhibit or exploit autophagy for its own benefit and to replicate within host cells. There is growing evidence that Herpes simplex virus type 1 (HSV-1), a highly prevalent human pathogen that infects epidermal keratinocytes and sensitive neurons, is capable of negatively modulating autophagy. Since the effects of HSV-1 infection on autophagic receptors have been poorly explored, this study aims to understand the consequences of HSV-1 productive infection on the levels of the major autophagic receptors involved in xenophagy, key proteins in the recruitment of intracellular pathogens into autophagosomes. We found that productive HSV-1 infection in human neuroglioma cells and keratinocytes causes a reduction in the total levels of Ub conjugates and decreases protein levels of autophagic receptors, including SQSTM1/p62, OPTN1, NBR1, and NDP52, a phenotype that is also accompanied by reduced levels of LC3-I and LC3-II, which interact directly with autophagic receptors. Mechanistically, we show these phenotypes are the result of xenophagy activation in the early stages of productive HSV-1 infection to limit virus replication, thereby reducing progeny HSV-1 yield. Additionally, we found that the removal of the tegument HSV-1 protein US11, a recognized viral factor that counteracts autophagy in host cells, enhances the clearance of autophagic receptors, with a significant reduction in the progeny HSV-1 yield. Moreover, the removal of US11 increases the ubiquitination of SQSTM1/p62, indicating that US11 slows down the autophagy turnover of autophagy receptors. Overall, our findings suggest that xenophagy is a potent host defense against HSV-1 replication and reveals the role of the autophagic receptors in the delivery of HSV-1 to clearance via xenophagy.


Asunto(s)
Autofagia , Herpesvirus Humano 1 , Humanos , Herpesvirus Humano 1/fisiología , Herpes Simple/virología , Herpes Simple/inmunología , Herpes Simple/metabolismo , Macroautofagia , Replicación Viral , Autofagosomas/metabolismo , Queratinocitos/virología , Queratinocitos/metabolismo , Proteína Sequestosoma-1/metabolismo , Interacciones Huésped-Patógeno , Animales , Proteínas Nucleares , Proteínas de Ciclo Celular , Proteínas de Transporte de Membrana
7.
Theranostics ; 14(9): 3719-3738, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948070

RESUMEN

Rationale: Autophagy dysregulation is known to be a mechanism of doxorubicin (DOX)-induced cardiotoxicity (DIC). Mitochondrial-Endoplasmic Reticulum Contacts (MERCs) are where autophagy initiates and autophagosomes form. However, the role of MERCs in autophagy dysregulation in DIC remains elusive. FUNDC1 is a tethering protein of MERCs. We aim to investigate the effect of DOX on MERCs in cardiomyocytes and explore whether it is involved in the dysregulated autophagy in DIC. Methods: We employed confocal microscopy and transmission electron microscopy to assess MERCs structure. Autophagic flux was analyzed using the mCherry-EGFP-LC3B fluorescence assay and western blotting for LC3BII. Mitophagy was studied through the mCherry-EGFP-FIS1 fluorescence assay and colocalization analysis between LC3B and mitochondria. A total dose of 18 mg/kg of doxorubicin was administrated in mice to construct a DIC model in vivo. Additionally, we used adeno-associated virus (AAV) to cardiac-specifically overexpress FUNDC1. Cardiac function and remodeling were evaluated by echocardiography and Masson's trichrome staining, respectively. Results: DOX blocked autophagic flux by inhibiting autophagosome biogenesis, which could be attributed to the downregulation of FUNDC1 and disruption of MERCs structures. FUNDC1 overexpression restored the blocked autophagosome biogenesis by maintaining MERCs structure and facilitating ATG5-ATG12/ATG16L1 complex formation without altering mitophagy. Furthermore, FUNDC1 alleviated DOX-induced oxidative stress and cardiomyocytes deaths in an autophagy-dependent manner. Notably, cardiac-specific overexpression of FUNDC1 protected DOX-treated mice against adverse cardiac remodeling and improved cardiac function. Conclusions: In summary, our study identified that FUNDC1-meditated MERCs exerted a cardioprotective effect against DIC by restoring the blocked autophagosome biogenesis. Importantly, this research reveals a novel role of FUNDC1 in enhancing macroautophagy via restoring MERCs structure and autophagosome biogenesis in the DIC model, beyond its previously known regulatory role as an mitophagy receptor.


Asunto(s)
Autofagia , Cardiotoxicidad , Doxorrubicina , Retículo Endoplásmico , Proteínas de la Membrana , Proteínas Mitocondriales , Miocitos Cardíacos , Animales , Doxorrubicina/efectos adversos , Doxorrubicina/farmacología , Ratones , Autofagia/efectos de los fármacos , Cardiotoxicidad/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Mitofagia/efectos de los fármacos , Masculino , Autofagosomas/metabolismo , Autofagosomas/efectos de los fármacos , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
8.
Proc Natl Acad Sci U S A ; 121(32): e2322500121, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39074281

RESUMEN

Macroautophagy is a conserved cellular degradation pathway that, upon upregulation, confers resilience toward various stress conditions, including protection against proteotoxicity associated with neurodegenerative diseases, leading to cell survival. Monitoring autophagy regulation in living cells is important to understand its role in physiology and pathology, which remains challenging. Here, we report that when HaloTag is expressed within a cell of interest and reacts with tetramethylrhodamine (TMR; its ligand attached to a fluorophore), the rate of fluorescent TMR-HaloTag conjugate accumulation in autophagosomes and lysosomes, observed by fluorescence microscopy, reflects the rate of autophagy. Notably, we found that TMR-HaloTag conjugates were mainly degraded by the proteasome (~95%) under basal conditions, while lysosomal degradation (~10% upon pharmacological autophagy activation) was slow and incomplete, forming a degraded product that remained fluorescent within a SDS-PAGE gel, in agreement with previous reports that HaloTag is resistant to lysosomal degradation when fused to proteins of interest. Autophagy activation is distinguished from autophagy inhibition by the increased production of the degraded TMR-HaloTag band relative to the full-length TMR-HaloTag band as assessed by SDS-PAGE and by a faster rate of TMR-HaloTag conjugate lysosomal puncta accumulation as observed by fluorescence microscopy. Pharmacological proteasome inhibition leads to accumulation of TMR-HaloTag in lysosomes, indicating possible cross talk between autophagy and proteasomal degradation.


Asunto(s)
Lisosomas , Macroautofagia , Humanos , Lisosomas/metabolismo , Autofagia/fisiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Rodaminas/química , Microscopía Fluorescente/métodos , Autofagosomas/metabolismo , Células HeLa , Proteolisis
9.
Cell Mol Life Sci ; 81(1): 322, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39078420

RESUMEN

Transmembrane protein 9 (TMEM9) is a transmembrane protein that regulates lysosomal acidification by interacting with the v-type ATPase complex. However, the role of TMEM9 in the lysosome-dependent autophagy machinery has yet to be identified. In this study, we demonstrate that the lysosomal protein TMEM9, which is involved in vesicle acidification, regulates Rab9-dependent alternative autophagy through its interaction with Beclin1. The cytosolic domain of TMEM9 interacts with Beclin1 via its Bcl-2-binding domain. This interaction between TMEM9 and Beclin1 dissociates Bcl-2, an autophagy-inhibiting partner, from Beclin1, thereby activating LC3-independent and Rab9-dependent alternative autophagy. Late endosomal and lysosomal TMEM9 apparently colocalizes with Rab9 but not with LC3. Furthermore, we show that multiple glycosylation of TMEM9, essential for lysosomal localization, is essential for its interaction with Beclin1 and the activation of Rab9-dependent alternative autophagy. These findings reveal that TMEM9 recruits and activates the Beclin1 complex at the site of Rab9-dependent autophagosome to induce alternative autophagy.


Asunto(s)
Autofagia , Beclina-1 , Lisosomas , Proteínas de la Membrana , Proteínas de Unión al GTP rab , Beclina-1/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de Unión al GTP rab/metabolismo , Lisosomas/metabolismo , Células HEK293 , Unión Proteica , Células HeLa , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Animales , Autofagosomas/metabolismo
10.
EMBO Rep ; 25(8): 3240-3262, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39026010

RESUMEN

The monomer-binding protein profilin 1 (PFN1) plays a crucial role in actin polymerization. However, mutations in PFN1 are also linked to hereditary amyotrophic lateral sclerosis, resulting in a broad range of cellular pathologies which cannot be explained by its primary function as a cytosolic actin assembly factor. This implies that there are important, undiscovered roles for PFN1 in cellular physiology. Here we screened knockout cells for novel phenotypes associated with PFN1 loss of function and discovered that mitophagy was significantly upregulated. Indeed, despite successful autophagosome formation, fusion with the lysosome, and activation of additional mitochondrial quality control pathways, PFN1 knockout cells accumulate depolarized, dysmorphic mitochondria with altered metabolic properties. Surprisingly, we also discovered that PFN1 is present inside mitochondria and provide evidence that mitochondrial defects associated with PFN1 loss are not caused by reduced actin polymerization in the cytosol. These findings suggest a previously unrecognized role for PFN1 in maintaining mitochondrial integrity and highlight new pathogenic mechanisms that can result from PFN1 dysregulation.


Asunto(s)
Actinas , Mitocondrias , Profilinas , Profilinas/metabolismo , Profilinas/genética , Mitocondrias/metabolismo , Mitocondrias/genética , Humanos , Actinas/metabolismo , Mitofagia/genética , Lisosomas/metabolismo , Citosol/metabolismo , Técnicas de Inactivación de Genes , Autofagosomas/metabolismo , Células HeLa
11.
Nat Commun ; 15(1): 6311, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060258

RESUMEN

Respiratory syncytial virus (RSV) hijacks cholesterol or autophagy pathways to facilitate optimal replication. However, our understanding of the associated molecular mechanisms remains limited. Here, we show that RSV infection blocks cholesterol transport from lysosomes to the endoplasmic reticulum by downregulating the activity of lysosomal acid lipase, activates the SREBP2-LDLR axis, and promotes uptake and accumulation of exogenous cholesterol in lysosomes. High cholesterol levels impair the VAP-A-binding activity of ORP1L and promote the recruitment of dynein-dynactin, PLEKHM1, or HOPS VPS39 to Rab7-RILP, thereby facilitating minus-end transport of autophagosomes and autolysosome formation. Acidification inhibition and dysfunction of cholesterol-rich lysosomes impair autophagy flux by inhibiting autolysosome degradation, which promotes the accumulation of RSV fusion protein. RSV-F storage is nearly abolished after cholesterol depletion or knockdown of LDLR. Most importantly, the knockout of LDLR effectively inhibits RSV infection in vivo. These findings elucidate the molecular mechanism of how RSV co-regulates lysosomal cholesterol reprogramming and autophagy and reveal LDLR as a novel target for anti-RSV drug development.


Asunto(s)
Autofagia , Colesterol , Lisosomas , Receptores de LDL , Infecciones por Virus Sincitial Respiratorio , Proteínas de Transporte Vesicular , Replicación Viral , Proteínas de Unión al GTP rab , Proteínas de Unión a GTP rab7 , Lisosomas/metabolismo , Colesterol/metabolismo , Humanos , Animales , Receptores de LDL/metabolismo , Receptores de LDL/genética , Infecciones por Virus Sincitial Respiratorio/metabolismo , Infecciones por Virus Sincitial Respiratorio/virología , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Ratones , Complejo Dinactina/metabolismo , Retículo Endoplásmico/metabolismo , Dineínas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Virus Sincitial Respiratorio Humano/fisiología , Autofagosomas/metabolismo , Proteínas Virales de Fusión/metabolismo , Proteínas Virales de Fusión/genética , Células HeLa , Células A549
12.
Sci Rep ; 14(1): 13258, 2024 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858422

RESUMEN

Lung cancer is the most common oncological disease worldwide, with non-small cell lung cancer accounting for approximately 85% of lung cancer cases. α-Hederin is a monodesmosidic triterpenoid saponin isolated from the leaves of Hedera helix L. or Nigella sativa and has been extensively studied for its antitumor activity against a variety of tumor cells. It has been suggested that α-Hederin is a potential regulator of autophagy and has high promise for application. However, the specific mechanism and characteristics of α-Hederin in regulating autophagy are not well understood. In this study, we confirmed the potential of α-Hederin application in lung cancer treatment and comprehensively explored the mechanism and characteristics of α-Hederin in regulating autophagy in lung cancer cells. Our results suggest that α-Hederin is an incomplete autophagy inducer that targets mTOR to activate the classical autophagic pathway, inhibits lysosomal acidification without significantly affecting the processes of autophagosome transport, lysosome biogenesis, autophagosome and lysosome fusion, and finally leads to impaired autophagic flux and triggers autophagic damage in NSCLC.


Asunto(s)
Autofagia , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Lisosomas , Ácido Oleanólico , Saponinas , Humanos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Autofagia/efectos de los fármacos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/tratamiento farmacológico , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacología , Saponinas/farmacología , Línea Celular Tumoral , Serina-Treonina Quinasas TOR/metabolismo , Autofagosomas/metabolismo , Autofagosomas/efectos de los fármacos , Células A549
13.
J Mol Biol ; 436(15): 168691, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38944336

RESUMEN

Autophagy is a cellular degradation pathway where double-membrane autophagosomes form de novo to engulf cytoplasmic material destined for lysosomal degradation. This process requires regulated membrane remodeling, beginning with the initial autophagosomal precursor and progressing to its elongation and maturation into a fully enclosed, fusion-capable vesicle. While the core protein machinery involved in autophagosome formation has been extensively studied over the past two decades, the role of phospholipids in this process has only recently been studied. This review focuses on the phospholipid composition of the phagophore membrane and the mechanisms that supply lipids to expand this unique organelle.


Asunto(s)
Autofagosomas , Autofagia , Fosfolípidos , Autofagosomas/metabolismo , Fosfolípidos/metabolismo , Humanos , Animales , Lisosomas/metabolismo
14.
Front Immunol ; 15: 1260439, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863700

RESUMEN

Dengue virus (DENV), transmitted by infected mosquitoes, is a major public health concern, with approximately half the world's population at risk for infection. Recent decades have increasing incidence of dengue-associated disease alongside growing frequency of outbreaks. Although promising progress has been made in anti-DENV immunizations, post-infection treatment remains limited to non-specific supportive treatments. Development of antiviral therapeutics is thus required to limit DENV dissemination in humans and to help control the severity of outbreaks. Dendritic cells (DCs) are amongst the first cells to encounter DENV upon injection into the human skin mucosa, and thereafter promote systemic viral dissemination to additional human target cells. Autophagy is a vesicle trafficking pathway involving the formation of cytosolic autophagosomes, and recent reports have highlighted the extensive manipulation of autophagy by flaviviruses, including DENV, for viral replication. However, the temporal profiling and function of autophagy activity in DENV infection and transmission by human primary DCs remains poorly understood. Herein, we demonstrate that mechanisms of autophagosome formation and extracellular vesicle (EV) release have a pro-viral role in DC-mediated DENV transmission. We show that DENV exploits early-stage canonical autophagy to establish infection in primary human DCs. DENV replication enhanced autophagosome formation in primary human DCs, and intrinsically-heightened autophagosome biogenesis correlated with relatively higher rates of DC susceptibility to DENV. Furthermore, our data suggest that viral replication intermediates co-localize with autophagosomes, while productive DENV infection introduces a block at the late degradative stages of autophagy in infected DCs but not in uninfected bystander cells. Notably, we identify for the first time that approximately one-fourth of DC-derived CD9/CD81/CD63+ EVs co-express canonical autophagy marker LC3, and demonstrate that DC-derived EV populations are an alternative, cell-free mechanism by which DCs promote DENV transmission to additional target sites. Taken together, our study highlights intersections between autophagy and secretory pathways during viral infection, and puts forward autophagosome accumulation and viral RNA-laden EVs as host determinants of DC-mediated DENV infection in humans. Host-directed therapeutics targeting autophagy and exocytosis pathways thus have potential to enhance DC-driven resistance to DENV acquisition and thereby limit viral dissemination by initial human target cells following mosquito-to-human transmission of DENV.


Asunto(s)
Autofagosomas , Autofagia , Células Dendríticas , Virus del Dengue , Dengue , Vías Secretoras , Replicación Viral , Humanos , Virus del Dengue/fisiología , Células Dendríticas/inmunología , Células Dendríticas/virología , Células Dendríticas/metabolismo , Dengue/transmisión , Dengue/virología , Dengue/inmunología , Autofagosomas/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/virología , Células Cultivadas
15.
Exp Cell Res ; 440(1): 114118, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38852763

RESUMEN

Autophagy phenomenon in the cell maintains proteostasis balance by eliminating damaged organelles and protein aggregates. Imbalance in autophagic flux may cause accumulation of protein aggregates in various neurodegenerative disorders. Regulation of autophagy by either calcium or chaperone play a key role in the removal of protein aggregates from the cell. The neuromuscular rare genetic disorder, GNE Myopathy, is characterized by accumulation of rimmed vacuoles having protein aggregates of ß-amyloid and tau that may result from altered autophagic flux. In the present study, the autophagic flux was deciphered in HEK cell-based model for GNE Myopathy harbouring GNE mutations of Indian origin. The refolding activity of HSP70 chaperone was found to be reduced in GNE mutant cells compared to wild type controls. The autophagic markers LC3II/I ratio was altered with increased number of autophagosome formation in GNE mutant cells compared to wild type cells. The cytosolic calcium levels were also increased in GNE mutant cells of Indian origin. Interestingly, treatment of GNE mutant cells with HSP70 activator, BGP-15, restored the expression and refolding activity of HSP70 along with autophagosome formation. Treatment with calcium chelator, BAPTA-AM restored the cytoplasmic calcium levels and autophagosome formation but not LC3II/I ratio significantly. Our study provides insights towards GNE mutation specific response for autophagy regulation and opens up a therapeutic advancement area in calcium signalling and HSP70 function for GNE related Myopathy.


Asunto(s)
Autofagia , Calcio , Miopatías Distales , Proteínas HSP70 de Choque Térmico , Complejos Multienzimáticos , Mutación , Humanos , Autofagia/genética , Autofagia/efectos de los fármacos , Mutación/genética , Calcio/metabolismo , Miopatías Distales/genética , Miopatías Distales/metabolismo , Miopatías Distales/patología , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Células HEK293 , Autofagosomas/metabolismo , Autofagosomas/efectos de los fármacos , India
16.
Int J Mol Sci ; 25(12)2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38928101

RESUMEN

In our prior investigations, we elucidated the role of the tryptophan-to-tyrosine substitution at the 61st position in the nonstructural protein NSsW61Y in diminishing the interaction between nonstructural proteins (NSs) and nucleoprotein (NP), impeding viral replication. In this study, we focused on the involvement of NSs in replication via the modulation of autophagosomes. Initially, we examined the impact of NP expression levels, a marker for replication, upon the infection of HeLa cells with severe fever thrombocytopenia syndrome virus (SFTSV), with or without the inhibition of NP binding. Western blot analysis revealed a reduction in NP levels in NSsW61Y-expressing conditions. Furthermore, the expression levels of the canonical autophagosome markers p62 and LC3 decreased in HeLa cells expressing NSsW61Y, revealing the involvement of individual viral proteins on autophagy. Subsequent experiments confirmed that NSsW61Y perturbs autophagy flux, as evidenced by reduced levels of LC3B and p62 upon treatment with chloroquine, an inhibitor of autophagosome-lysosome fusion. LysoTracker staining demonstrated a decrease in lysosomes in cells expressing the NS mutant compared to those expressing wild-type NS. We further explored the mTOR-associated regulatory pathway, a key regulator affected by NS mutant expression. The observed inhibition of replication could be linked to conformational changes in the NSs, impairing their binding to NP and altering mTOR regulation, a crucial upstream signaling component in autophagy. These findings illuminate the intricate interplay between NSsW61Y and the suppression of host autophagy machinery, which is crucial for the generation of autophagosomes to facilitate viral replication.


Asunto(s)
Autofagosomas , Autofagia , Phlebovirus , Triptófano , Tirosina , Proteínas no Estructurales Virales , Replicación Viral , Humanos , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/genética , Replicación Viral/genética , Autofagosomas/metabolismo , Células HeLa , Phlebovirus/genética , Phlebovirus/fisiología , Phlebovirus/metabolismo , Autofagia/genética , Tirosina/metabolismo , Triptófano/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Mutación , Sustitución de Aminoácidos , Síndrome de Trombocitopenia Febril Grave/metabolismo , Síndrome de Trombocitopenia Febril Grave/virología , Síndrome de Trombocitopenia Febril Grave/genética , Lisosomas/metabolismo , Nucleoproteínas/metabolismo , Nucleoproteínas/genética
17.
Biochem Biophys Res Commun ; 724: 150198, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38852504

RESUMEN

Autophagy is a critical catabolic pathway that enables cells to survive and adapt to stressful conditions, especially nutrient deprivation. The fusion of autophagic vacuoles with lysosomes is the final step of autophagy, which degrades the engulfed contents into metabolic precursors for re-use by the cell. O-GlcNAc transferase (OGT) plays a crucial role in regulating autophagy flux in response to nutrient stress, particularly by targeting key proteins involved in autophagosome-lysosome fusion. However, the role of OGT in basal autophagy, which occurs at a low and constitutive levels under growth conditions, remains poorly understood. Silencing or inhibition of OGT was used to compare the effect of OGT downregulation on autophagy flux in the non-cancerous CCD841CoN and cancerous HCT116 human colon cell lines under nutrient-rich conditions. We provide evidence that the reduction of OGT activity impairs the maturation of autophagosomes, thereby blocking the completion of basal autophagy in both cell lines. Additionally, OGT inhibition results in the accumulation of lysosomes and enlarged late endosomes in the perinuclear region, as demonstrated by confocal imaging. This is associated with a defect in the localization of the small GTPase Rab7 to these organelles. The regulation of transport and fusion events between the endosomal and lysosomal compartments is crucial for maintaining the autophagic flux. These findings suggest an interplay between OGT and the homeostasis of the endolysosomal network in human cells.


Asunto(s)
Autofagia , Regulación hacia Abajo , Endosomas , Lisosomas , N-Acetilglucosaminiltransferasas , Nutrientes , Proteínas de Unión a GTP rab7 , Humanos , N-Acetilglucosaminiltransferasas/metabolismo , N-Acetilglucosaminiltransferasas/genética , Endosomas/metabolismo , Lisosomas/metabolismo , Nutrientes/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Colon/metabolismo , Colon/patología , Células HCT116 , Autofagosomas/metabolismo
18.
Elife ; 132024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38831693

RESUMEN

A change in the electric charge of autophagosome membranes controls the recruitment of SNARE proteins to ensure that membrane fusion occurs at the right time during autophagy.


Asunto(s)
Autofagosomas , Autofagia , Fusión de Membrana , Proteínas SNARE , Autofagia/fisiología , Autofagosomas/metabolismo , Proteínas SNARE/metabolismo , Humanos , Animales
19.
Elife ; 122024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38831696

RESUMEN

During macroautophagy, cytoplasmic constituents are engulfed by autophagosomes. Lysosomes fuse with closed autophagosomes but not with unclosed intermediate structures. This is achieved in part by the late recruitment of the autophagosomal SNARE syntaxin 17 (STX17) to mature autophagosomes. However, how STX17 recognizes autophagosome maturation is not known. Here, we show that this temporally regulated recruitment of STX17 depends on the positively charged C-terminal region of STX17. Consistent with this finding, mature autophagosomes are more negatively charged compared with unclosed intermediate structures. This electrostatic maturation of autophagosomes is likely driven by the accumulation of phosphatidylinositol 4-phosphate (PI4P) in the autophagosomal membrane. Accordingly, dephosphorylation of autophagosomal PI4P prevents the association of STX17 to autophagosomes. Furthermore, molecular dynamics simulations support PI4P-dependent membrane insertion of the transmembrane helices of STX17. Based on these findings, we propose a model in which STX17 recruitment to mature autophagosomes is temporally regulated by a PI4P-driven change in the surface charge of autophagosomes.


Asunto(s)
Autofagosomas , Fosfatos de Fosfatidilinositol , Proteínas Qa-SNARE , Proteínas Qa-SNARE/metabolismo , Proteínas Qa-SNARE/genética , Autofagosomas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Humanos , Simulación de Dinámica Molecular , Autofagia/fisiología
20.
Int J Biol Sci ; 20(8): 2904-2921, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38904023

RESUMEN

Abnormal proliferation of pulmonary artery smooth muscle cells (PASMCs) is one of the critical pathological mechanisms of pulmonary hypertension (PH), and therefore is gradually being adopted as an important direction for the treatment of PH. Metallothioneins (MTs) have been reported to be associated with PH, but the underlying mechanisms are not fully understood. Here, we demonstrated that the expression level of metallothionein 3 (MT3) was significantly increased in pulmonary arterioles from PH patients and chronic hypoxia-induced rat and mouse PH models, as well as in hypoxia-treated human PASMCs. Knockdown of MT3 significantly inhibited the proliferation of human PASMCs by arresting the cell cycle in the G1 phase, while overexpression of MT3 had the opposite effect. Mechanistically, we found that MT3 increased the intracellular zinc (Zn2+) concentration to enhance the transcriptional activity of metal-regulated transcription factor 1 (MTF1), which promoted the expression of autophagy-related gene 5 (ATG5), facilitating autophagosome formation. More importantly, MT3-induced autophagy and proliferation of human PASMCs were largely prevented by knockdown of MTF1 and ATG5. Therefore, in this study, we identified MT3-Zinc-MTF1-ATG5 as a novel pathway that affects PASMC proliferation by regulating autophagosome formation, suggesting that MT3 may be a novel target for the treatment of PH.


Asunto(s)
Proliferación Celular , Metalotioneína 3 , Miocitos del Músculo Liso , Arteria Pulmonar , Zinc , Arteria Pulmonar/citología , Arteria Pulmonar/metabolismo , Animales , Humanos , Zinc/metabolismo , Ratones , Ratas , Miocitos del Músculo Liso/metabolismo , Masculino , Autofagosomas/metabolismo , Proteína 5 Relacionada con la Autofagia/metabolismo , Proteína 5 Relacionada con la Autofagia/genética , Ratas Sprague-Dawley , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Autofagia , Hipertensión Pulmonar/metabolismo , Ratones Endogámicos C57BL , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Factor de Transcripción MTF-1 , Metalotioneína/metabolismo , Metalotioneína/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...