Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 940
Filtrar
1.
Molecules ; 29(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731401

RESUMEN

The burden of human schistosomiasis, a known but neglected tropical disease in Sub-Saharan Africa, has been worrisome in recent years. It is becoming increasingly difficult to tackle schistosomiasis with praziquantel, a drug known to be effective against all Schistosoma species, due to reports of reduced efficacy and resistance. Therefore, this study seeks to investigate the antischistosomal potential of phytochemicals from Azadirachta indica against proteins that have been implicated as druggable targets for the treatment of schistosomiasis using computational techniques. In this study, sixty-three (63) previously isolated and characterized phytochemicals from A. indica were identified from the literature and retrieved from the PubChem database. In silico screening was conducted to assess the inhibitory potential of these phytochemicals against three receptors (Schistosoma mansoni Thioredoxin glutathione reductase, dihydroorotate dehydrogenase, and Arginase) that may serve as therapeutic targets for schistosomiasis treatment. Molecular docking, ADMET prediction, ligand interaction, MMGBSA, and molecular dynamics simulation of the hit compounds were conducted using the Schrodinger molecular drug discovery suite. The results show that Andrographolide possesses a satisfactory pharmacokinetic profile, does not violate the Lipinski rule of five, binds with favourable affinity with the receptors, and interacts with key amino acids at the active site. Importantly, its interaction with dihydroorotate dehydrogenase, an enzyme responsible for the catalysis of the de novo pyrimidine nucleotide biosynthetic pathway rate-limiting step, shows a glide score and MMGBSA of -10.19 and -45.75 Kcal/mol, respectively. In addition, the MD simulation shows its stability at the active site of the receptor. Overall, this study revealed that Andrographolide from Azadirachta indica could serve as a potential lead compound for the development of an anti-schistosomal drug.


Asunto(s)
Azadirachta , Dihidroorotato Deshidrogenasa , Simulación del Acoplamiento Molecular , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Esquistosomiasis , Azadirachta/química , Animales , Esquistosomiasis/tratamiento farmacológico , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Humanos , Fitoquímicos/farmacología , Fitoquímicos/química , Simulación de Dinámica Molecular , Schistosoma mansoni/efectos de los fármacos , Schistosoma mansoni/enzimología , NADH NADPH Oxidorreductasas/antagonistas & inhibidores , NADH NADPH Oxidorreductasas/metabolismo , Extractos Vegetales/química , Extractos Vegetales/farmacología , Simulación por Computador , Esquistosomicidas/farmacología , Esquistosomicidas/química , Esquistosomicidas/uso terapéutico , Complejos Multienzimáticos/antagonistas & inhibidores , Complejos Multienzimáticos/metabolismo , Praziquantel/farmacología , Praziquantel/química , Praziquantel/uso terapéutico
2.
Environ Res ; 252(Pt 3): 119047, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38704006

RESUMEN

Pharmaceuticals and personal care products (PPCPs) are emerging contaminants in aqueous systems, posing threat to both human health and environment. In prior research, predominant focus has been on examining various adsorbents for removing PPCPs from single-pollutant systems. However, no study has delved into simultaneous adsorption of PPCPs multi-pollutant mixture. This study evaluates performance of Azadirachta indica leaf extract-based green-synthesized ZnO nanoparticles coated on spent tea waste activated carbon (ZTAC) for removing sulfadiazine (SZN) and acetaminophen (ACN). Adsorption investigations were conducted in single-component (ACN/SZN) and binary-component (ACN + SZN) systems. The synthesized ZTAC was characterized using SEM, XRD, FTIR, EDX, porosimetry and pHpzc analysis. The study examines impact of time (1-60 min), dose (0.2-4 g/L), pH (2-12) and PPCPs concentration (1-100 mg/L) on ACN and SZN removal. Various kinetic and isotherm models were employed to elucidate mechanisms involved in sorption of PPCPs. Furthermore, synergistic and antagonistic aspects of sorption process in multi-component system were investigated. ZTAC, characterized by its crystalline nature and surface area of 980.85 m2/g, exhibited maximum adsorption capacity of 47.39 mg/g for ACN and 34.01 mg/g for SZN under optimal conditions of 15 min, 3 g/L and pH 7. Langmuir isotherm and pseudo-second-order kinetic model best-fitted the experimental data indicating chemisorption mechanism. Removal of ACN and SZN on ZTAC demonstrated synergistic nature, signifying cooperative adsorption. Overall, valorization of ZTAC offers effective and efficient adsorbent for elimination of PPCPs from wastewater.


Asunto(s)
Azadirachta , Extractos Vegetales , Hojas de la Planta , Contaminantes Químicos del Agua , Óxido de Zinc , Azadirachta/química , Óxido de Zinc/química , Extractos Vegetales/química , Hojas de la Planta/química , Adsorción , Contaminantes Químicos del Agua/química , Carbón Orgánico/química , Cosméticos/química , Preparaciones Farmacéuticas/química , Tecnología Química Verde/métodos , Té/química , Nanopartículas del Metal/química
3.
Med Oncol ; 41(6): 158, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38761317

RESUMEN

Nimbolide, one of the main ingredients constituent of Azadirachta indica (neem) leaf extract, has garnered attention for its potential as an anticancer agent. Its efficacy against various cancers and chemopreventive action has been demonstrated through numerous in vivo and in vitro studies. This updated review aims to comprehensively explore the chemopreventive and anticancer properties of nimbolide, emphasizing its molecular mechanisms of action and potential therapeutic applications in oncology. The review synthesizes evidence from various studies that examine nimbolide's roles in apoptosis induction, anti-proliferation, cell death, metastasis inhibition, angiogenesis suppression, and modulation of carcinogen-metabolizing enzymes. Nimbolide exhibits multifaceted anticancer activities, including the modulation of multiple cell signaling pathways related to inflammation, invasion, survival, growth, metastasis, and angiogenesis. However, its pharmacological development is still in the early stages, mainly due to limited pharmacokinetic and comprehensive long-term toxicological studies. Nimbolide shows promising anticancer and chemopreventive properties, but there is need for systematic preclinical pharmacokinetic and toxicological research. Such studies are essential for establishing safe dosage ranges for first-in-human clinical trials and further advancing nimbolide's development as a therapeutic agent against various cancers. The review highlights the potential of nimbolide in cancer treatment and underscores the importance of rigorous preclinical evaluation to realize its full therapeutic potential.


Asunto(s)
Limoninas , Neoplasias , Humanos , Limoninas/farmacología , Limoninas/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Animales , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Azadirachta/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Transducción de Señal/efectos de los fármacos
4.
Food Chem ; 451: 139500, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38696941

RESUMEN

Deep eutectic solvent (DES) combined with ultrasonic-assisted extraction was employed as an environmentally friendly technique for extracting antioxidant phenolic compounds from Neem leaves in place of organic solvents. Choline chloride-Ethylene glycol (1:2) with 40% V/V water content (DES-1) was investigated as a potential total phenolic content extractant (38.2 ± 1.2 mg GAE/g DW, where GAE: gallic acid equivalent, DW: dry weight). The optimal operational parameters assessed using single-factor experiments to maximize the total phenolic compounds content were as follows: extraction time of 30 min, 40% V/V water content, liquid-solid ratio of 15:1, and room temperature. Additionally, the in-vitro antioxidant experiments (2,2-diphenyl-1- picrylhydrazyl radical scavenging assay and ferric reducing antioxidant power assay) demonstrated the DES-1-based extract of Neem leaves as a potent antioxidant agent, compared to traditional solvents. Moreover, microscopic morphological analysis supported the effectiveness of DES-1 for the noticeable alteration in the fiber surface structure of Neem leaves after extraction which benefited in the release of polyphenols from these leaves. Eventually, the mass analysis of the extract disclosed the presence of eleven polyphenols in the extract. The Green Analytical Procedure Index revealed the greenness of the extraction method.


Asunto(s)
Antioxidantes , Disolventes Eutécticos Profundos , Tecnología Química Verde , Fenoles , Extractos Vegetales , Hojas de la Planta , Hojas de la Planta/química , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Fenoles/química , Fenoles/aislamiento & purificación , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Disolventes Eutécticos Profundos/química , Azadirachta/química , Fraccionamiento Químico/métodos , Ultrasonido , Solventes/química
5.
Sci Rep ; 14(1): 7780, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565924

RESUMEN

Dandruff, a common scalp disorder characterized by flaking dead skin, is often treated with conventional topical products. However, limitations exist due to potential side effects and high costs. Therefore, searching for natural, cost-effective solutions for dandruff and hair loss is crucial. Rosemary herb and neem tree, both cultivated in Egypt, possess well-documented anti-inflammatory properties derived from their rich phenolic phytoconstituents. This study formulated a standardized combined extract of rosemary and neem (RN-E 2:1) into hair gel and leave-in tonic formats. This extract demonstrated superior efficacy against Malassezia furfur (a causative agent of dandruff) and Trichophyton rubrum (associated with scalp disorders) compared to the conventional antifungal agent, ketoconazole. The combined extract (RN-E 2:1) also exhibited potent anti-inflammatory activity. Additionally, the suppression of iNOS expression is considered concentration-dependent. Quality control verified formulation stability, and ex-vivo studies confirmed effective ingredient penetration into the epidermis, the primary site of fungal presence. Remarkably, both formulations outperformed the standard treatment, minoxidil in hair growth trials. These findings highlight the potential of natural extracts for scalp and hair health.


Asunto(s)
Azadirachta , Caspa , Rosmarinus , Caspa/tratamiento farmacológico , Caspa/microbiología , Alopecia/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
6.
Cell Commun Signal ; 22(1): 237, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38649988

RESUMEN

BACKGROUND: A water-soluble ingredient of mature leaves of the tropical mahogany 'Neem' (Azadirachta indica), was identified as glycoprotein, thus being named as 'Neem Leaf Glycoprotein' (NLGP). This non-toxic leaf-component regressed cancerous murine tumors (melanoma, carcinoma, sarcoma) recurrently in different experimental circumstances by boosting prime antitumor immune attributes. Such antitumor immunomodulation, aid cytotoxic T cell (Tc)-based annihilation of tumor cells. This study focused on identifying and characterizing the signaling gateway that initiate this systemic immunomodulation. In search of this gateway, antigen-presenting cells (APCs) were explored, which activate and induce the cytotoxic thrust in Tc cells. METHODS: Six glycoprotein-binding C-type lectins found on APCs, namely, MBR, Dectin-1, Dectin-2, DC-SIGN, DEC205 and DNGR-1 were screened on bone marrow-derived dendritic cells from C57BL/6 J mice. Fluorescence microscopy, RT-PCR, flow cytometry and ELISA revealed Dectin-1 as the NLGP-binding receptor, followed by verifications through RNAi. Following detection of ß-Glucans in NLGP, their interactions with Dectin-1 were explored in silico. Roles of second messengers and transcription factors in the downstream signal were studied by co-immunoprecipitation, western blotting, and chromatin-immunoprecipitation. Intracellularization of FITC-coupled NLGP was observed by processing confocal micrographs of DCs. RESULTS: Considering extents of hindrance in NLGP-driven transcription rates of the cytokines IL-10 and IL-12p35 by receptor-neutralization, Dectin-1 receptors on dendritic cells were found to bind NLGP through the ligand's peripheral ß-Glucan chains. The resulting signal phosphorylates PKCδ, forming a trimolecular complex of CARD9, Bcl10 and MALT1, which in turn activates the canonical NFκB-pathway of transcription-regulation. Consequently, the NFκB-heterodimer p65:p50 enhances Il12a transcription and the p50:p50 homodimer represses Il10 transcription, bringing about a cytokine-based systemic-bias towards type-1 immune environment. Further, NLGP gets engulfed within dendritic cells, possibly through endocytic activities of Dectin-1. CONCLUSION: NLGP's binding to Dectin-1 receptors on murine dendritic cells, followed by the intracellular signal, lead to NFκB-mediated contrasting regulation of cytokine-transcriptions, initiating a pro-inflammatory immunopolarization, which amplifies further by the responding immune cells including Tc cells, alongside their enhanced cytotoxicity. These insights into the initiation of mammalian systemic immunomodulation by NLGP at cellular and molecular levels, may help uncovering its mode of action as a novel immunomodulator against human cancers, following clinical trials.


Asunto(s)
Azadirachta , Proteínas Adaptadoras de Señalización CARD , Células Dendríticas , Lectinas Tipo C , Ratones Endogámicos C57BL , FN-kappa B , Hojas de la Planta , Transducción de Señal , Animales , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Azadirachta/química , Ratones , Proteínas Adaptadoras de Señalización CARD/metabolismo , FN-kappa B/metabolismo , Unión Proteica
7.
Acta Trop ; 255: 107223, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38642694

RESUMEN

Malaria remains a highly prevalent infectious disease worldwide, particularly in tropical and subtropical regions. Effectively controlling of mosquitoes transmitting of Plasmodium spp. is crucial in to control this disease. A promising strategy involves utilizing plant-derived products, such as the Neem tree (Azadirachta indica), known for its secondary metabolites with biological activity against various insect groups of agricultural and public health importance. This study investigated the effects of a nanoformulation prototype Neem on factors linked to the vector competence of Anopheles aquasalis, a malaria vector in Latin America. Different concentrations of the nanoformulation were supplied through sugar solution and blood feeding, assessing impacts on longevity, fecundity, fertility, and transgenerational survival from larvae to adults. Additionally, the effects of the Neem nanoformulation and NeemAZAL® formulation on the sporogonic cycle of P. vivax were evaluated. Overall, significant impacts were observed at 100 ppm and 1,000 ppm concentrations on adult survival patterns and on survival of the F1 generation. A trend of reduced oviposition and hatching rates was also noted in nanoformulation-consuming groups, with fertility and fecundity declining proportionally to the concentration. Additionally, a significant decrease in the infection rate and intensity of P. vivax was observed in the 1,000 ppm group, with a mean of 3 oocysts per female compared to the control's 27 oocysts per female. In the commercial formulation, the highest tested concentration of 3 ppm yielded 5.36 oocysts per female. Concerning sporozoite numbers, there was a reduction of 52 % and 87 % at the highest concentrations compared to the control group. In conclusion, these findings suggest that the A. indica nanoformulation is a potential as a tool for malaria control through reduction in the vector longevity and reproductive capacity, possibly leading to decreased vector population densities. Moreover, the nanoformulation interfered with the sporogonic development of P. vivax. However, further basic research on Neem formulations, their effects, and mechanisms of action is imperative to gain a more specific perspective for safe field implementation.


Asunto(s)
Anopheles , Azadirachta , Mosquitos Vectores , Plasmodium vivax , Animales , Anopheles/efectos de los fármacos , Anopheles/parasitología , Azadirachta/química , Femenino , Mosquitos Vectores/efectos de los fármacos , Mosquitos Vectores/parasitología , Plasmodium vivax/efectos de los fármacos , Fertilidad/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Extractos Vegetales/administración & dosificación , Larva/efectos de los fármacos , Longevidad/efectos de los fármacos , Control de Mosquitos/métodos
8.
Pestic Biochem Physiol ; 199: 105778, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38458685

RESUMEN

With their remarkable bioactivity and evolving commercial importance, plant secondary metabolites (PSMs) have gained significant research interest in recent years. Plant tissue culture serves as a credible tool to examine how abiotic stresses modulate the production of PSMs, enabling clear insights into plant stress responses and the prospects for controlled synthesis of bioactive compounds. Azadirachta indica, or neem has been recognized as a repository of secondary metabolites for centuries, particularly for the compound named azadirachtin, due to its bio-pesticidal and high antioxidant properties. Introducing salt stress as an elicitor makes it possible to enhance the synthesis of secondary metabolites, specifically azadirachtin. Thus, in this research, in vitro callus cultures of neem were micro-propagated and induced with salinity stress to explore their effects on the production of azadirachtin and identify potential proteins associated with salinity stress through comparative shotgun proteomics (LCMS/MS). To induce salinity stress, 2-month-old calli were subjected to various concentrations of NaCl (0.05-1.5%) for 4 weeks. The results showed that the callus cultures were able to adapt and survive in the salinity treatments, but displayed a reduction in fresh weight as the NaCl concentration increased. Notably, azadirachtin production was significantly enhanced in the salinity treatment compared to control, where 1.5% NaCl-treated calli produced the highest azadirachtin amount (10.847 ± 0.037 mg/g DW). The proteomics analysis showed that key proteins related to primary metabolism, such as defence, energy, cell structure, redox, transcriptional and photosynthesis, were predominantly differentially regulated (36 upregulated and 93 downregulated). While a few proteins were identified as being regulated in secondary metabolism, they were not directly involved in the synthesis of azadirachtin. In conjunction with azadirachtin elicitation, salinity stress treatment could therefore be successfully applied in commercial settings for the controlled synthesis of azadirachtin and other plant-based compounds. Further complementary omics approaches can be employed to enhance molecular-level modifications, to facilitate large-scale production of bioactive compounds in the future.


Asunto(s)
Azadirachta , Limoninas , Azadirachta/química , Azadirachta/metabolismo , Cloruro de Sodio/farmacología , Cloruro de Sodio/metabolismo , Proteómica , Limoninas/farmacología
9.
Cutis ; 113(1): 22-24, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38478934

RESUMEN

Azadirachta indica, commonly known as neem, has many uses as a natural remedy. We review and discuss the pharmacologic, biologic, and medicinal properties of neem in disease management. We also report a rare clinical case of a 77-year-old man who presented with a hypopigmented rash on the lower back, bilateral flanks, and buttocks after 6 months of repeated application of neem oil to treat persistent arthritis and lower back pain.


Asunto(s)
Azadirachta , Masculino , Humanos , Anciano , Glicéridos/farmacología , Terpenos/farmacología , Extractos Vegetales
10.
Ann Afr Med ; 23(1): 5-12, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38358164

RESUMEN

Malaria is a disease affecting millions of people, especially in Africa, Asia, and South America, and has become a substantial economic burden. Because malaria is contracted through the bite of a mosquito vector, it is very challenging to prevent. Bed nets and insect repellents are used in some homes; others do not have or use them even when available. Thus, treatment measures are crucial to controlling this disease. Artemisinin-based combination therapy (ACT) is currently the first-line treatment for malaria. ACT has been used for decades, but recently, there has been evidence of potential resistance. This threat of resistance has led to the search for possible alternatives to ACT. In sub-Saharan Africa, Azadirachta indica, or simply neem, is a plant used to treat a variety of ailments, including malaria. Neem is effective against one of the more deadly malaria parasites Plasmodium falciparum. Reports show that neem inhibits microgametogenesis of P. falciparum and interferes with the parasite's ookinete development. Although there is substantial in vitro research on the biological activity of A. indica (neem), there is limited in vivo research. Herein, we discuss the in vivo effects of neem on malaria parasites. With A. indica, the future of malaria treatment is promising, especially for high-risk patients, but further research and clinical trials are required to confirm its biological activity.


Résumé Le paludisme est une maladie qui touche des millions de personnes, notamment en Afrique, en Asie et en Amérique du Sud, et est devenu un problème économique majeur fardeau. Le paludisme étant contracté par la piqûre d'un moustique vecteur, il est très difficile à prévenir. Moustiquaires et insectifuges sont utilisés dans certaines maisons ; d'autres ne les possèdent pas ou ne les utilisent pas même lorsqu'ils sont disponibles. Les mesures thérapeutiques sont donc cruciales pour contrôler cette maladie. La thérapie combinée à base d'artémisinine (ACT) constitue actuellement le traitement de première intention contre le paludisme. L'ACT est utilisé depuis des décennies, mais récemment, il y a eu des preuves d'une résistance potentielle. Cette menace de résistance a conduit à la recherche d'alternatives possibles à l'ACT. En Afrique subsaharienne, Azadirachta indica, ou simplement neem, est une plante utilisée pour traiter diverses maladies, dont le paludisme. Le Neem est efficace contre l'un des des parasites du paludisme plus mortels, Plasmodium falciparum. Des rapports montrent que le neem inhibe la microgamétogenèse de P. falciparum et interfere avec le développement de l'ookinète du parasite. Bien qu'il existe d'importantes recherches in vitro sur l'activité biologique d'A. indica (neem), il existe la recherche in vivo est limitée. Nous discutons ici des effets in vivo du neem sur les parasites du paludisme. Avec A. indica, l'avenir du traitement du paludisme est prometteur, en particulier pour les patients à haut risque, mais des recherches et des essais cliniques supplémentaires sont nécessaires pour confirmer son activité biologique. Mots-clés: Azadirachta indica, paludisme, neem, Plasmodium falciparum.


Asunto(s)
Antimaláricos , Azadirachta , Malaria Falciparum , Malaria , Animales , Humanos , Extractos Vegetales/uso terapéutico , Malaria/tratamiento farmacológico , Plasmodium falciparum , África del Sur del Sahara , Antimaláricos/uso terapéutico , Antimaláricos/farmacología , Malaria Falciparum/tratamiento farmacológico
11.
Environ Monit Assess ; 196(3): 262, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38351411

RESUMEN

Water being the most important fluid supporting the life as well as industry is getting sparse and polluted day by day. Activated carbon (AC) can be utilized in various applications of significant environmental impact and sustainable living such as carbon dioxide sensing and capturing, air purification, and water recycling. However, in the wake of the recent corona pandemic which resulted in global lockdown and took the entire world by shock, a cost-effective and simple synthesis of such a useful material remains dire need of time. Therefore, this paper describes a simple and cost-effective synthesis of activated carbon (AC) of high porosity and surface area derived from the pruning of conocarpus and azadirachta trees. In reference to the study under consideration, alongside numerous others, a furnace was employed to synthesize activated carbon. However, our approach utilized a more conventional methodology wherein the environmental parameters were not optimized. In furnace-based procedures, factors such as temperature, pressure, and humidity are meticulously regulated, contrasting with the conventional methodologies where such parameters lack optimal control. Consequently, employing a furnace does not constitute a cost-effective approach for the physical activation of organic samples thus proving a furnace is not imperative for physical activation. The synthesis was carried out by physical activation in the form of carbonization followed by chemical activation with potassium hydroxide (KOH). The influence of activated carbon from each pruning over filtration of water containing industrial dye was investigated. Activation temperature and impregnation ratio of 600-800 °C and 1:5 were selected respectively. X-ray diffraction patterns (XRD) for all AC samples indicted the appearance of broad peaks at 2θ value of 20-30° which confirms the presence of carbon in the sample. The physical morphology arrangement by SEM analysis showed uneven arrangement of pores of conocarpus which indicated higher iodine number and hence higher adsorption capacity of 442.13 mg/g.


Asunto(s)
Azadirachta , Hidróxidos , Compuestos de Potasio , Contaminantes Químicos del Agua , Aguas Residuales , Carbón Orgánico/química , Monitoreo del Ambiente , Contaminantes Químicos del Agua/química , Agua , Adsorción
12.
Microsc Res Tech ; 87(5): 957-976, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38174385

RESUMEN

The present exploration demonstrates the efficient, sustainable, cost-effective, and environment-friendly green approach for the synthesis of silver (Ag)-doped copper oxide (CuO) embedded with reduced graphene oxide (rGO) nanocomposite using the green one-pot method and the green deposition method. Leaf extracts of Ficus carica and Azadirachta indica were used for both methods as reducing and capping agents. The effect of methodology and plant extract was analyzed through different characterization techniques such as UV-visible spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), x-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM). The lowest band gap of 3.0 eV was observed for the Ag/CuO/rGO prepared by the green one-pot method using F. carica. The reduction of graphene oxide (GO) and the formation of metal oxide was confirmed through functional group detection using FT-IR. Calculation of thermodynamic parameters showed that all reactions involved were nonspontaneous and endothermic which shows the stability of nanocomposites. XRD studies revealed the crystallinity, phase purity and small average crystallite size of 32.67 nm. SEM images disclosed that the morphology of the nanocomposites was spherical with agglomeration and rough texture. The particle size of the nanocomposites calculated through HRTEM was found in agreement with the XRD results. The numerous properties of the synthesized nanocomposites enhanced their potential against the degradation of methylene blue, rhodamine B, and ciprofloxacin. The highest percentage degradation of Ag/CuO/rGO was found to be 97%, synthesized using the green one-pot method with F. carica against ciprofloxacin, which might be due to the lowest band gap, delayed electron-hole pair recombination, and large surface area available. The nanocomposites were also tested against the Gram-positive and Gram-negative bacteria. RESEARCH HIGHLIGHTS: Facile synthesis of Ag/CuO/rGO nanocomposite using a green one-pot method and the green deposition method. The lowest band gap of 3.0 eV was observed for nanocomposite prepared by a green one-pot method using Ficus carica. Least average crystallite size of 32.67 nm was found for nanocomposite prepared by a green one-pot method using F. carica. Highest antibacterial and catalytic activity (97%) was obtained against ciprofloxacin with nanocomposite prepared through green one-pot method using F. carica. A mechanism of green synthesis is proposed.


Asunto(s)
Azadirachta , Ficus , Grafito , Nanopartículas del Metal , Nanocompuestos , Antibacterianos/farmacología , Antibacterianos/química , Espectroscopía Infrarroja por Transformada de Fourier , Bacterias Gramnegativas , Bacterias Grampositivas , Nanocompuestos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Ciprofloxacina , Nanopartículas del Metal/química
13.
Anal Methods ; 16(7): 1034-1042, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38265638

RESUMEN

In this work, a microfluidic paper-based analytical device (µPAD) was developed to detect the biopesticide azadirachtin (Aza) through a colorimetric assay. High precision estimation of Aza is classically carried out using high performance liquid chromatography (HPLC), which requires highly skilled personnel. Acidified vanillin is a commonly used colorimetric indicator in thin layer chromatography for detection of various phytochemicals. However, the assay involves concentrated acid, which limits the choice of paper substrates for paper-based sensors and raises safety concerns. In this work, we show how the assay can be extended from the liquid phase to a paper substrate. Glass microfiber (GMF) filter paper was found to be suitable paper as it was acid resistant; besides, its hydrophilicity enabled smooth flow of reagents. A microfluidic paper-based sensor (µPAD) was developed by sandwiching 5 mm sized GMF dots between two parafilm sheets. We demonstrate the use of colorimetric assay on the µPAD for on-site detection of Aza in neem kernels. The magenta color developed upon the reaction of acidified vanillin with Aza was captured using a smart-phone and analysed using RGB levels in the image. Calibration was established using neem kernel extract of known concentration. Linearity was seen in the concentration range of 5 to 25 mg L-1 Aza. A limit of detection of 2.3 mg L-1 was obtained using this method. The colorimetric assay showed a relative recovery of >85% when compared with the values obtained from HPLC. The stability of the reagents on the GMF sensor was investigated to understand the storage conditions and shelf life of the reagents and sensor. The present work demonstrates the development of a portable sensor for on-site detection of phytochemicals that can be an integral part of the agricultural supply chain.


Asunto(s)
Azadirachta , Limoninas , Factor de Maduración de la Glia , Limoninas/análisis , Limoninas/química , Benzaldehídos
14.
Chemosphere ; 351: 141180, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38218237

RESUMEN

In contemporary wastewater treatment industry, advanced oxidation techniques, membrane filtration, ion exchange, and reverse osmosis are used to treat chemically loaded wastewater. All these methods required highly toxic oxidizing chemicals, high capital investment in membrane/filter materials, and the installation of sophisticated equipment. Wastewater treatment through an adsorption process using biomass-based adsorbent is economical, user-friendly, and sustainable. Neem tree waste has been explored as an adsorbent for wastewater treatment. The chemical components in the neem biomass include carbohydrates, fat, fiber, cellulose, hemicellulose, and lignin, which support the functionalization of neem biomass. Moreover, adsorbent preparation from renewable resources is not only cost-effective and environmentally friendly but also helps in waste management for sustainable growth. Contemporary researchers explored the pre- and post-surface-modified neem biomass adsorbents in scavenging the pollutants from contaminated water. This review extensively explores the activation process of neem biomass, physical and chemical methods of surface modification mechanism, and the factors affecting surface modification. The pollutant removal through pre and post-surface-modified neem biomass adsorbents was also summarized. Furthermore, it also provides a comprehensive summary of the factors that affect the adsorption performance of the neem biomass-derived adsorbents against dyes, metal ions, and other emerging pollutants. Understanding the surface-modification mechanisms and the adsorption efficiency factor of adsorbents will help in harnessing their potential for more efficiently combatting environmental pollution and making strides toward a greener and more sustainable future.


Asunto(s)
Azadirachta , Contaminantes Ambientales , Contaminantes Químicos del Agua , Purificación del Agua , Biomasa , Aguas Residuales , Purificación del Agua/métodos , Adsorción
15.
Biomed Mater ; 19(2)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38215483

RESUMEN

With the rise in microbial resistance to traditional antibiotics and disinfectants, there is a pressing need for the development of novel and effective antibacterial agents. Two major approaches being adopted worldwide to overcome antimicrobial resistance are the use of plant leaf extracts and metallic nanoparticles (NPs). However, there are no reports on the antibacterial potential of NPs coated with plant extracts, which may lead to novel ways of treating infections. This study presents an innovative approach to engineer antibacterial NPs by leveraging the inherent antibacterial properties of zinc oxide NPs (ZnO NPs) in combination withAzadirachta indica(AI) leaf extract, resulting in enhanced antibacterial efficacy. ZnO NPs were synthesised by the precipitation method and subsequently coated withAIleaf extract to produce ZnO-AInanocore-shell structures. The structural and morphological characteristics of the bare and leaf extract coated ZnO NPs were analysed by x-ray diffraction and field emission scanning electron microscopy, respectively. The presence of anAIleaf extract coating on ZnO NPs and subsequent formation of ZnO-AInanocore-shell structures was verified through Fourier transform infrared spectroscopy and photoluminescence techniques. The antibacterial efficacy of both ZnO NPs and ZnO-AInanocore-shell particles was evaluated against methicillin-resistantStaphylococcus aureususing a zone of inhibition assay. The results showed an NP concentration-dependent increase in the diameter of the inhibition zone, with ZnO-AInanocore-shell particles exhibiting superior antibacterial properties, owing to the combined effect of ZnO NPs and the poly phenols present inAIleaf extract. These findings suggest that ZnO-AInanocore-shell structures hold promise for the development of novel antibacterial creams and hydrogels for various biomedical applications.


Asunto(s)
Azadirachta , Nanopartículas del Metal , Staphylococcus aureus Resistente a Meticilina , Óxido de Zinc , Meticilina , Óxido de Zinc/química , Antibacterianos/química , Nanopartículas del Metal/química , Extractos Vegetales/química , Difracción de Rayos X , Espectroscopía Infrarroja por Transformada de Fourier , Pruebas de Sensibilidad Microbiana
16.
Environ Res ; 243: 117752, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38008202

RESUMEN

Plant leaf litter has a major role in the structure and function of soil ecosystems as it is associated with nutrient release and cycling. The present study is aimed to understand how well the decomposing leaf litter kept soil organic carbon and nitrogen levels stable during an incubation experiment that was carried out in a lab setting under controlled conditions and the results were compared to those from a natural plantation. In natural site soil samples, Anacardium. occidentale showed a higher value of organic carbon at surface (1.14%) and subsurface (0.93%) and Azadirachta. indica exhibited a higher value of total nitrogen at surface (0.28%) and subsurface sample (0.14%). In the incubation experiment, Acacia auriculiformis had the highest organic carbon content initially (5.26%), whereas A. occidentale had the highest nitrogen level on 30th day (0.67%). The overall carbon-nitrogen ratio showed a varied tendency, which may be due to dynamic changes in the complex decomposition cycle. The higher rate of mass loss and decay was observed in A. indica leaf litter, the range of the decay constant is 1.26-2.22. The morphological and chemical changes of soil sample and the vermicast were substantained using scanning electron microscopy (SEM) and Fourier transmission infrared spectroscopy (FT-IR).


Asunto(s)
Azadirachta , Suelo , Suelo/química , Árboles , Ecosistema , Carbono/análisis , Espectroscopía Infrarroja por Transformada de Fourier , Nitrógeno/análisis , Hojas de la Planta
17.
Med Res Rev ; 44(2): 457-496, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37589457

RESUMEN

Neem (Azadirachta indica A. Juss.), a versatile evergreen tree recognized for its ethnopharmacological value, is a rich source of limonoids of the triterpenoid class, endowed with potent medicinal properties. Extracts of neem have been documented to display anticancer effects in diverse malignant cell lines as well as in preclinical animal models that has largely been attributed to the constituent limonoids. Of late, neem limonoids have become the cynosure of research attention as potential candidate agents for cancer prevention and therapy. Among the various limonoids found in neem, azadirachtin, epoxyazadiradione, gedunin, and nimbolide, have been extensively investigated for anticancer activity. Azadirachtin, a potent biodegradable pesticide, exhibits profound antiproliferative effects by preventing mitotic spindle formation and cell division. The antiproliferative activity of gedunin has been demonstrated to be mediated primarily via inhibition of heat shock protein90 and its client proteins. Epoxyazadiradione inhibits pro-inflammatory and kinase-driven signaling pathways to block tumorigenesis. Nimbolide, the most potent cytotoxic neem limonoid, inhibits the growth of cancer cells by regulating the phosphorylation of keystone kinases that drive oncogenic signaling besides modulating the epigenome. There is overwhelming evidence to indicate that neem limonoids exert anticancer effects by preventing the acquisition of hallmark traits of cancer, such as cell proliferation, apoptosis evasion, inflammation, invasion, angiogenesis, and drug resistance. Neem limonoids are value additions to the armamentarium of natural compounds that target aberrant oncogenic signaling to inhibit cancer development and progression.


Asunto(s)
Antineoplásicos , Azadirachta , Limoninas , Animales , Humanos , Limoninas/farmacología , Antineoplásicos/farmacología , Extractos Vegetales
18.
Int J Biol Macromol ; 254(Pt 3): 128038, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37963501

RESUMEN

The present work deals with the eco-friendly preparation of highly degradable food packaging films consisting of O-CMC (O-Carboxymethyl Chitosan) and pectin, incorporated with neem (Azadirachta indica) leaves powder and extract. This study aimed to investigate the tensile properties, antimicrobial activity, biodegradability, and thermal behavior of the composite films. The results of tensile strength and elongation at break, showed that the incorporation of neem leaves powder improved the tensile properties (7.11 MPa) of the composite films compared to the neat O-CMC and pectin films (3.02 MPa). The antimicrobial activity of the films was evaluated against a panel of microorganisms including both gram-positive and gram-negative bacteria as well as fungi. The composite films exhibited excellent antimicrobial activity with a zone of inhibition (12-17.6 mm) against the tested microorganisms. The opacity of the composite films ranges from 1.14 to 4.40 mm-1 and the addition of fiber causes a decrease in opacity value. Biodegradability studies were conducted by Soil burial method and the films demonstrated complete biodegradability within 75 days. The results of thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) of composite films show that they are thermally stable and might be used in food packaging.


Asunto(s)
Antiinfecciosos , Azadirachta , Quitosano , Pectinas , Embalaje de Alimentos/métodos , Antibacterianos/farmacología , Polvos , Bacterias Gramnegativas , Bacterias Grampositivas , Antiinfecciosos/farmacología , Antiinfecciosos/química , Quitosano/química
19.
Sci Rep ; 13(1): 18048, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872286

RESUMEN

Nanotechnology is one of the fastest-growing markets, but developing eco-friendly products, their maximum production, stability, and higher yield is a challenge. In this study, silver nanoparticles were synthesized using an easily available resource, leaves extract of the Neem (Azadirachta indica) plant, as a reducing and capping agent, determined their effect on germination and growth of tomato plants. The maximum production of silver nanoparticles was noted at 70 °C after 3 h of reaction time while treating the 10 ml leaf extract of Neem plant with 10 ml of 1 mM silver nitrate. The impact of the extract preparation method and solvent type on the plant mediated fabrication of silver nanoparticles was also investigated. The UV-spectrophotometric analysis confirmed the synthesis of silver nanoparticles and showed an absorption spectrum within Δ420-440 nm range. The size of the fabricated silver nanoparticles was 22-30 nm. The functional groups such as ethylene, amide, carbonyl, methoxy, alcohol, and phenol attached to stabilize the nanoparticles were observed using the FTIR technique. SEM, EDX, and XRD analyses were performed to study the physiochemical characteristics of synthesized nanoparticles. Silver nanoparticles increased the germination rate of tomato seeds up to 70% while decreasing the mean germination time compared to the control. Silver nanoparticles applied at varying concentrations significantly increased the shoot length (25 to 80%), root length (10 to 60%), and fresh biomass (10 to 80%) biomass of the tomato plant. The production of total chlorophyll, carotenoid, flavonoids, soluble sugar, and protein was significantly increased in tomato plants treated with 5 and 10 ppm silver nanoparticles compared to the control. Green synthesized silver nanoparticles are cost-effective and nontoxic and can be applied in agriculture, biomedical, and other fields.


Asunto(s)
Azadirachta , Nanopartículas del Metal , Solanum lycopersicum , Extractos Vegetales/farmacología , Plata , Espectroscopía Infrarroja por Transformada de Fourier , Hojas de la Planta
20.
Environ Pollut ; 339: 122755, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37852317

RESUMEN

The current investigation aimed at evaluating the impact of Azadirachta indica-mediated zinc oxide nanoparticles (Ai-ZnONPs) on the growth and biochemical characteristics of maize (sweet glutinous 3000) under exposure to 50 mg kg-1Ai-ZnONPs with Cr (VI) concentrations of 50 and 100 mg kg-1. The results indicate that plants exposed to Cr (VI) only experienced a decline in growth parameters. Conversely, the inclusion of Ai-ZnONPs caused a noteworthy increase in physiological traits. Specifically, shoot and root fresh weight increased by 28.02% and 16.51%, and 63.11% and 97.91%, respectively, when compared to Cr-50 and 100 treatments. Additionally, the SPAD chlorophyll of the shoot increased by 91.08% and 15.38% compared to Cr-50 and 100 treatments, respectively. Moreover, the antioxidant enzyme traits of plant shoot and root, such as superoxide dismutase (SOD 7.44% and 2.70%, and 4.45% and 3.53%), catalase (CAT 1.18% and 3.20%, and 5.03% and 5.78%), and peroxidase (POD 0.31% and 5.55%, and 4.72% and 3.61%), exhibited significant increases in Cr 50 and 100 treatments, respectively. The addition of Ai-ZnONPs to the soil also enhanced soil nutrient status and reduced Cr (VI) concentrations by 40.69% and 19.82% compared to Cr-50 and 100 treated soils. These findings suggest that Ai-ZnONPs can trigger the activation of biochemical pathways that enable biomass accumulation in meristematic cells. Further investigations are required to elucidate the mechanisms involved in growth promotion.


Asunto(s)
Azadirachta , Nanopartículas , Contaminantes del Suelo , Óxido de Zinc , Zea mays/metabolismo , Óxido de Zinc/toxicidad , Óxido de Zinc/metabolismo , Fertilizantes , Nanopartículas/toxicidad , Suelo , Contaminantes del Suelo/análisis , Cromo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA