Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 316
Filtrar
1.
BMC Microbiol ; 24(1): 319, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223450

RESUMEN

BACKGROUND: Maternally-inherited symbionts can induce pre-mating and/or post-mating reproductive isolation between sympatric host lineages, and speciation, by modifying host reproductive phenotypes. The large parasitoid wasp genus Cotesia (Braconidae) includes a diversity of cryptic species, each specialized in parasitizing one to few related Lepidoptera host species. Here, we characterized the infection status of an assemblage of 21 Cotesia species from 15 countries by several microbial symbionts, as a first step toward investigating whether symbionts may provide a barrier to gene flow between these parasitoid host lineages. RESULTS: The symbiotic microbes Arsenophonus, Cardinium, Microsporidium and Spiroplasma were not detected in the Cotesia wasps. However, the endosymbiotic bacterium Wolbachia was present in at least eight Cotesia species, and hence we concentrated on it upon screening additional DNA extracts and SRAs from NCBI. Some of the closely related Cotesia species carry similar Wolbachia strains, but most Wolbachia strains showed patterns of horizontal transfer between phylogenetically distant host lineages. CONCLUSIONS: The lack of co-phylogenetic signal between Wolbachia and Cotesia suggests that the symbiont and hosts have not coevolved to an extent that would drive species divergence between the Cotesia host lineages. However, as the most common facultative symbiont of Cotesia species, Wolbachia may still function as a key-player in the biology of the parasitoid wasps. Its precise role in the evolution of this complex clade of cryptic species remains to be experimentally investigated.


Asunto(s)
Filogenia , Simbiosis , Avispas , Wolbachia , Animales , Wolbachia/genética , Wolbachia/clasificación , Wolbachia/aislamiento & purificación , Avispas/microbiología , Simpatría , Transferencia de Gen Horizontal , Variación Genética , Lepidópteros/microbiología , Lepidópteros/parasitología
2.
Sci Rep ; 14(1): 21118, 2024 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256493

RESUMEN

In the face of escalating antibiotic resistance, the quest for novel antimicrobial compounds is critical. Actinobacteria is known for producing a substantial fraction of bioactive molecules from microorganisms, nonetheless there is the challenge of metabolic redundancy in bioprospecting. New sources of natural products are needed to overcome these current challenges. Our present work proposes an unexplored potential of Neotropical social wasp-associated microbes as reservoirs of novel bioactive compounds. Using social wasp-associated Tsukamurella sp. strains 8F and 8J, we aimed to determine their biosynthetic potential for producing novel antibiotics and evaluated phylogenetic and genomic traits related to environmental and ecological factors that might be associated with promising bioactivity and evolutionary specialization. These strains were isolated from the cuticle of social wasps and subjected to comprehensive genome sequencing. Our genome mining efforts, employing antiSMASH and ARTS, highlight the presence of BGCs with minimal similarity to known compounds, suggesting the novelty of the molecules they may produce. Previous, bioactivity assays of these strains against bacterial species which harbor known human pathogens, revealed inhibitory potential. Further, our study focuses into the phylogenetic and functional landscape of the Tsukamurella genus, employing a throughout phylogenetic analysis that situates strains 8F and 8J within a distinct evolutionary pathway, matching with the environmental and ecological context of the strains reported for this genus. Our findings emphasize the importance of bioprospecting in uncharted biological territories, such as insect-associated microbes as reservoirs of novel bioactive compounds. As such, we posit that Tsukamurella sp. strains 8F and 8J represent promising candidates for the development of new antimicrobials.


Asunto(s)
Antibacterianos , Filogenia , Avispas , Avispas/microbiología , Avispas/metabolismo , Animales , Antibacterianos/farmacología , Antibacterianos/biosíntesis , Productos Biológicos/farmacología , Productos Biológicos/metabolismo , Genoma Bacteriano , Actinomycetales/metabolismo , Actinomycetales/genética , Descubrimiento de Drogas/métodos
3.
Front Cell Infect Microbiol ; 14: 1439476, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39119296

RESUMEN

Objective: Sclerodermus wasps are important biocontrol agents of a class of wood borers. Bacterial symbionts influence the ecology and biology of their hosts in a variety of ways, including the formation of life-long beneficial or detrimental parasitic infections. However, only a few studies have explored the species and content of the symbionts in the Sclerodermus species. Methods: Here, a high-throughput sequencing study of the V3-V4 region of the 16S ribosomal RNA gene revealed a high level of microbial variety in four Sclerodermus waps, and their diversities and functions were also predicted. Results: The three most prevalent phyla of microorganisms in the sample were Firmicutes, Bacteroides, and Proteus. The KEEG pathways prediction results indicated that the three pathways with the highest relative abundances in the S. sichuanensis species were translation, membrane transport, and nucleotide metabolism. These pathways differed from those observed in S. guani, S. pupariae, and S. alternatusi, which exhibited carbohydrate metabolism, membrane transport, and amino acid metabolism, respectively. Bacteroides were found to be abundant in several species, whereas Wolbachia was the most abundant among S. sichuanensis, with a significant negative correlation between temperature and carriage rate. Conclusions: These results offer insights into the microbial communities associated with the bethylid wasps, which is crucial for understanding how to increase the reproductive capacity of wasps, enhance their parasitic effects, and lower cost in biocontrol.


Asunto(s)
ARN Ribosómico 16S , Simbiosis , Avispas , Animales , Avispas/microbiología , Avispas/fisiología , China , ARN Ribosómico 16S/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Agentes de Control Biológico , Escarabajos/microbiología , Filogenia , Microbiota , Bacteroides/genética , Bacteroides/aislamiento & purificación , Bacteroides/clasificación , Firmicutes/genética , Firmicutes/aislamiento & purificación , Firmicutes/clasificación , Wolbachia/genética , Wolbachia/aislamiento & purificación , Wolbachia/clasificación , Wolbachia/fisiología , Biodiversidad
4.
FEMS Microbiol Ecol ; 100(10)2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39165109

RESUMEN

There is increasing evidence that host-parasitoid interactions can have a pronounced impact on the microbiome of host insects, but it is unclear to what extent this is caused by the host and/or parasitoid. Here, we compared the internal and external microbiome of caterpillars of Pieris brassicae and Pieris rapae parasitized by Cotesia glomerata or Cotesia rubecula with nonparasitized caterpillars. Additionally, we investigated the internal and external microbiome of the parasitoid larvae. Both internal and external bacterial densities were significantly higher for P. brassicae than P. rapae, while no differences were found between parasitized and nonparasitized caterpillars. In contrast, parasitism significantly affected the composition of the internal and external microbiome of the caterpillars and the parasitoid larvae, but the effects were dependent on the host and parasitoid species. Irrespective of host species, a Wolbachia species was exclusively found inside caterpillars parasitized by C. glomerata, as well as in the corresponding developing parasitoid larvae. Similarly, a Nosema species was abundantly present inside parasitized caterpillars and the parasitoid larvae, but this was independent of the host and the parasitoid species. We conclude that parasitism has pronounced effects on host microbiomes, but the effects depend on both the host and parasitoid species.


Asunto(s)
Mariposas Diurnas , Interacciones Huésped-Parásitos , Larva , Microbiota , Animales , Larva/microbiología , Mariposas Diurnas/microbiología , Mariposas Diurnas/parasitología , Wolbachia/genética , Especificidad de la Especie , Nosema/patogenicidad , Avispas/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/crecimiento & desarrollo
5.
J Invertebr Pathol ; 206: 108168, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39004165

RESUMEN

Vespa orientalis is spreading across the Italian and European territories leading to new interactions among species, which could lead to the transmission of pathogens between species. Detection of honey bee viruses in V. orientalis has already been revealed in both adults and larvae, while no information is available regarding parasitic occurrence. Sixty adult hornets collected across apiaries in the South of Italy were subjected to cytological, histopathological and biomolecular examination to evaluate the occurrence of Nosema ceranae, Ascosphaera apis, Lotmaria passim, Crithidia mellificae, and Crithidia bombi. Cytological examination revealed the presence of Nosema spores in 38.33% of individuals while histopathological analysis showed the presence of L. passim-like elements in the rectum of two examined specimens and the presence of fungal hyphae in the small intestine of another hornet. Biomolecular investigation revealed that N. ceranae was the most prevalent pathogen (50.0%), followed by A. apis (6.66%), L. passim (6.66%) and C. bombi (6.0%).


Asunto(s)
Nosema , Nosema/aislamiento & purificación , Animales , Avispas/microbiología , Italia , Trypanosomatina/aislamiento & purificación
6.
J Evol Biol ; 37(8): 926-934, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38869236

RESUMEN

Oak gall wasps typically exhibit a life cycle with one sexual and one asexual generation each year. These wasps can carry various endosymbionts, one of which is the maternally inherited bacterium Wolbachia that can induce several reproductive manipulations on its host. Cytoplasmic incompatibility (CI) has been described as the most prominent of these manipulations. CI leads to embryonic mortality in the hosts' offspring when infected males mate with either uninfected females or with females that harbour different Wolbachia strains. It has been hypothesized that Wolbachia can induce CI in oak gall wasps. To address this hypothesis, we derived a mathematical model to investigate the spread of a bacterial infection in naive populations and to determine the plausibility of CI occurrence. To validate our model, we used published data from Wolbachia-infected Belonocnema kinseyi populations in two approaches. Our first approach uses measurements of infection frequencies and maternal transmission in the sexual generation. For the second approach, we extended the model to compare predictions to estimates of mtDNA-haplotypes, which, like Wolbachia, are maternally inherited, and can therefore be associated with the infection. Both approaches indicate that CI is present in these populations. Our model can be generalized to investigate the occurrence of CI not only for oak gall wasps but also for other species.


Asunto(s)
Partenogénesis , Avispas , Wolbachia , Wolbachia/fisiología , Animales , Avispas/microbiología , Avispas/fisiología , Femenino , Masculino , Quercus/microbiología , Modelos Biológicos , Simbiosis , Citoplasma
7.
Curr Biol ; 34(11): R547-R549, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38834030

RESUMEN

The Wolbachia strain that infects the parasitoid wasp Encarsia formosa induces female-producing parthenogenesis. A new study shows that a Wolbachia-encoded gene has replaced the use of the ancestral wasp homologue that normally controls sexual reproduction, resulting in parthenogenesis.


Asunto(s)
Partenogénesis , Avispas , Wolbachia , Wolbachia/fisiología , Wolbachia/genética , Animales , Avispas/microbiología , Avispas/fisiología , Femenino , Reproducción
8.
Microb Ecol ; 87(1): 81, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829379

RESUMEN

Koinobiont endoparasitoids regulate the physiology of their hosts through altering host immuno-metabolic responses, processes which function in tandem to shape the composition of the microbiota of these hosts. Here, we employed 16S rRNA and ITS amplicon sequencing to investigate whether parasitization by the parasitoid wasps, Diachasmimorpha longicaudata (Ashmaed) (Hymenoptera: Braconidae) and Psyttalia cosyrae (Wilkinson) (Hymenoptera: Braconidae), induces gut dysbiosis and differentially alter the gut microbial (bacteria and fungi) communities of an important horticultural pest, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). We further investigated the composition of bacterial communities of adult D. longicaudata and P. cosyrae to ascertain whether the adult parasitoids and parasitized host larvae share microbial taxa through transmission. We demonstrated that parasitism by D. longicaudata induced significant gut perturbations, resulting in the colonization and increased relative abundance of pathogenic gut bacteria. Some pathogenic bacteria like Stenotrophomonas and Morganella were detected in both the guts of D. longicaudata-parasitized B. dorsalis larvae and adult D. longicaudata wasps, suggesting a horizontal transfer of microbes from the parasitoid to the host. The bacterial community of P. cosyrae adult wasps was dominated by Arsenophonus nasoniae, whereas that of D. longicaudata adults was dominated by Paucibater spp. and Pseudomonas spp. Parasitization by either parasitoid wasp was associated with an overall reduction in fungal diversity and evenness. These findings indicate that unlike P. cosyrae which is avirulent to B. dorsalis, parasitization by D. longicaudata induces shifts in the gut bacteriome of B. dorsalis larvae to a pathobiont-dominated community. This mechanism possibly enhances its virulence against the pest, further supporting its candidacy as an effective biocontrol agent of this frugivorous tephritid fruit fly pest.


Asunto(s)
Bacterias , Microbioma Gastrointestinal , Larva , ARN Ribosómico 16S , Tephritidae , Avispas , Animales , Tephritidae/microbiología , Tephritidae/parasitología , Avispas/microbiología , Avispas/fisiología , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Larva/microbiología , Larva/parasitología , Larva/crecimiento & desarrollo , ARN Ribosómico 16S/genética , Hongos/genética , Hongos/fisiología , Interacciones Huésped-Parásitos , Microbiota , Disbiosis/microbiología , Disbiosis/parasitología
9.
Curr Biol ; 34(11): 2359-2372.e9, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38692276

RESUMEN

Host reproduction can be manipulated by bacterial symbionts in various ways. Parthenogenesis induction is the most effective type of reproduction manipulation by symbionts for their transmission. Insect sex is determined by regulation of doublesex (dsx) splicing through transformer2 (tra2) and transformer (tra) interaction. Although parthenogenesis induction by symbionts has been studied since the 1970s, its underlying molecular mechanism is unknown. Here we identify a Wolbachia parthenogenesis-induction feminization factor gene (piff) that targets sex-determining genes and causes female-producing parthenogenesis in the haplodiploid parasitoid Encarsia formosa. We found that Wolbachia elimination repressed expression of female-specific dsx and enhanced expression of male-specific dsx, which led to the production of wasp haploid male offspring. Furthermore, we found that E. formosa tra is truncated and non-functional, and Wolbachia has a functional tra homolog, termed piff, with an insect origin. Wolbachia PIFF can colocalize and interact with wasp TRA2. Moreover, Wolbachia piff has coordinated expression with tra2 and dsx of E. formosa. Our results demonstrate the bacterial symbiont Wolbachia has acquired an insect gene to manipulate the host sex determination cascade and induce parthenogenesis in wasps. This study reveals insect-to-bacteria horizontal gene transfer drives the evolution of animal sex determination systems, elucidating a striking mechanism of insect-microbe symbiosis.


Asunto(s)
Transferencia de Gen Horizontal , Simbiosis , Avispas , Wolbachia , Animales , Wolbachia/fisiología , Wolbachia/genética , Avispas/fisiología , Avispas/microbiología , Avispas/genética , Simbiosis/genética , Femenino , Masculino , Partenogénesis/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Procesos de Determinación del Sexo/genética
10.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38473774

RESUMEN

The mutualistic symbiosis relationship between the gut microbiome and their insect hosts has attracted much scientific attention. The native woodwasp, Sirex nitobei, and the invasive European woodwasp, Sirex noctilio, are two pests that infest pines in northeastern China. Following its encounter with the native species, however, there is a lack of research on whether the gut microbiome of S. noctilio changed, what causes contributed to these alterations, and whether these changes were more conducive to invasive colonization. We used high-throughput and metatranscriptomic sequencing to investigate S. noctilio larval gut and frass from four sites where only S. noctilio and both two Sirex species and investigated the effects of environmental factors, biological interactions, and ecological processes on S. noctilio gut microbial community assembly. Amplicon sequencing of two Sirex species revealed differential patterns of bacterial and fungal composition and functional prediction. S. noctilio larval gut bacterial and fungal diversity was essentially higher in coexistence sites than in separate existence sites, and most of the larval gut bacterial and fungal community functional predictions were significantly different as well. Moreover, temperature and precipitation positively correlate with most of the highly abundant bacterial and fungal genera. Source-tracking analysis showed that S. noctilio larvae at coexistence sites remain dependent on adult gut transmission (vertical transmission) or recruitment to frass (horizontal transmission). Meanwhile, stochastic processes of drift and dispersal limitation also have important impacts on the assembly of S. noctilio larval gut microbiome, especially at coexistence sites. In summary, our results reveal the potential role of changes in S. noctilio larval gut microbiome in the successful colonization and better adaptation of the environment.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Pinus , Avispas , Animales , Avispas/microbiología , Larva
11.
J Invertebr Pathol ; 203: 108073, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38346575

RESUMEN

Male-killing bacteria are found in a broad range of arthropods. Arsenophonus nasoniae is a male-killing bacterium, causing a 80% reduction of the male progeny in infected Nasonia vitripennis wasps. Although the discovery of A. nasoniae dates from the early 80's, knowledge about the biology and ecology of this endosymbiont is still scarce. One of these poorly studied features is the ecological factors underlying A. nasoniae incidence on its Nasonia spp. hosts in different geographical locations. Here, we studied the prevalence of A. nasoniae in Iberian wild populations of its host N. vitripennis. This wasp species is a common parasitoid of the blowfly Protocalliphora azurea pupae, which in turn is a parasite of hole-nesting birds, such as the blue tit (Cyanistes caeruleus). We also examined the effects of bird rearing conditions on the prevalence of A. nasoniae through a brood size manipulation experiment (creating enlarged, control and reduced broods). Both the wasp and bacterium presence were tested through PCR assays in blowfly pupae. We found A. nasoniae in almost half (47%) of nests containing blowflies parasitized by N. vitripennis. The prevalence of A. nasoniae was similar in the two geographical areas examined (central Portugal and southeastern Spain) and the probability of infection by A. nasoniae was independent of the number of blowfly pupae in the nest. Experimental manipulation of brood size did not affect the prevalence of A. nasoniae nor the prevalence of its host, N. vitripennis. These results suggest that the incidence of A. nasoniae in natural populations of N. vitripennis is high in the Iberian Peninsula, and the infestation frequency of nests by N. vitripennis carrying A. nasoniae is spatially stable in this geographical region independently of bird rearing conditions.


Asunto(s)
Dípteros , Gammaproteobacteria , Avispas , Masculino , Animales , Prevalencia , Enterobacteriaceae , Avispas/microbiología , Dípteros/parasitología , Calliphoridae
12.
Front Cell Infect Microbiol ; 13: 1198428, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37424778

RESUMEN

Introduction: The bacterial endosymbiont, Wolbachia spp. induce thelytokous parthenogenesis in certain parasitoid wasps, such as the egg parasitoid wasps Trichogramma spp. To complete the cycle of vertical transmission, Wolbachia displays efficient transovarial transmission by targeting the reproductive tissues and often exhibits strong tissue-specific tropism in their host. Method: The present study aimed to describe the basic Wolbachia distribution patterns that occur during the development of Wolbachia-infected, thelytokous Trichogramma dendrolimi, and T. pretiosum. We used fluorescence in situ hybridization (FISH) to investigate Wolbachia signal dynamics during early embryogenesis (from 30 to 120 min). Wolbachia titers and distributions from the embryo to adult stages of Trichogramma after early embryogenesis were detected by absolute quantitative polymerase chain reaction (AQ-PCR) and FISH. The symmetry ratios (SR) of the Wolbachia signals were calculated using the SR odds ratios in the anterior and posterior parts of the host. The SR was determined to describe Wolbachia tropism during early embryogenesis and various developmental stages of Trichogramma. Results: Wolbachia was concentrated in the posterior part of the embryo during early embryogenesis and the various developmental stages of both T. dendrolimi and T. pretiosum. Wolbachia density increased with the number of nuclei and the initial mitotic division frequency during early embryogenesis. The total Wolbachia titer increased with postembryogenesis development in both T. dendrolimi and T. pretiosum. However, the Wolbachia densities relative to body size were significantly lower at the adult and pupal stages than they were at the embryonic stage. Discussion: The present work revealed that posterior Wolbachia concentration during early host embryogenesis determined Wolbachia localization in adult wasps. By this mechanism, Wolbachia exhibits efficient vertical transmission across generations by depositing only female Wolbachia-infected offspring. The results of this study describe the dynamics of Wolbachia during the development of their Trichogramma host. The findings of this investigation helped clarify Wolbachia tropism in Trichogramma wasps.


Asunto(s)
Avispas , Wolbachia , Animales , Femenino , Avispas/microbiología , Wolbachia/genética , Hibridación Fluorescente in Situ , Desarrollo Embrionario , Partenogénesis
13.
J Invertebr Pathol ; 199: 107947, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37285901

RESUMEN

Heritable microbes that exhibit reproductive parasitism are common in insects. One class of these are the male-killing bacteria, which are found in a broad range of insect hosts. Commonly, our knowledge of the incidence of these microbes is based on one or a few sampling sites, and the degree and causes of spatial variation are unclear. In this paper, we examine the incidence of the son-killer microbe Arsenophonus nasoniae across European populations of its wasp host, Nasonia vitripennis. In preliminary work, we noticed two female N. vitripennis producing highly female biased sex ratios in a field study from the Netherlands and Germany. When tested, the brood from Germany was revealed to be infected with A. nasoniae. We then completed a broad survey in 2012, in which fly pupal hosts of N. vitripennis were collected from vacated birds' nests from four European populations, N. vitripennis wasps allowed to emerge and then tested for A. nasoniae presence through PCR assay. We then developed a new screening methodology based on direct PCR assays of fly pupae and applied this to ethanol-preserved material collected from great tit (Parus major) nests in Portugal. These data show A. nasoniae is found widely in European N. vitripennis, being present in Germany, the UK, Finland, Switzerland and Portugal. Samples varied in the frequency with which they carry A. nasoniae, from being rare to being present in 50% of the pupae parasitised by N. vitripennis. Direct screening of ethanol-preserved fly pupae was an effective method for revealing both wasp and A. nasoniae infection, and will facilitate sample transport across national boundaries. Future research should examine the causes of variation in frequency, in particular testing the hypothesis that N. vitripennis superparasitism rates drive the variation in A. nasoniae frequency through providing opportunities for infectious transmission.


Asunto(s)
Gammaproteobacteria , Avispas , Femenino , Masculino , Animales , Avispas/microbiología , Núcleo Familiar , Enterobacteriaceae , Insectos , Europa (Continente)
14.
Int J Mol Sci ; 24(9)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37176154

RESUMEN

Wolbachia has been shown to induce thelytokous parthenogenesis in Trichogramma species, which have been widely used as biological control agents around the world. Little is known about the changes of bacterial community after restoring arrhenotokous or bisexual reproduction in the T. pretiosum. Here, we investigate the emergence of males of T. pretiosum through curing experiments (antibiotics and high temperature), crossing experiments, and high-throughput 16S ribosomal RNA sequencing (rRNA-seq). The results of curing experiments showed that both antibiotics and high temperatures could cause the thelytokous T. pretiosum to produce male offspring. Wolbachia was dominant in the thelytokous T. pretiosum bacterial community with 99.01% relative abundance. With the relative abundance of Wolbachia being depleted by antibiotics, the diversity and relative content of other endosymbiotic bacteria increased, and the reproductive mode reverted from thelytoky to arrhenotoky in T. pretiosum. Although antibiotics did not eliminate Wolbachia in T. pretiosum, sulfadiazine showed an advantage in restoring entirely arrhenotokous and successive bisexual reproduction. This study was the first to demonstrate the bacterial communities in parthenogenetic Trichogramma before and after antibiotics or high-temperature treatment. Our findings supported the hypothesis that Wolbachia titer-dependence drives a reproduction switch in T. pretiosum between thelytoky and arrhenotoky.


Asunto(s)
Himenópteros , Avispas , Wolbachia , Animales , Masculino , Antibacterianos/farmacología , Temperatura , Wolbachia/genética , Partenogénesis , Avispas/microbiología
15.
J Nat Prod ; 86(3): 517-525, 2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36800268

RESUMEN

Chemical analysis of cultures of a Queensland mud dauber wasp nest-derived fungus, Talaromyces sp. CMB-MW102, yielded the known dimeric oxaphenalenone duclauxin (1) along with a family of new 1-deoxy-d-glucosamine adducts, glyclauxins A-E (2-6). Despite 1D NMR spectra of 2-6 being compromised by broadening of selected resonances, structures inclusive of absolute configuration were assigned on the basis of detailed spectroscopic analysis and biogenetic considerations, as well as biomimetic semisynthesis and chemical interconversion. For example, exposure of duclauxin (1) to synthetic 1-deoxy-d-glucosamine yielded glyclauxin B (3), while on handling and storage, glyclauxins C (4) and D (5) (bearing a 7-OMe moiety) proved chemically labile and underwent quantitative transformation to glyclauxins B (3) and A (2), respectively. These latter observations on chemical reactivity and stability informed a proposed biogenetic relationship linking all known members of the extended duclauxin family. Notwithstanding their potential status as artifacts, the detection of glyclauxins B (3) and A (2) in a fresh CMB-MW102 culture extract confirmed their natural product status.


Asunto(s)
Talaromyces , Avispas , Animales , Aminoglicósidos , Talaromyces/química , Avispas/microbiología , Australia , Antibacterianos/química , Estructura Molecular
16.
Int Microbiol ; 26(2): 269-280, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36400975

RESUMEN

Parasitoids, which constitute about 25% of all insects and attack arthropods of virtually all taxa, are considered the most suitable vectors for horizontal transmission of the symbiotic bacterium Wolbachia among insects. The parasitoids studied in this article develop in the larvae and pupae of ladybirds. For the first time, Wolbachia was found in parasitic wasp species of the genus Homalotylus (Hymenoptera: Encyrtidae) and from the subfamily Tetrastichinae (Hymenoptera: Eulophidae). To characterize the Wolbachia strains, six bacterial housekeeping genes were examined and compared with previously published Wolbachia gene sequences. The same bacterial strains were found in all individuals of each species of parasitic wasps collected in different places and at different times, which indicates the absence of contamination and testifies to the heritability of the symbionts in the studied chalcids. No evidence was found that the parasitic wasps were infected with Wolbachia, identical to the symbionts of their ladybirds hosts. We found one Wolbachia strain, wHom-2, which is a product of bacterial recombination from unrelated insects, including ladybirds. The lack of correspondence between the molecular phylogenies of Wolbachia strains and mitochondrial DNA of their hosts indicates horizontal transfers of Wolbachia among parasitic wasps of the genus Homalotylus and from the subfamily Tetrastichinae.


Asunto(s)
Avispas , Wolbachia , Humanos , Animales , Wolbachia/genética , Avispas/genética , Avispas/microbiología , Filogenia , Simbiosis , Recombinación Genética , Variación Genética
17.
Pest Manag Sci ; 79(3): 1005-1017, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36317957

RESUMEN

BACKGROUND: Wolbachia infection increases the superparasitism frequency of Trichogramma females and provides an opportunity for horizontal intraspecific transmission. However, superparasitism may lead to interstrain competition between Wolbachia-infected Trichogramma offspring and their uninfected counterparts. This study investigated the outcome of interstrain intrinsic competition between Wolbachia-infected thelytokous strain (W) and uninfected bisexual strain (B) of Trichogramma dendrolimi. To determine the developmental rate of both strains, the sizes of immature stages of T. dendrolimi offspring at different times after parasitisation were measured in single parasitism and superparasitism conditions. RESULTS: The results reflect increased superparasitism by Wolbachia-infected females compared with uninfected females. Trichogramma females did not discriminate between host eggs previously parasitised by either B or W females. When the first oviposition was performed by B females, the B offspring outcompeted W offspring deposited later. Although when W offspring was deposited 8 h earlier than the B offspring, it gained no advantage over B offspring. Regardless of parasitism conditions, differences in the development rate between W and B offspring were not significant. CONCLUSION: The results reconfirmed that W females presented a higher tendency for superparasitism than B females, and showed that B offspring outcompeted W offspring even when the latter was deposited 8 h earlier. The inferiority of Wolbachia-infected Trichogramma compared with their uninfected counterparts is not due to the developmental delay. This study provides insights into the effects of intrinsic competition on the control efficacy of Wolbachia-infected Trichogramma against pests in biological control programs. © 2022 Society of Chemical Industry.


Asunto(s)
Avispas , Wolbachia , Animales , Femenino , Oviposición , Avispas/microbiología
18.
Mol Ecol ; 32(23): 6644-6658, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36125236

RESUMEN

The microbial community composition is crucial for diverse life-history traits in many organisms. However, we still lack a sufficient understanding of how the host microbiome is acquired and maintained, a pressing issue in times of global environmental change. Here we investigated to what extent host genotype, environmental conditions, and the endosymbiont Wolbachia influence the bacterial communities in the parasitic wasp Asobara japonica. We sampled multiple wasp populations across 10 locations in their natural distribution range in Japan and sequenced the host genome (whole genome sequencing) and microbiome (16S rRNA gene). We compared the host population structure and bacterial community composition of wasps that reproduce sexually and are uninfected with Wolbachia with wasps that reproduce asexually and carry Wolbachia. The bacterial communities in asexual wasps were highly similar due to a strong effect of Wolbachia rather than host genomic structure. In contrast, in sexual wasps, bacterial communities appear primarily shaped by a combination of population structure and environmental conditions. Our research highlights that multiple factors shape the bacterial communities of an organism and that the presence of a single endosymbiont can strongly alter their compositions. This information is crucial to understanding how organisms and their associated microbiome will react in the face of environmental change.


Asunto(s)
Microbiota , Avispas , Wolbachia , Animales , Avispas/genética , Avispas/microbiología , Wolbachia/genética , ARN Ribosómico 16S/genética , Microbiota/genética , Bacterias/genética , Geografía
19.
Org Lett ; 24(40): 7328-7333, 2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36200745

RESUMEN

Molecular network analysis of Streptomyces sp. CMB-MW079 detected rare phosphorylated natural products. Miniaturized cultivation profiling (MATRIX) established optimal conditions for the production, isolation, and identification of the polyketide δ-lactone phoslactomycin E (1) and new ester homologues, phoslactomycins J and K (2 and 3), as well as unprecedented heterocyclic analogues, the tetrahydrofuran cyclolactomycins A-D (4-7) and γ-lactone isocyclolactomycins A-C (8-10). We propose a biogenetic relationship linking these cometabolites with the known lactomycins A-C which were tentatively identified as minor cometabolites.


Asunto(s)
Productos Biológicos , Lactonas , Compuestos Organofosforados , Policétidos , Streptomyces , Avispas , Animales , Australia , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Productos Biológicos/farmacología , Línea Celular Tumoral , Ésteres/química , Furanos/química , Humanos , Lactonas/química , Lactonas/aislamiento & purificación , Lactonas/farmacología , Estructura Molecular , Compuestos Organofosforados/química , Compuestos Organofosforados/aislamiento & purificación , Compuestos Organofosforados/farmacología , Policétidos/química , Policétidos/aislamiento & purificación , Policétidos/farmacología , Streptomyces/química , Streptomyces/metabolismo , Avispas/microbiología
20.
mBio ; 13(6): e0236222, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36214563

RESUMEN

Horizontal transmission of the endosymbiont, Wolbachia, may occur during superparasitism when parasitoid females deposit a second clutch of eggs on a host. Wolbachia may increase the superparasitism tendency of Trichogramma wasps by depriving their memory. To test this hypothesis, we investigated the effects of conditioning experience and memory inhibitors (actinomycin D [ACD] and anisomycin [ANI]) on memory capacity, and expressions of memory-related genes (CREB1 and PKA), and superparasitism frequency of Wolbachia-infected (TDW) and uninfected (TD) lines of Trichogramma dendrolimi after conditioning with lemon or peppermint odor. We detected the presence of Wolbachia in eggs, larvae, pre-pupae, pupae, and adults of Trichogramma by using fluorescence in situ hybridization. The results showed that TDW females had a more reduced memory capacity than TD females after conditioning. Compared with TD females, TDW females showed a higher proportion of superparasitism and a downregulation of CREB1 and PKA genes after conditioning. TD females fed ACD or ANI showed a higher tendency for superparasitism and a downregulation of CREB1 and PKA, along with memory loss after conditioning than TD females fed honey solution only. The presence of Wolbachia was detected in the anterior region of the larva, pre-pupa, and pupa, but was not found in the head of the adult. The results provide evidence of host behavioral manipulation of Wolbachia by depriving memory of host Trichogramma wasps based on Poulin' s criteria. These host behavioral changes led by Wolbachia may be caused by the virulence of Wolbachia on the nervous system of the host. IMPORTANCE The endosymbiotic bacteria, Wolbachia, live widely within cells of arthropods. Wolbachia are not only transmitted vertically from host mother to offspring, but are also transmitted horizontally among host individuals. Horizontal transmission is expected to occur during superparasitism when host parasitoid females deposit a clutch of eggs on a host previously parasitized by the same parasitoid species. Thus, a question is proposed regarding whether superparasitism behavior is a behavior modification induced by the symbiont to favor symbiont transmission. This study highlights behavioral mechanisms of Wolbachia-induced superparasitism in Trichogramma wasps and the manipulation of symbionts on host parasitoids.


Asunto(s)
Avispas , Wolbachia , Humanos , Animales , Femenino , Avispas/microbiología , Wolbachia/genética , Hibridación Fluorescente in Situ , Larva , Trastornos de la Memoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...