Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Más filtros













Intervalo de año de publicación
1.
Mol Biol Rep ; 51(1): 598, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683409

RESUMEN

Salinity stress is a critical challenge in crop production and requires innovative strategies to enhance the salt tolerance of plants. Insights from mangrove species, which are renowned for their adaptability to high-salinity environments, provides valuable genetic targets and resources for improving crops. A significant hurdle in salinity stress is the excessive uptake of sodium ions (Na+) by plant roots, causing disruptions in cellular balance, nutrient deficiencies, and hampered growth. Specific ion transporters and channels play crucial roles in maintaining a low Na+/K+ ratio in root cells which is pivotal for salt tolerance. The family of high-affinity potassium transporters, recently characterized in Avicennia officinalis, contributes to K+ homeostasis in transgenic Arabidopsis plants even under high-salt conditions. The salt overly sensitive pathway and genes related to vacuolar-type H+-ATPases hold promise for expelling cytosolic Na+ and sequestering Na+ in transgenic plants, respectively. Aquaporins contribute to mangroves' adaptation to saline environments by regulating water uptake, transpiration, and osmotic balance. Antioxidant enzymes mitigate oxidative damage, whereas genes regulating osmolytes, such as glycine betaine and proline, provide osmoprotection. Mangroves exhibit increased expression of stress-responsive transcription factors such as MYB, NAC, and CBFs under high salinity. Moreover, genes involved in various metabolic pathways, including jasmonate synthesis, triterpenoid production, and protein stability under salt stress, have been identified. This review highlights the potential of mangrove genes to enhance salt tolerance of crops. Further research is imperative to fully comprehend and apply these genes to crop breeding to improve salinity resilience.


Asunto(s)
Avicennia , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente , Tolerancia a la Sal , Tolerancia a la Sal/genética , Avicennia/genética , Avicennia/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Plantas Modificadas Genéticamente/genética , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Salinidad , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sodio/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Plantas Tolerantes a la Sal/genética , Plantas Tolerantes a la Sal/metabolismo
2.
J Hazard Mater ; 466: 133601, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38309159

RESUMEN

Mangroves are of important economic and environmental value and research suggests that their carbon sequestration and climate change mitigation potential is significantly larger than other forests. However, increasing salinity and heavy metal pollution significantly affect mangrove ecosystem function and productivity. This study investigates the tolerance mechanisms of rhizobacteria in the rhizosphere of Avicennia marina under salinity and copper (Cu) stress during a 4-y stress period. The results exhibited significant differences in antioxidant levels, transcripts, and secondary metabolites. Under salt stress, the differentially expressed metabolites consisted of 30% organic acids, 26.78% nucleotides, 16.67% organic heterocyclic compounds, and 10% organic oxides as opposed to 27.27% organic acids, 24.24% nucleotides, 15.15% organic heterocyclic compounds, and 12.12% phenyl propane and polyketides under Cu stress. This resulted in differential regulation of metabolic pathways, with phenylpropanoid biosynthesis being unique to Cu stress and alanine/aspartate/glutamate metabolism and α-linolenic acid metabolism being unique to salt stress. The regulation of metabolic pathways enhanced antioxidant defenses, nutrient recycling, accumulation of osmoprotectants, stability of plasma membrane, and chelation of Cu, thereby improving the stress tolerance of rhizobacteria and A. marina. Even though the abundance and community structure of rhizobacteria were significantly changed, all the samples were dominated by Proteobacteria, Chloroflexi, Actinobacteriota, and Firmicutes. Since the response mechanisms were unbalanced between treatments, this led to differential growth trends for A. marina. Our study provides valuable inside on variations in diversity and composition of bacterial community structure from mangrove rhizosphere subjected to long-term salt and Cu stress. It also clarifies rhizobacterial adaptive mechanisms to these stresses and how they are important for mitigating abiotic stress and promoting plant growth. Therefore, this study can serve as a reference for future research aimed at developing long-term management practices for mangrove forests.


Asunto(s)
Avicennia , Compuestos Heterocíclicos , Cobre/toxicidad , Cobre/metabolismo , Ecosistema , Avicennia/metabolismo , Suelo , Antioxidantes/metabolismo , Multiómica , Estrés Salino , Nucleótidos/metabolismo , Compuestos Heterocíclicos/metabolismo
3.
Sci Rep ; 14(1): 406, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172216

RESUMEN

Avicennia marina is a salt-tolerance plant with high antioxidant and antibacterial potential. In the present work, a gene encoding MnSOD from Avicennia marina (AmSOD2) was cloned in the expression vectors pET28a. The resulting constructs were transformed into Escherichia coli strains Rosetta (DE3). Following the induction with Isopropyl ß-D-1-thiogalactopyranoside, the protein His-AmSOD2 was expressed but dominantly found in the insoluble fraction of strain R-AmSOD2. Due to detection of mitochondrial transit peptide in the amino acid sequence of AmSOD2, the transit peptide was removed and AmSOD2 without transit peptide (tAmSOD2) was expressed in E. coli and dominantly found in the soluble fraction. The enzyme His-tAmSOD2 exhibited a molecular mass of 116 kDa in native condition. Nevertheless, in reducing conditions the molecular mass is 28 kDa indicating the enzyme His-tAmSOD2 is a tetramer protein. As shown by ICP analysis there is one mole Mn2+ in each monomer. The Pure His-tAmSOD2 was highly active in vitro, however the activity was almost three-fold lower than His-AmSOD1. Whereas the high stability of the recombinant His-AmSOD1was previously shown after incubation in a broad range pH and high temperature, His-tAmSOD2 was stable up to 50 °C and pH 6 for 1 h. The gene expression analysis showed that the gene encoding AmSOD2 is expressed in root, shoot and leaves of A. marina. In addition, the results show that the expression in the leaves was enhanced after treatment of plant with NaCl, H2O2, Cd2+ and Ni2+ indicating the important role of MnSOD in the resistant mechanism of mangroves.


Asunto(s)
Avicennia , Metales Pesados , Avicennia/genética , Avicennia/metabolismo , Peróxido de Hidrógeno/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Metales Pesados/análisis , Superóxido Dismutasa/metabolismo , Péptidos/metabolismo
4.
Plant Cell Environ ; 47(3): 832-853, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37984066

RESUMEN

Aquaporins (AQPs) regulate the transport of water and other substrates, aiding plants in adapting to stressful environments. However, the knowledge of AQPs in salt-secreting and viviparous Avicennia marina is limited. In this study, 46 AmAQPs were identified in A. marina genome, and their subcellular localisation and function in transporting H2 O2 and boron were assessed through bioinformatics analysis and yeast transformation. Through analysing their expression patterns via RNAseq and real-time quantitative polymerase chain reaction, we found that most AmAQPs were downregulated in response to salt and tidal flooding. AmPIP (1;1, 1;7, 2;8, 2;9) and AmTIP (1;5, 1;6) as salt-tolerant candidate genes may contribute to salt secretion together with Na+ /H+ antiporters. AmPIP2;1 and AmTIP1;5 were upregulated during tidal flooding and may be regulated by anaerobic-responsive element and ethylene-responsive element cis-elements, aiding in adaptation to tidal inundation. Additionally, we found that the loss of the seed desiccation and dormancy-related TIP3 gene, and the loss of the seed dormancy regulator DOG1 gene, or DOG1 protein lack heme-binding capacity, may be genetic factors contributing to vivipary. Our findings shed light on the role of AQPs in A. marina adaptation to intertidal environments and their relevance to salt secretion and vivipary.


Asunto(s)
Acuaporinas , Avicennia , Avicennia/metabolismo , Ecosistema , Agua/metabolismo , Acuaporinas/genética , Acuaporinas/metabolismo
5.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38069316

RESUMEN

One of the most productive ecosystems in the world, mangroves are susceptible to cold stress. However, there is currently insufficient knowledge of the adaptation mechanisms of mangrove plants in response to chilling stress. This study conducted a comparative analysis of transcriptomics and metabolomics to investigate the adaptive responses of Kandelia obovata (chilling-tolerant) and Avicennia marina (chilling-sensitive) to 5 °C. The transcriptomics results revealed that differentially expressed genes (DEGs) were mostly enriched in signal transduction, photosynthesis-related pathways, and phenylpropanoid biosynthesis. The expression pattern of genes involved in photosynthesis-related pathways in A. marina presented a downregulation of most DEGs, which correlated with the decrease in total chlorophyll content. In the susceptible A. marina, all DEGs encoding mitogen-activated protein kinase were upregulated. Phenylpropanoid-related genes were observed to be highly induced in K. obovata. Additionally, several metabolites, such as 4-aminobutyric acid, exhibited higher levels in K. obovata than in A. marina, suggesting that chilling-tolerant varieties regulated more metabolites in response to chilling. The investigation defined the inherent distinctions between K. obovata and A. marina in terms of signal transduction gene expression, as well as phenylpropanoid and flavonoid biosynthesis, during exposure to low temperatures.


Asunto(s)
Avicennia , Rhizophoraceae , Avicennia/genética , Avicennia/metabolismo , Rhizophoraceae/genética , Plantones/metabolismo , Ecosistema , Perfilación de la Expresión Génica
6.
Planta ; 259(1): 12, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057597

RESUMEN

MAIN CONCLUSION: Transcriptional and metabolic regulation of lignin biosynthesis and lignification plays crucial roles in Avicennia marina pneumatophore development, facilitating its adaptation to coastal habitats. Avicennia marina is a pioneer mangrove species in coastal wetland. To cope with the periodic intertidal flooding and hypoxia environment, this species has developed a complex and extensive root system, with its most unique feature being a pneumatophore with a distinct above- and below-ground morphology and vascular structure. However, the characteristics of pneumatophore lignification remain unknown. Studies comparing the anatomy among above-ground pneumatophore, below-ground pneumatophore, and feeding root have suggested that vascular structure development in the pneumatophore is more like the development of a stem than of a root. Metabolome and transcriptome analysis illustrated that the accumulation of syringyl (S) and guaiacyl (G) units in the pneumatophore plays a critical role in lignification of the stem-like structure. Fourteen differentially accumulated metabolites (DAMs) and 10 differentially expressed genes involved in the lignin biosynthesis pathway were targeted. To identify genes significantly associated with lignification, we analyzed the correlation between 14 genes and 8 metabolites and further built a co-expression network between 10 transcription factors (TFs), including 5 for each of MYB and NAC, and 23 enzyme-coding genes involved in lignin biosynthesis. 4-Coumarate-CoA ligase, shikimate/quinate hydroxycinnamoyl transferase, cinnamyl alcohol dehydrogenase, caffeic acid 3-O-methyltransferase, phenylalanine ammonia-lyase, and peroxidase were identified to be strongly correlated with these TFs. Finally, we examined 9 key candidate genes through quantitative real-time PCR to validate the reliability of transcriptome data. Together, our metabolome and transcriptome findings reveal that lignin biosynthesis and lignification regulate pneumatophore development in the mangrove species A. marina and facilitate its adaptation to coastal habitats.


Asunto(s)
Avicennia , Avicennia/genética , Avicennia/metabolismo , Lignina/metabolismo , Reproducibilidad de los Resultados , Perfilación de la Expresión Génica , Transcriptoma/genética , Metaboloma
7.
Sci Rep ; 13(1): 7614, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37165000

RESUMEN

Avicennia marina (Forsk.) Vierh. is a typical mangrove plant. Its epidermis contains salt glands, which can secrete excess salts onto the leaf surfaces, improving the salt tolerance of the plants. However, knowledge on the epidermis-specific transcriptional responses of A. marina to salinity treatment is lacking. Thus, physiological and transcriptomic techniques were applied to unravel the salt tolerance mechanism of A. marina. Our results showed that 400 mM NaCl significantly reduced the plant height, leaf area, leaf biomass and photosynthesis of A. marina. In addition, 1565 differentially expressed genes were identified, of which 634 and 931 were up- and down-regulated. Based on Kyoto Encyclopedia of Genes and Genomes metabolic pathway enrichment analysis, we demonstrated that decreased gene expression, especially that of OEE1, PQL2, FDX3, ATPC, GAPDH, PRK, FBP and RPE, could explain the inhibited photosynthesis caused by salt treatment. Furthermore, the ability of A. marina to cope with 400 mM NaCl treatment was dependent on appropriate hormone signalling and potential sulfur-containing metabolites, such as hydrogen sulfide and cysteine biosynthesis. Overall, the present study provides a theoretical basis for the adaption of A. marina to saline habitats and a reference for studying the salt tolerance mechanism of other mangrove plants.


Asunto(s)
Avicennia , Animales , Avicennia/metabolismo , Transcriptoma , Salinidad , Cloruro de Sodio/farmacología , Cloruro de Sodio/metabolismo , Perfilación de la Expresión Génica , Epidermis , Hojas de la Planta/genética , ARN/metabolismo
8.
Genetica ; 151(3): 241-249, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37014491

RESUMEN

Multidrug and Toxic Compound Extrusion (MATE) proteins are essential transporters that extrude metabolites and participate in plant development and cellular detoxification. MATE transporters, which play crucial roles in the survival of mangrove plants under highly challenged environments, by specialized salt extrusion mechanisms, are mined from their genomes and reported here for the first time. Through homology search and domain prediction in the genome assemblies of Avicennia marina, Bruguiera sexangula, Ceriops zippeliana, Kandelia obovata, Rhizophora apiculata and Ceriops tagal, 74, 68, 66, 66, 63 and 64 MATE proteins, respectively were identified. The phylogenetic analysis divided the identified proteins into five major clusters and following the clustering pattern of the functionally characterized proteins, functions of the transporters in each cluster were predicted. Amino acid sequences, exon-intron structure, motif details and subcellular localization pattern for all the 401 proteins are described. The custom designed repeat masking libraries generated for each of these genomes, which will be of extensive use for the researchers worldwide, are also provided in this paper. This is the first study on the MATE genes in mangroves and the results provide comprehensive information on the molecular mechanisms enabling the survival of mangroves under hostile conditions.


Asunto(s)
Avicennia , Filogenia , Avicennia/genética , Avicennia/metabolismo , Secuencia de Aminoácidos , Exones , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
Plant Mol Biol ; 111(4-5): 393-413, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36645624

RESUMEN

NAC (NAM, ATAF1/2, CUC2) transcription factors (TFs) constitute a plant-specific gene family. It is reported that NAC TFs play important roles in plant growth and developmental processes and in response to biotic/abiotic stresses. Nevertheless, little information is known about the functional and evolutionary characteristics of NAC TFs in mangrove plants, a group of species adapting coastal intertidal habitats. Thus, we conducted a comprehensive investigation for NAC TFs in Avicennia marina, one pioneer species of mangrove plants. We totally identified 142 NAC TFs from the genome of A. marina. Combined with NAC proteins having been functionally characterized in other organisms, we built a phylogenetic tree to infer the function of NAC TFs in A. marina. Gene structure and motif sequence analyses suggest the sequence conservation and transcription regulatory regions-mediated functional diversity. Whole-genome duplication serves as the driver force to the evolution of NAC gene family. Moreover, two pairs of NAC genes were identified as positively selected genes of which AmNAC010/040 may be imposed on less constraint toward neofunctionalization. Quite a few stress/hormone-related responsive elements were found in promoter regions indicating potential response to various external factors. Transcriptome data revealed some NAC TFs were involved in pneumatophore and leaf salt gland development and response to salt, flooding and Cd stresses. Gene co-expression analysis found a few NAC TFs participates in the special biological processes concerned with adaptation to intertidal environment. In summary, this study provides detailed functional and evolutionary information about NAC gene family in mangrove plant A. marina and new perspective for adaptation to intertidal habitats.


Asunto(s)
Avicennia , Avicennia/química , Avicennia/genética , Avicennia/metabolismo , Filogenia , Factores de Transcripción/metabolismo , Genes de Plantas , Ecosistema
10.
Plant Cell Environ ; 46(5): 1521-1539, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36658747

RESUMEN

Hydrogen sulfide (H2 S) is considered to mediate plant growth and development. However, whether H2 S regulates the adaptation of mangrove plant to intertidal flooding habitats is not well understood. In this study, sodium hydrosulfide (NaHS) was used as an H2 S donor to investigate the effect of H2 S on the responses of mangrove plant Avicennia marina to waterlogging. The results showed that 24-h waterlogging increased reactive oxygen species (ROS) and cell death in roots. Excessive mitochondrial ROS accumulation is highly oxidative and leads to mitochondrial structural and functional damage. However, the application of NaHS counteracted the oxidative damage caused by waterlogging. The mitochondrial ROS production was reduced by H2 S through increasing the expressions of the alternative oxidase genes and increasing the proportion of alternative respiratory pathway in the total mitochondrial respiration. Secondly, H2 S enhanced the capacity of the antioxidant system. Meanwhile, H2 S induced Ca2+ influx and activated the expression of intracellular Ca2+ -sensing-related genes. In addition, the alleviating effect of H2 S on waterlogging can be reversed by Ca2+ chelator and Ca2+ channel blockers. In conclusion, this study provides the first evidence to explain the role of H2 S in waterlogging adaptation in mangrove plants from the mitochondrial aspect.


Asunto(s)
Avicennia , Sulfuro de Hidrógeno , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/metabolismo , Calcio/metabolismo , Avicennia/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo
11.
Sci Rep ; 12(1): 14547, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-36008524

RESUMEN

Leaf decomposition is the primary process in release of nutrients in the dynamic mangrove habitat, supporting the ecosystem food webs. On most environments, fungi are an essential part of this process. However, due to the peculiarities of mangrove forests, this group is currently neglected. Thus, this study tests the hypothesis that fungal communities display a specific succession pattern in different mangrove species and this due to differences in their ecological role. A molecular approach was employed to investigate the dynamics of the fungal community during the decomposition of three common plant species (Rhizophora mangle, Laguncularia racemosa, and Avicennia schaueriana) from a mangrove habitat located at the southeast of Brazil. Plant material was the primary driver of fungi communities, but time also was marginally significant for the process, and evident changes in the fungal community during the decomposition process were observed. The five most abundant classes common to all the three plant species were Saccharomycetes, Sordariomycetes, Tremellomycetes, Eurotiomycetes, and Dothideomycetes, all belonging to the Phylum Ascomycota. Microbotryomycetes class were shared only by A. schaueriana and L. racemosa, while Agaricomycetes class were shared by L. racemosa and R. mangle. The class Glomeromycetes were shared by A. schaueriana and R. mangle. The analysis of the core microbiome showed that Saccharomycetes was the most abundant class. In the variable community, Sordariomycetes was the most abundant one, mainly in the Laguncularia racemosa plant. The results presented in this work shows a specialization of the fungal community regarding plant material during litter decomposition which might be related to the different chemical composition and rate of degradation.


Asunto(s)
Avicennia , Combretaceae , Microbiota , Rhizophoraceae , Avicennia/metabolismo , Brasil , Hojas de la Planta/metabolismo , Plantas , Rhizophoraceae/microbiología
12.
Molecules ; 27(7)2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35408488

RESUMEN

Colorectal cancer (CRC) is the second most common cause of death worldwide, affecting approximately 1.9 million individuals in 2020. Therapeutics of the disease are not yet available and discovering a novel anticancer drug candidate against the disease is an urgent need. Thymidylate synthase (TS) is an important enzyme and prime precursor for DNA biosynthesis that catalyzes the methylation of deoxyuridine monophosphate (dUMP) to deoxythymidine monophosphate (dTMP) that has emerged as a novel drug target against the disease. Elevated expression of TS in proliferating cells promotes oncogenesis as well as CRC. Therefore, this study aimed to identify potential natural anticancer agents that can inhibit the activity of the TS protein, subsequently blocking the progression of colorectal cancer. Initially, molecular docking was implied on 63 natural compounds identified from Catharanthus roseus and Avicennia marina to evaluate their binding affinity to the desired protein. Subsequently, molecular dynamics (MD) simulation, ADME (Absorption, Distribution, Metabolism, and Excretion), toxicity, and quantum chemical-based DFT (density-functional theory) approaches were applied to evaluate the efficacy of the selected compounds. Molecular docking analysis initially identified four compounds (PubChem CID: 5281349, CID: 102004710, CID: 11969465, CID: 198912) that have better binding affinity to the target protein. The ADME and toxicity properties indicated good pharmacokinetics (PK) and toxicity ability of the selected compounds. Additionally, the quantum chemical calculation of the selected molecules found low chemical reactivity indicating the bioactivity of the drug candidate. The global descriptor and HOMO-LUMO energy gap values indicated a satisfactory and remarkable profile of the selected molecules. Furthermore, MD simulations of the compounds identified better binding stability of the compounds to the desired protein. To sum up, the phytoconstituents from two plants showed better anticancer activity against TS protein that can be further developed as an anti-CRC drug.


Asunto(s)
Antineoplásicos , Avicennia , Catharanthus , Neoplasias Colorrectales , Antineoplásicos/química , Antineoplásicos/farmacología , Avicennia/metabolismo , Catharanthus/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Humanos , Simulación del Acoplamiento Molecular , Timidilato Sintasa/metabolismo
13.
Sci Rep ; 12(1): 1745, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35110640

RESUMEN

Superoxide dismutases are important group of antioxidant metallozyme and play important role in ROS homeostasis in salinity stress. The present study reports the biochemical properties of a salt-tolerant Cu, Zn-superoxide from Avicennia marina (Am_SOD). Am_SOD was purified from the leaf and identified by mass-spectrometry. Recombinant Am_SOD cDNA was bacterially expressed as a homodimeric protein. Enzyme kinetics revealed a high substrate affinity and specific activity of Am_SOD as compared to many earlier reported SODs. An electronic transition in 360-400 nm spectra of Am_SOD is indicative of Cu2+-binding. Am_SOD activity was potentially inhibited by diethyldithiocarbamate and H2O2, a characteristic of Cu, Zn-SOD. Am_SOD exhibited conformational and functional stability at high NaCl concentration as well in alkaline pH. Introgression of Am_SOD in E. coli conferred tolerance to oxidative stress under highly saline condition. Am_SOD was moderately thermostable and retained functional activity at ~ 60 °C. In-silico analyses revealed 5 solvent-accessible N-terminal residues of Am_SOD that were less hydrophobic than those at similar positions of non-halophilic SODs. Substituting these 5 residues with non-halophilic counterparts resulted in > 50% reduction in salt-tolerance of Am_SOD. This indicates a cumulative role of these residues in maintaining low surface hydrophobicity of Am_SOD and consequently high salt tolerance. The molecular information on antioxidant activity and salt-tolerance of Am_SOD may have potential application in biotechnology research. To our knowledge, this is the first report on salt-tolerant SOD from mangrove.


Asunto(s)
Avicennia , Tolerancia a la Sal/fisiología , Superóxido Dismutasa , Avicennia/genética , Avicennia/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Espectrometría de Masas , Organismos Modificados Genéticamente , Estrés Oxidativo/fisiología , Hojas de la Planta/metabolismo , Estrés Salino/fisiología , Superóxido Dismutasa/química , Superóxido Dismutasa/metabolismo
14.
Commun Biol ; 4(1): 851, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34239036

RESUMEN

Water scarcity and salinity are major challenges facing agriculture today, which can be addressed by engineering plants to grow in the boundless seawater. Understanding the mangrove plants at the molecular level will be necessary for developing such highly salt-tolerant agricultural crops. With this objective, we sequenced the genome of a salt-secreting and extraordinarily salt-tolerant mangrove species, Avicennia marina, that grows optimally in 75% seawater and tolerates >250% seawater. Our reference-grade ~457 Mb genome contains 31 scaffolds corresponding to its chromosomes. We identified 31,477 protein-coding genes and a salinome consisting of 3246 salinity-responsive genes and homologs of 614 experimentally validated salinity tolerance genes. The salinome provides a strong foundation to understand the molecular mechanisms of salinity tolerance in plants and breeding crops suitable for seawater farming.


Asunto(s)
Avicennia/genética , Genoma de Planta/genética , Tolerancia a la Sal/genética , Sales (Química)/metabolismo , Agricultura/métodos , Avicennia/metabolismo , ADN de Plantas/química , ADN de Plantas/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Tamaño del Genoma/genética , Genómica/métodos , RNA-Seq/métodos , Salinidad , Agua de Mar , Análisis de Secuencia de ADN/métodos
15.
Nat Commun ; 12(1): 3875, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34162891

RESUMEN

The conservation of ecosystems and their biodiversity has numerous co-benefits, both for local societies and for humankind worldwide. While the co-benefit of climate change mitigation through so called blue carbon storage in coastal ecosystems has raised increasing interest in mangroves, the relevance of multifaceted biodiversity as a driver of carbon storage remains unclear. Sediment salinity, taxonomic diversity, functional diversity and functional distinctiveness together explain 69%, 69%, 27% and 61% of the variation in above- and belowground plant biomass carbon, sediment organic carbon and total ecosystem carbon storage, respectively, in the Sundarbans Reserved Forest. Functional distinctiveness had the strongest explanatory power for carbon storage, indicating that blue carbon in mangroves is driven by the functional composition of diverse tree assemblages. Protecting and restoring mangrove biodiversity with site-specific dominant species and other species of contrasting functional traits would have the co-benefit of maximizing their capacity for climate change mitigation through increased carbon storage.


Asunto(s)
Avicennia/metabolismo , Biodiversidad , Secuestro de Carbono , Carbono/metabolismo , Conservación de los Recursos Naturales/métodos , Algoritmos , Avicennia/crecimiento & desarrollo , Biomasa , Ecosistema , Sedimentos Geológicos , Modelos Teóricos
16.
Molecules ; 26(8)2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33921289

RESUMEN

The recent coronavirus disease 2019 (COVID-19) pandemic is a global threat for healthcare management and the economic system, and effective treatments against the pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus responsible for this disease have not yet progressed beyond the developmental phases. As drug refinement and vaccine progression require enormously broad investments of time, alternative strategies are urgently needed. In this study, we examined phytochemicals extracted from Avicennia officinalis and evaluated their potential effects against the main protease of SARS-CoV-2. The antioxidant activities of A. officinalis leaf and fruit extracts at 150 µg/mL were 95.97% and 92.48%, respectively. Furthermore, both extracts displayed low cytotoxicity levels against Artemia salina. The gas chromatography-mass spectroscopy analysis confirmed the identifies of 75 phytochemicals from both extracts, and four potent compounds, triacontane, hexacosane, methyl linoleate, and methyl palminoleate, had binding free energy values of -6.75, -6.7, -6.3, and -6.3 Kcal/mol, respectively, in complexes with the SARS-CoV-2 main protease. The active residues Cys145, Met165, Glu166, Gln189, and Arg188 in the main protease formed non-bonded interactions with the screened compounds. The root-mean-square difference (RMSD), root-mean-square fluctuations (RMSF), radius of gyration (Rg), solvent-accessible surface area (SASA), and hydrogen bond data from a molecular dynamics simulation study confirmed the docked complexes' binding rigidity in the atomistic simulated environment. However, this study's findings require in vitro and in vivo validation to ensure the possible inhibitory effects and pharmacological efficacy of the identified compounds.


Asunto(s)
Avicennia/química , Tratamiento Farmacológico de COVID-19 , Fitoquímicos/uso terapéutico , SARS-CoV-2/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Antioxidantes/uso terapéutico , Avicennia/metabolismo , Sitios de Unión , COVID-19/patología , COVID-19/virología , Frutas/química , Frutas/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Alcohol Feniletílico/química , Alcohol Feniletílico/metabolismo , Alcohol Feniletílico/uso terapéutico , Fenilpropionatos/química , Fenilpropionatos/metabolismo , Fenilpropionatos/uso terapéutico , Fitoquímicos/química , Fitoquímicos/metabolismo , Hojas de la Planta/química , Hojas de la Planta/metabolismo , SARS-CoV-2/aislamiento & purificación , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/metabolismo
17.
Mar Pollut Bull ; 151: 110832, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32056625

RESUMEN

To better understand the uptake, biotransformation and physiological response to tetrabromobisphenol A (TBBPA) in mangrove plants, a short term 14-day hydroponic assay with two mangrove species, Avicennia marina (A. marina) and Kandelia obovata (K. obovata), was conducted. Results showed that two mangrove species could uptake, translocate and accumulate TBBPA from solution. The hydroxylation and debromination metabolites of TBBPA, including OH-TBBPA, TriBBPA, MonoBBPA, and BPA, were found in both mangroves for the first time. The high-level TBBPA suppressed the growth and increased malondialdehyde (MDA) content of K. obovata, did not pose any negative affect on A. marina. The activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) of K. obovata significantly increased in the 7th day, whereas, SOD and POD activities at high-levels of TBBPA became comparable to the control in the 14th day. Contrastingly, the antioxidant enzymes activities of A. marina were positively stimulated by TBBPA during the 14-day of observation, indicating that A. marina was more tolerant of TBBPA.


Asunto(s)
Avicennia/metabolismo , Bifenilos Polibrominados/metabolismo , Contaminantes Químicos del Agua/metabolismo , Avicennia/química , Biotransformación , Hidroponía , Bifenilos Polibrominados/análisis , Contaminantes Químicos del Agua/análisis
18.
Chemosphere ; 244: 125385, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31790995

RESUMEN

The increase levels of tetrabromobisphenol A (TBBPA) in mangrove wetlands is of concern due to its potential toxic impacts on ecosystem. A 93-day greenhouse pot experiment was conducted to investigate the effects of mangrove plants, A. marina and K. obovata, on TBBPA degradation in sediment and to reveal the associated contributing factor(s) for its degradation. Results show that both mangrove species could uptake, translocate, and accumulate TBBPA from mangrove sediments. Compared to the unplanted sediment, urease and dehydrogenase activity as well as total bacterial abundance increased significantly (p < 0.05) in the sediment planted with mangrove plants, especially for K. obovata. In the mangrove-planted sediment, the Anaerolineae genus was the dominant bacteria, which has been reported to enhance TBBPA dissipation, and its abundance increased significantly in the sediment at early stage (0-35 day) of the greenhouse experiment. Compared to A. marina-planted sediment, higher enrichment of Geobater, Pseudomonas, Flavobacterium, Azoarcus, all of which could stimulate TBBPA degradation, was observed for the K. obovata-planted sediment during the 93-day growth period. Our mass balance result has suggested that plant-induced TBBPA degradation in the mangrove sediment is largely due to elevated microbial activities and total bacterial abundance in the rhizosphere, rather than plant uptake. In addition, different TBBPA removal efficiencies were observed in the sediments planted with different mangrove species. This study has demonstrated that K. obovata is a more suitable mangrove species than A. marina when used for remediation of TBBPA-contaminated sediment.


Asunto(s)
Avicennia/metabolismo , Bifenilos Polibrominados/química , Rhizophoraceae/metabolismo , Humedales , Avicennia/microbiología , Bacterias/clasificación , Biodegradación Ambiental , Ecosistema , Sedimentos Geológicos/química , Bifenilos Polibrominados/análisis , Rhizophoraceae/microbiología , Rizosfera
19.
Mar Pollut Bull ; 150: 110667, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31689609

RESUMEN

In Australia, some trees of the mangrove, Avicennia marina, growing in a chronic oil polluted site, produce chlorophyll deficient (albino) propagules. We tested the hypothesis that albinism was due to an oil-induced mutant allele that controls photosynthesis. We determined whether there are genetic differences between normal and chlorophyll deficient propagules. Four gene regions (nuclear 18S-26S cistron; chloroplast - trnH-psbA, rsp16 and matK) were sequenced and analysed for normal and albino propagules. Mutations occurred in both nuclear (ITS) and coding chloroplast (matK) genes of albino propagules. There were 10 mutational differences between normal and albino propagules in the matK samples. Analysis of molecular variation (AMOVA) of the matK dataset indicated highly significant genetic differentiation between normal and albino propagules. Our study suggests for the first time that PAHs from a chronic oil polluted site resulted in mutations in both nuclear and chloroplast genes, resulting in the production of albino propagules.


Asunto(s)
Avicennia/efectos de los fármacos , Clorofila/metabolismo , Petróleo/toxicidad , Australia , Avicennia/metabolismo , Fotosíntesis/efectos de los fármacos , Hidrocarburos Policíclicos Aromáticos/toxicidad
20.
New Phytol ; 224(1): 146-154, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31211874

RESUMEN

Growing evidence indicates that tree-stem methane (CH4 ) emissions may be an important and unaccounted-for component of local, regional and global carbon (C) budgets. Studies to date have focused on upland and freshwater swamp-forests; however, no data on tree-stem fluxes from estuarine species currently exist. Here we provide the first-ever mangrove tree-stem CH4 flux measurements from  >50 trees (n = 230 measurements), in both standing dead and living forest, from a region suffering a recent large-scale climate-driven dieback event (Gulf of Carpentaria, Australia). Average CH4 emissions from standing dead mangrove tree-stems was 249.2 ± 41.0 µmol m-2  d-1 and was eight-fold higher than from living mangrove tree-stems (37.5 ± 5.8 µmol m-2  d-1 ). The average CH4 flux from tree-stem bases (c. 10 cm aboveground) was 1071.1 ± 210.4 and 96.8 ± 27.7 µmol m-2  d-1 from dead and living stands respectively. Sediment CH4 fluxes and redox potentials did not differ significantly between living and dead stands. Our results suggest both dead and living tree-stems act as CH4 conduits to the atmosphere, bypassing potential sedimentary oxidation processes. Although large uncertainties exist when upscaling data from small-scale temporal measurements, we estimated that dead mangrove tree-stem emissions may account for c. 26% of the net ecosystem CH4 flux.


Asunto(s)
Avicennia/metabolismo , Carbono/metabolismo , Bosques , Metano/metabolismo , Tallos de la Planta/metabolismo , Geografía , Sedimentos Geológicos/química , Oxidación-Reducción , Queensland , Volatilización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA