Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biosci Biotechnol Biochem ; 77(3): 505-10, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23470736

RESUMEN

D-rhamnose (D-Rha) residue is a major component of lipopolysaccharides (LPSs) in strains of the phytopathogen Pseudomonas syringae pathovar glycinea. To investigate the effects of a deficiency in GDP-D-rhamnose biosynthetic genes on LPS structure and pathogenicity, we generated three mutants defective in D-Rha biosynthetic genes, encoding proteins GDP-D-mannose 4,6-dehydratase (GMD), GDP-4-keto-6-deoxy-D-mannose reductase (RMD), and a putative α-D-rhamnosyltransferase (WbpZ) in P. syringae pv. glycinea race 4. The Δgmd, Δrmd, and ΔwbpZ mutants had a reduced O-antigen polysaccharide consisting of D-Rha residues as compared with the wild type (WT). The swarming motility of the Δgmd, Δrmd, and ΔwbpZ mutant strains decreased and hydrophobicity and adhesion ability increased as compared with WT. Although the mutants had truncated O-antigen polysaccharides, and altered surface properties, they showed virulence to soybean, as WT did.


Asunto(s)
Interacciones Hidrofóbicas e Hidrofílicas , Movimiento , Antígenos O/química , Antígenos O/metabolismo , Pseudomonas syringae/citología , Pseudomonas syringae/genética , Ramnosa/biosíntesis , Antibacterianos/farmacología , Adhesión Bacteriana , Genes Bacterianos/genética , Azúcares de Guanosina Difosfato/biosíntesis , Mutación , Polisacáridos/análisis , Pseudomonas syringae/efectos de los fármacos , Pseudomonas syringae/metabolismo
2.
Microbiology (Reading) ; 158(Pt 4): 1024-1036, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22282517

RESUMEN

Enterobacteria of the genus Providencia are opportunistic human pathogens associated with urinary tract and wound infections, as well as enteric diseases. The lipopolysaccharide (LPS) O antigen confers major antigenic variability upon the cell surface and is used for serotyping of Gram-negative bacteria. Recently, Providencia O antigen structures have been extensively studied, but no data on the location and organization of the O antigen gene cluster have been reported. In this study, the four Providencia genome sequences available were analysed, and the putative O antigen gene cluster was identified in the polymorphic locus between the cpxA and yibK genes. This finding provided the necessary information for designing primers, and cloning and sequencing the O antigen gene clusters from five more Providencia alcalifaciens strains. The gene functions predicted in silico were in agreement with the known O antigen structures; furthermore, annotation of the genes involved in the three-step synthesis of GDP-colitose (gmd, colD and colC) was supported by cloning and biochemical characterization of the corresponding enzymes. In one strain (P. alcalifaciens O39), no polysaccharide product of the gene cluster in the cpxA-yibK locus was found, and hence genes for synthesis of the existing O antigen are located elsewhere in the genome. In addition to the putative O antigen synthesis genes, homologues of wza, wzb, wzc and (in three strains) wzi, required for the surface expression of capsular polysaccharides, were found upstream of yibK in all species except Providencia rustigianii, suggesting that the LPS of these species may be attributed to the so-called K LPS (K(LPS)). The data obtained open a way for development of a PCR-based typing method for identification of Providencia isolates.


Asunto(s)
Familia de Multigenes , Antígenos O/genética , Providencia/genética , Clonación Molecular , ADN Bacteriano/genética , Sitios Genéticos , Azúcares de Guanosina Difosfato/biosíntesis , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
3.
PLoS One ; 6(10): e25514, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22065988

RESUMEN

Coxiella burnetii, the etiologic agent of human Q fever, is a gram-negative and naturally obligate intracellular bacterium. The O-specific polysaccharide chain (O-PS) of the lipopolysaccharide (LPS) of C. burnetii is considered a heteropolymer of the two unusual sugars ß-D-virenose and dihydrohydroxystreptose and mannose. We hypothesize that GDP-D-mannose is a metabolic intermediate to GDP-ß-D-virenose. GDP-D-mannose is synthesized from fructose-6-phosphate in 3 successive reactions; Isomerization to mannose-6-phosphate catalyzed by a phosphomannose isomerase (PMI), followed by conversion to mannose-1-phosphate mediated by a phosphomannomutase (PMM) and addition of GDP by a GDP-mannose pyrophosphorylase (GMP). GDP-D-mannose is then likely converted to GDP-6-deoxy-D-lyxo-hex-4-ulopyranose (GDP-Sug), a virenose intermediate, by a GDP-mannose-4,6-dehydratase (GMD). To test the validity of this pathway in C. burnetii, three open reading frames (CBU0671, CBU0294 and CBU0689) annotated as bifunctional type II PMI, as PMM or GMD were functionally characterized by complementation of corresponding E. coli mutant strains and in enzymatic assays. CBU0671, failed to complement an Escherichia coli manA (PMM) mutant strain. However, complementation of an E. coli manC (GMP) mutant strain restored capsular polysaccharide biosynthesis. CBU0294 complemented a Pseudomonas aeruginosa algC (GMP) mutant strain and showed phosphoglucomutase activity (PGM) in a pgm E. coli mutant strain. Despite the inability to complement a manA mutant, recombinant C. burnetii PMI protein showed PMM enzymatic activity in biochemical assays. CBU0689 showed dehydratase activity and determined kinetic parameters were consistent with previously reported data from other organisms. These results show the biological function of three C. burnetii LPS biosynthesis enzymes required for the formation of GDP-D-mannose and GDP-Sug. A fundamental understanding of C. burnetii genes that encode PMI, PMM and GMP is critical to fully understand the biosynthesic pathway of GDP-ß-D-virenose and LPS structure in C. burnetii.


Asunto(s)
Vías Biosintéticas , Coxiella burnetii/metabolismo , Desoxiazúcares/biosíntesis , Guanosina Difosfato Manosa/biosíntesis , Azúcares de Guanosina Difosfato/biosíntesis , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Biocatálisis , Coxiella burnetii/enzimología , Desoxiazúcares/química , Escherichia coli/metabolismo , Guanosina Difosfato Manosa/química , Azúcares de Guanosina Difosfato/química , Humanos , Cinética , Lipopolisacáridos/metabolismo , Manosa-6-Fosfato Isomerasa/metabolismo , Mutación/genética , Nucleotidiltransferasas , Fosfotransferasas (Fosfomutasas)/metabolismo
4.
FEBS J ; 276(10): 2686-2700, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19459932

RESUMEN

The rare 6-deoxysugar D-rhamnose is a component of bacterial cell surface glycans, including the D-rhamnose homopolymer produced by Pseudomonas aeruginosa, called A-band O polysaccharide. GDP-D-rhamnose synthesis from GDP-D-mannose is catalyzed by two enzymes. The first is a GDP-D-mannose-4,6-dehydratase (GMD). The second enzyme, RMD, reduces the GMD product (GDP-6-deoxy-D-lyxo-hexos-4-ulose) to GDP-d-rhamnose. Genes encoding GMD and RMD are present in P. aeruginosa, and genetic evidence indicates they act in A-band O-polysaccharide biosynthesis. Details of their enzyme functions have not, however, been previously elucidated. We aimed to characterize these enzymes biochemically, and to determine the structure of RMD to better understand what determines substrate specificity and catalytic activity in these enzymes. We used capillary electrophoresis and NMR analysis of reaction products to precisely define P. aeruginosa GMD and RMD functions. P. aeruginosa GMD is bifunctional, and can catalyze both GDP-d-mannose 4,6-dehydration and the subsequent reduction reaction to produce GDP-D-rhamnose. RMD catalyzes the stereospecific reduction of GDP-6-deoxy-D-lyxo-hexos-4-ulose, as predicted. Reconstitution of GDP-D-rhamnose biosynthesis in vitro revealed that the P. aeruginosa pathway may be regulated by feedback inhibition in the cell. We determined the structure of RMD from Aneurinibacillus thermoaerophilus at 1.8 A resolution. The structure of A. thermoaerophilus RMD is remarkably similar to that of P. aeruginosa GMD, which explains why P. aeruginosa GMD is also able to catalyze the RMD reaction. Comparison of the active sites and amino acid sequences suggests that a conserved amino acid side chain (Arg185 in P. aeruginosa GMD) may be crucial for orienting substrate and cofactor in GMD enzymes.


Asunto(s)
Azúcares de Guanosina Difosfato/biosíntesis , Hidroliasas/química , Hidroliasas/metabolismo , Cetona Oxidorreductasas/química , Cetona Oxidorreductasas/metabolismo , Biocatálisis , Electroforesis Capilar , Cinética , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Pseudomonas aeruginosa/enzimología
5.
Protein Sci ; 13(2): 529-39, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14739333

RESUMEN

d-Rhamnose is a rare 6-deoxy monosaccharide primarily found in the lipopolysaccharide of pathogenic bacteria, where it is involved in host-bacterium interactions and the establishment of infection. The biosynthesis of d-rhamnose proceeds through the conversion of GDP-d-mannose by GDP-d-mannose 4,6-dehydratase (GMD) to GDP-4-keto-6-deoxymannose, which is subsequently reduced to GDP-d-rhamnose by a reductase. We have determined the crystal structure of GMD from Pseudomonas aeruginosa in complex with NADPH and GDP. GMD belongs to the NDP-sugar modifying subfamily of the short-chain dehydrogenase/reductase (SDR) enzymes, all of which exhibit bidomain structures and a conserved catalytic triad (Tyr-XXX-Lys and Ser/Thr). Although most members of this enzyme subfamily display homodimeric structures, this bacterial GMD forms a tetramer in the same fashion as the plant MUR1 from Arabidopsis thaliana. The cofactor binding sites are adjoined across the tetramer interface, which brings the adenosyl phosphate moieties of the adjacent NADPH molecules to within 7 A of each other. A short peptide segment (Arg35-Arg43) stretches into the neighboring monomer, making not only protein-protein interactions but also hydrogen bonding interactions with the neighboring cofactor. The interface hydrogen bonds made by the Arg35-Arg43 segment are generally conserved in GMD and MUR1, and the interacting residues are highly conserved among the sequences of bacterial and eukaryotic GMDs. Outside of the Arg35-Arg43 segment, residues involved in tetrameric contacts are also quite conserved across different species. These observations suggest that a tetramer is the preferred, and perhaps functionally relevant, oligomeric state for most bacterial and eukaryotic GMDs.


Asunto(s)
Azúcares de Guanosina Difosfato/biosíntesis , Azúcares de Guanosina Difosfato/metabolismo , Hidroliasas/química , Pseudomonas/enzimología , Secuencia de Aminoácidos , Sitios de Unión , Catálisis , Cristalización , Cristalografía por Rayos X , Hidroliasas/metabolismo , Enlace de Hidrógeno , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Alineación de Secuencia , Homología de Secuencia de Aminoácido
6.
J Am Chem Soc ; 125(19): 5584-5, 2003 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-12733868

RESUMEN

l-Colitose (1) is a 3,6-dideoxyhexose found in the O-antigen of gram-negative lipopoly-saccharides. While the biosynthesis of many deoxysugars have previously been investigated, l-colitose is distinct in that it originates from GDP-d-mannose. In contrast, other 3,6-dideoxyhexoses arise from CDP-d-glucose. Therefore, the enzymes involved in the l-colitose biosynthetic pathway must be specifically tailored to utilize such a modified substrate. The mode for deoxygenation at C-3 of colitose is of particular interest because this conversion in other naturally occurring 3,6-dideoxyhexoses requires a pair of enzymes, E1 and E3, acting in concert. Interestingly, no E3 equivalent was identified in the five open reading frames of the col biosynthetic gene cluster from Yersinia pseudotuberculosis IVA. However, the gene product of colD showed moderate similarity with the E1 gene (ddhC/ascC) of the ascarylose pathway (27% identity and 42% similarity). Because E1 is a pyridoxamine 5'-phosphate (PMP)-dependent enzyme, it was thought that ColD might also utilize PMP. Indeed, turnover was observed during incubation of ColD with substrate in the presence of excess PMP, but not with pyridoxal 5'-phosphate (PLP). However, the rate of product formation increased by more than 40-fold when l-glutamate was included in the PLP incubation. The formation of alpha-ketoglutarate as a byproduct under these conditions clearly indicated that ColD functions as a transaminase, recognizing both PMP and PLP. In this paper, we propose a novel biosynthetic route for colitose, including the unprecedented C-3 deoxygenation performed solely by ColD. The utilization of PMP in a dehydration reaction is rare, but the combined deoxygenation-transamination activity makes ColD a unique enzyme.


Asunto(s)
Azúcares de Guanosina Difosfato/biosíntesis , Proteínas Hierro-Azufre/metabolismo , Oxidorreductasas/metabolismo , Vitamina B 6/metabolismo , Oxidación-Reducción , Yersinia pseudotuberculosis/enzimología , Yersinia pseudotuberculosis/genética
7.
J Biol Chem ; 278(24): 21559-65, 2003 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-12679342

RESUMEN

At least three structural proteins in Paramecium bursaria Chlorella virus (PBCV-1) are glycosylated, including the major capsid protein Vp54. However, unlike other glycoprotein-containing viruses that use host-encoded enzymes in the endoplasmic reticulum-Golgi to glycosylate their proteins, PBCV-1 encodes at least many, if not all, of the glycosyltransferases used to glycosylate its structural proteins. As described here, PBCV-1 also encodes two open reading frames that resemble bacterial and mammalian enzymes involved in de novo GDP-L-fucose biosynthesis. This pathway, starting from GDP-D-mannose, consists of two sequential steps catalyzed by GDP-D-mannose 4,6 dehydratase (GMD) and GDP-4-keto-6-deoxy-D-mannose epimerase/reductase, respectively. The two PBCV-1-encoded genes were expressed in Escherichia coli, and the recombinant proteins had the predicted enzyme activity. However, in addition to the dehydratase activity, PBCV-1 GMD also had a reductase activity, producing GDP-D-rhamnose. In vivo studies established that PBCV-1 GMD and GDP-4-keto-6-deoxy-D-mannose epimerase/reductase are expressed after virus infection and that both GDP-L-fucose and GDP-D-rhamnose are produced in virus-infected cells. Thus, PBCV-1 is the first virus known to encode enzymes involved in nucleotide sugar metabolism. Because fucose and rhamnose are components of the glycans attached to Vp54, the pathway could circumvent a limited supply of GDP sugars by the algal host.


Asunto(s)
Chlorella/genética , Chlorella/metabolismo , Genoma Viral , Guanosina Difosfato Fucosa/biosíntesis , Azúcares de Guanosina Difosfato/biosíntesis , Paramecium/virología , Animales , Aniones , Northern Blotting , Cromatografía Líquida de Alta Presión , Cromatografía por Intercambio Iónico , Electroforesis en Gel de Poliacrilamida , Escherichia coli/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Cinética , Modelos Químicos , Datos de Secuencia Molecular , Monosacáridos/química , Sistemas de Lectura Abierta , Proteínas Recombinantes/química , Espectrometría de Masa por Ionización de Electrospray , Factores de Tiempo
8.
Eur J Biochem ; 269(2): 593-601, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11856318

RESUMEN

Pseudomonas aeruginosa is an opportunistic Gram-negative bacterium that causes severe infections in a number of hosts from plants to mammals. A-band lipopolysaccharide of P. aeruginosa contains d-rhamnosylated O-antigen. The synthesis of GDP-D-rhamnose, the d-rhamnose donor in d-rhamnosylation, starts from GDP-D-mannose. It is first converted by the GDP-mannose-4,6-dehydratase (GMD) into GDP-4-keto-6-deoxy-D-mannose, and then reduced to GDP-D-rhamnose by GDP-4-keto-6-deoxy-D-mannose reductase (RMD). Here, we describe the enzymatic characterization of P. aeruginosa RMD expressed in Saccharomyces cerevisiae. Previous success in functional expression of bacterial gmd genes in S. cerevisiae allowed us to convert GDP-D-mannose into GDP-4-keto-6-deoxy-D-mannose. Thus, coexpression of the Helicobacter pylori gmd and P. aeruginosa rmd genes resulted in conversion of the 4-keto-6-deoxy intermediate into GDP-deoxyhexose. This synthesized GDP-deoxyhexose was confirmed to be GDP-rhamnose by HPLC, matrix-assisted laser desorption/ionization time-of-flight MS, and finally NMR spectroscopy. The functional expression of P. aeruginosa RMD in S. cerevisiae will provide a tool for generating GDP-rhamnose for in vitro rhamnosylation of glycoprotein and glycopeptides.


Asunto(s)
Azúcares de Guanosina Difosfato/biosíntesis , Cetona Oxidorreductasas/metabolismo , Pseudomonas aeruginosa/enzimología , Secuencia de Aminoácidos , Secuencia de Bases , Cromatografía Líquida de Alta Presión , Clonación Molecular , Cartilla de ADN , Azúcares de Guanosina Difosfato/metabolismo , Cetona Oxidorreductasas/química , Cetona Oxidorreductasas/genética , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
9.
Infect Immun ; 69(11): 6923-30, 2001 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11598067

RESUMEN

Shigella strains are in reality clones of Escherichia coli and are believed to have emerged relatively recently (G. M. Pupo, R. Lan, and P. R. Reeves, Proc. Natl. Acad. Sci. USA 97:10567-10572, 2000). There are 33 O-antigen forms in these Shigella clones, of which 12 are identical to O antigens of other E. coli strains. We sequenced O-antigen gene clusters from Shigella boydii serotypes 4, 5, 6, and 9 and also studied the O53- and O79-antigen gene clusters of E. coli, encoding O antigens identical to those of S. boydii serotype 4 and S. boydii serotype 5, respectively. In both cases the S. boydii and E. coli O-antigen gene clusters have the same genes and organization. The clusters of both S. boydii 6 and S. boydii 9 O antigens have atypical features, with a functional insertion sequence and a wzx gene located in the orientation opposite to that of all other genes in S. boydii serotype 9 and an rmlC gene located away from other rml genes in S. boydii serotype 6. Sequences of O-antigen gene clusters from another three Shigella clones have been published, and two of them also have abnormal structures, with either the entire cluster or one gene being located on a plasmid in Shigella sonnei or Shigella dysenteriae, respectively. It appears that a high proportion of clusters coding for O antigens specific to Shigella clones have atypical features, perhaps indicating recent formation of these gene clusters.


Asunto(s)
Proteínas Bacterianas , Escherichia coli/clasificación , Genes Bacterianos , Familia de Multigenes , Antígenos O/genética , Shigella boydii/genética , Secuencia de Bases , Deshidrogenasas de Carbohidratos/genética , Carbohidrato Epimerasas/genética , Proteínas Portadoras/genética , ADN Bacteriano/análisis , Escherichia coli/genética , Azúcares de Guanosina Difosfato/biosíntesis , Hexosiltransferasas/genética , Hidroliasas/genética , Manosa-6-Fosfato Isomerasa/genética , Manosidasas/genética , Proteínas de la Membrana , Datos de Secuencia Molecular , Complejos Multienzimáticos/genética , Azúcares de Nucleósido Difosfato/biosíntesis , Nucleotidiltransferasas/genética , Análisis de Secuencia de ADN , Shigella/genética , Shigella boydii/clasificación , Nucleótidos de Timina/biosíntesis , beta-Manosidasa
10.
J Biol Chem ; 276(24): 20935-44, 2001 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-11279237

RESUMEN

The glycan chain repeats of the S-layer glycoprotein of Aneurinibacillus thermoaerophilus DSM 10155 contain d-glycero-d-manno-heptose, which has also been described as constituent of lipopolysaccharide cores of Gram-negative bacteria. The four genes required for biosynthesis of the nucleotide-activated form GDP-d-glycero-d-manno-heptose were cloned, sequenced, and overexpressed in Escherichia coli, and the corresponding enzymes GmhA, GmhB, GmhC, and GmhD were purified to homogeneity. The isomerase GmhA catalyzed the conversion of d-sedoheptulose 7-phosphate to d-glycero-d-manno-heptose 7-phosphate, and the phosphokinase GmhB added a phosphate group to form d-glycero-d-manno-heptose 1,7-bisphosphate. The phosphatase GmhC removed the phosphate in the C-7 position, and the intermediate d-glycero-alpha-d-manno-heptose 1-phosphate was eventually activated with GTP by the pyrophosphorylase GmhD to yield the final product GDP-d-glycero-alpha-d-manno-heptose. The intermediate and end products were analyzed by high performance liquid chromatography. Nuclear magnetic resonance spectroscopy was used to confirm the structure of these substances. This is the first report of the biosynthesis of GDP-d-glycero-alpha-d-manno-heptose in Gram-positive organisms. In addition, we propose a pathway for biosynthesis of the nucleotide-activated form of l-glycero-d-manno-heptose.


Asunto(s)
Bacillaceae/genética , Proteínas Bacterianas/biosíntesis , Azúcares de Guanosina Difosfato/biosíntesis , Heptosas/biosíntesis , Glicoproteínas de Membrana/biosíntesis , Operón , Secuencia de Aminoácidos , Bacillaceae/química , Bacillaceae/metabolismo , Proteínas Bacterianas/química , Secuencia de Bases , Conformación de Carbohidratos , Cromatografía Líquida de Alta Presión , Clonación Molecular , Cartilla de ADN , Escherichia coli , Genes Bacterianos , Bacterias Gramnegativas/química , Bacterias Gramnegativas/genética , Azúcares de Guanosina Difosfato/química , Heptosas/química , Glicoproteínas de Membrana/química , Datos de Secuencia Molecular , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Mapeo Restrictivo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
11.
J Biol Chem ; 276(8): 5577-83, 2001 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-11096116

RESUMEN

The glycan repeats of the surface layer glycoprotein of Aneurinibacillus thermoaerophilus L420-91T contain d-rhamnose and 3-acetamido-3,6-dideoxy-d-galactose, both of which are also constituents of lipopolysaccharides of Gram-negative plant and human pathogenic bacteria. The two genes required for biosynthesis of the nucleotide-activated precursor GDP-d-rhamnose, gmd and rmd, were cloned, sequenced, and overexpressed in Escherichia coli. The corresponding enzymes Gmd and Rmd were purified to homogeneity, and functional studies were performed. GDP-d-mannose dehydratase (Gmd) converted GDP-d-mannose to GDP-6-deoxy-d-lyxo-4-hexulose, with NADP+ as cofactor. The reductase Rmd catalyzed the second step in the pathway, namely the reduction of the keto-intermediate to the final product GDP-d-rhamnose using both NADH and NADPH as hydride donor. The elution behavior of the intermediate and end product was analyzed by high performance liquid chromatography. Nuclear magnetic resonance spectroscopy was used to identify the structure of the final product of the reaction sequence as GDP-alpha-d-rhamnose. This is the first characterization of a GDP-6-deoxy-d-lyxo-4-hexulose reductase. In addition, Gmd has been shown to be a bifunctional enzyme with both dehydratase and reductase activities. So far, no enzyme catalyzing these two types of reactions has been identified. Both Gmd and Rmd are members of the SDR (short chain dehydrogenase/reductase) protein family.


Asunto(s)
Bacillaceae/enzimología , Azúcares de Guanosina Difosfato/biosíntesis , Oxidorreductasas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Clonación Molecular , Glicoproteínas/metabolismo , Guanosina Difosfato Manosa/metabolismo , Hidroliasas/genética , Hidroliasas/metabolismo , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Operón , Oxidorreductasas/genética , Oxidorreductasas Actuantes sobre Donantes de Grupos Aldehído u Oxo , Procesamiento Proteico-Postraduccional , Ramnosa/biosíntesis , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido
12.
Glycoconj J ; 16(2): 147-59, 1999 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-10612414

RESUMEN

The present review gives a survey on the biosynthetic pathways of nucleotide sugars which are important for the in vitro synthesis of mammalian glycoconjugates. With respect to the use of these enzymes in glycotechnology the availability as recombinant enzymes from different sources, the large-scale synthesis of nucleotide sugars and their in situ regeneration in combination with glycosyltransferases are summarized and evaluated.


Asunto(s)
Enzimas/metabolismo , Nucleótidos/biosíntesis , Animales , Secuencia de Carbohidratos , Glicosiltransferasas/metabolismo , Azúcares de Guanosina Difosfato/biosíntesis , Datos de Secuencia Molecular , Nucleótidos/química , Proteínas Recombinantes/metabolismo , Azúcares de Uridina Difosfato/biosíntesis
13.
Anal Biochem ; 267(1): 227-33, 1999 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-9918676

RESUMEN

For assays involving glycosyltransferases or transporters, several GDP-sugars are either commercially unavailable or expensive. We describe an enzymatic synthesis of GDP-d-[3H]arabinosep and GDP-l-[3H]fucose that yields 66-95% nucleotide-sugar from the appropriate radiolabeled sugar in less than 30 min. The coupled reaction requires Mg2+, ATP, and GTP along with the appropriate radioactive monosaccharide, sugar-1-kinase, and pyrophosphorylase. The latter two activities are present in a cytosolic fraction of Crithidia fasciculata, which is easily grown at room temperature in simple culture medium without serum or added CO2. Addition of commercial yeast inorganic pyrophosphatase shifts the equilibrium of the pyrophosphorylase reaction toward nucleotide-sugar formation. To verify that these nucleotide-sugars are biologically active, we tested their ability to serve as substrates for glycosyltransferases. GDP-l-[3H]fucose functions as the donor substrate for recombinant human fucosyltransferase V, and GDP-d-[3H]arabinosep serves as the donor substrate for the arabinosyltransferase activities present in Leishmania major microsomes.


Asunto(s)
Proteínas de Arabidopsis , Guanosina Difosfato Fucosa/biosíntesis , Azúcares de Guanosina Difosfato/biosíntesis , Animales , Cromatografía Líquida de Alta Presión/métodos , Crithidia fasciculata/enzimología , Fucosiltransferasas/metabolismo , Guanosina Difosfato Fucosa/química , Azúcares de Guanosina Difosfato/química , Humanos , Técnicas In Vitro , Cinética , Leishmania major/enzimología , Nucleotidiltransferasas/metabolismo , Pentosiltransferasa/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Tritio
14.
Adv Exp Med Biol ; 419: 443-6, 1997.
Artículo en Inglés | MEDLINE | ID: mdl-9193687

RESUMEN

Mitochondrial NAD+ glycohydrolase (NADase) has been proposed to be required for (nonenzymatic) ADP-ribosylation and subsequent activation of a Ca2+ release pathway. In our studies it has been found that several agents including nicotinamide, dithiothreitol, and EDTA exert no or little effect on ADP-ribosylation in isolated bovine liver mitochondria, while strongly inhibiting the NADase. The NADase did, however, catalyze the formation of cyclic purine nucleoside diphosphoriboses (similar to cyclic ADP-ribose) from NAD+ analogs. It appears possible, therefore, that this enzyme may be involved in the regulation of mitochondrial Ca2+ fluxes by forming a potent Ca(2+)-mobilizing agent, rather than by providing the substrate for non-enzymatic ADP-ribosylation.


Asunto(s)
Adenosina Difosfato Ribosa/metabolismo , Calcio/metabolismo , Mitocondrias Hepáticas/enzimología , NAD+ Nucleosidasa/metabolismo , Adenosina Trifosfato/farmacología , Animales , Bovinos , Ditiotreitol/farmacología , Ácido Edético/farmacología , Inhibidores Enzimáticos/farmacología , Azúcares de Guanosina Difosfato/biosíntesis , Cloruro de Magnesio/farmacología , NAD/farmacología , NAD+ Nucleosidasa/efectos de los fármacos , NAD+ Nucleosidasa/aislamiento & purificación
15.
Biochem J ; 311 ( Pt 1): 307-15, 1995 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-7575469

RESUMEN

GDP-D-arabinopyranose (GDP-D-Ara) is the precursor of the uncommon D-arabinopyranose residues present in the glycoconjugates of a few trypanosomatid parasites. Biosynthetic labelling experiments with Crithidia fasciculata showed that GDP-D-Ara could be labelled with [3H]D-Ara, [2-3H]D-Glc and [6-3H]D-Glc, but not with [1-3H]D-Glc, suggesting that D-Ara can be either taken up directly by the parasite or derived from D-Glc through a pathway involving the loss of carbon C-1. In vivo pulse-chase experiments indicated that D-Ara was sequentially incorporated into D-Ara-1-PO4 and GDP-D-Ara prior to transfer to the acceptor glycoconjugate, lipoarabinogalactan. An MgATP-dependent D-arabino-1-kinase activity present in soluble extracts of C. fasciculata was purified away from phosphatase activities by size-exclusion chromatography. The D-arabino-1-kinase had an apparent molecular mass of 600 kDa, a neutral optimum pH, and displayed substrate inhibition at D-Ara concentrations above 100 microM. It had a KmATP of 1.7 mM and a KmAra of 24 microM. Competition studies indicated that the orientation of every single hydroxyl residue was important for D-Ara recognition by the enzyme, but that methyl or hydroxymethyl groups could be tolerated as equatorial substituents on C-5 of D-Ara. The partially purified D-arabino-1-kinase activity was used in the chemico-enzymic synthesis of GDP-[5-3H]D-Ara from [6-3H]D-GlcN.


Asunto(s)
Crithidia fasciculata/enzimología , Azúcares de Guanosina Difosfato/biosíntesis , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Adenosina Trifosfato/farmacología , Animales , Galactanos/metabolismo , Glucosa/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Peso Molecular , Fosforilación , Especificidad por Sustrato , Tritio
16.
Gene ; 164(1): 17-23, 1995 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-7590310

RESUMEN

The O antigens found in Salmonella enterica (Se) and Escherichia coli (Ec) show a great deal of diversity, and only three structures are known to be common to both genera. Two of them contain the 3,6-dideoxyheoxse colitose, not found in other serogroups of the two species. The first of these is common to Ec O111 and Se O:35 (sv Adelaide); the other is found in both Ec O55 and Se O:50 (sv Greenside). The genes specific for the synthesis of O antigen are generally located in the rfb gene cluster at map position 45 min in Ec and 42 min in Se. The rfb (O antigen) gene cluster of an Ec O111 strain M92 had been cloned earlier and hybridisation analysis suggested that the rfb clusters of Ec M92 and a Se sv Adelaide strain had been acquired separately by the two species since their divergence. We have now sequenced part of the rfb cluster from Ec M92. We identify two genes of the GDP-colitose pathway, rfbM and rfbK, and show that several other ORFs have similarity to the rfb and cps (capsular polysaccharide) genes. Downstream of this block of genes is an ORF which encodes a protein with predicted transmembrane segments which is presumed to correspond to the rfbX gene. The % G+C values of the Ec M92 rfb sequence are extremely low, indicating that the rfb evolved in a low % G+C species of bacteria before transfer into Ec.


Asunto(s)
Escherichia coli/genética , Genes Bacterianos , Proteínas de Transporte de Membrana , Familia de Multigenes , Antígenos O , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Composición de Base , Secuencia de Bases , Código Genético , Guanosina Difosfato Fucosa/metabolismo , Azúcares de Guanosina Difosfato/biosíntesis , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Nucleotidiltransferasas/genética , Sistemas de Lectura Abierta , Fosfotransferasas (Fosfomutasas)/genética , Análisis de Secuencia de ADN , Homología de Secuencia
17.
J Biol Chem ; 269(48): 30260-7, 1994 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-7982936

RESUMEN

Cyclic nucleotides such as cAMP and cGMP are second messengers subserving various signaling pathways. Cyclic ADP-ribose (cADPR), a recently discovered member of the family, is derived from NAD+ and is a mediator of Ca2+ mobilization in various cellular systems. The synthesis and degradation of cADPR are, respectively, catalyzed by ADP-ribosyl cyclase and cADPR hydrolase. CD38, a differentiation antigen of B lymphocytes, has recently been shown to be a bifunctional enzyme catalyzing both the formation and hydrolysis of cADPR. The overall reaction catalyzed by CD38 is the formation of ADP-ribose and nicotinamide from NAD+, identical to that catalyzed by NADase. The difficulties in detecting the formation of cADPR have led to frequent identification of CD38 as a classical NADase. In this study, we show that both ADP-ribosyl cyclase and CD38, but not NADase, can cyclize nicotinamide guanine dinucleotide (NGD+) producing a new nucleotide. Analyses by high performance liquid chromatography and mass spectroscopy indicate the product is cyclic GDP-ribose (cGDPR) with a structure similar to cADPR except with guanine replacing adenine. Compared to cADPR, cGDPR is a more stable compound showing 2.8 times more resistance to heat-induced hydrolysis. These results are consistent with a catalytic scheme for CD38 where the cyclization of the substrate precedes the hydrolytic reaction. Spectroscopic analyses show that cGDPR is fluorescent and has an absorption spectrum different from both NGD+ and GDPR, providing a very convenient way for monitoring its enzymatic formation. The use of NGD+ as substrate for assaying the cyclization reaction was found to be applicable to pure enzymes as well as crude tissue extracts making it a useful diagnostic tool for distinguishing CD38-like enzymes from degradative NADases.


Asunto(s)
Azúcares de Guanosina Difosfato/biosíntesis , N-Glicosil Hidrolasas/metabolismo , ADP-Ribosil Ciclasa , ADP-Ribosil Ciclasa 1 , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación/metabolismo , Aplysia/enzimología , Linfocitos B/enzimología , Encéfalo/enzimología , Calcio/metabolismo , Membrana Celular/enzimología , Cromatografía Líquida de Alta Presión , Clonación Molecular , Perros , Humanos , Glicoproteínas de Membrana , Miocardio/enzimología , N-Glicosil Hidrolasas/aislamiento & purificación , NAD+ Nucleosidasa/aislamiento & purificación , NAD+ Nucleosidasa/metabolismo , Neurospora crassa/enzimología , Óvulo/metabolismo , Pirofosfatasas/aislamiento & purificación , Pirofosfatasas/metabolismo , Proteínas Recombinantes/metabolismo , Erizos de Mar
18.
Eur J Biochem ; 62(1): 181-7, 1976 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-942918

RESUMEN

The enzymic formation of guanosine diphosphate 2-deoxy-D-glucose and uridine diphosphate 2-deoxy-D-glucose from synthetically prepared 2-deoxy-D-glucose 1-phosphate is described. Incubation of 2-deoxy-D-glucose 1-phosphate with an enzyme preparation from bovine mammary glands and either GTP or UTP gives rise to the corresponding nucleoside-diphosphate derivative of 2-deoxy-D-glucose. Uridine diphosphate 2-deoxy-D-glucose could also be obtained by incubation of 2-deoxy-D-glucose 1-phosphate with UTP and UDP glucose pyrophosphorylase from beef liver.


Asunto(s)
Azúcares de Guanosina Difosfato/biosíntesis , Azúcares de Nucleósido Difosfato/biosíntesis , Uridina Difosfato Glucosa/biosíntesis , Azúcares de Uridina Difosfato/biosíntesis , Animales , Bovinos , Desoxiglucosa/metabolismo , Femenino , Azúcares de Guanosina Difosfato/análogos & derivados , Lactancia , Glándulas Mamarias Animales/metabolismo , Rotación Óptica , Embarazo , Uridina Difosfato Glucosa/análogos & derivados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...