Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.252
Filtrar
1.
Future Med Chem ; 16(12): 1267-1281, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38989985

RESUMEN

Cancer exhibits heterogeneity that enables adaptability and remains grand challenges for effective treatment. Chemotherapy is a validated and critically important strategy for the treatment of cancer, but the emergence of multidrug resistance which may lead to recurrence of disease or even death is a major hurdle for successful chemotherapy. Azoles and sulfonamides are important anticancer pharmacophores, and azole-sulfonamide hybrids have the potential to simultaneously act on dual/multiple targets in cancer cells, holding great promise to overcome drug resistance. This review outlines the current scenario of azole-sulfonamide hybrids with the anticancer potential, and the structure-activity relationships as well as mechanisms of action are also discussed, covering articles published from 2020 onward.


[Box: see text].


Asunto(s)
Antineoplásicos , Azoles , Neoplasias , Sulfonamidas , Humanos , Sulfonamidas/química , Sulfonamidas/farmacología , Azoles/química , Azoles/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Relación Estructura-Actividad , Estructura Molecular
2.
Mycoses ; 67(7): e13766, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39007526

RESUMEN

BACKGROUND: The resistance of Aspergillus flavus to the azole antifungal drugs is an emerging problem. Mutations in the molecular targets of the azole antifungals - CYP 51 A, B and C - are possible mechanisms of resistance, but data to confirm this hypothesis are scarce. In addition, the behaviour of resistant strains in vitro and in vivo is not yet understood. OBJECTIVES: This study had 3 objectives. The first was to compare the sequences of CYP51 A, B and C in resistant and susceptible strains of A. flavus. The second was to look for the existence of a fitness cost associated with resistance. The third was to evaluate the activity of voriconazole and posaconazole on resistant strains in the Galleria mellonella model. METHODS: The CYP51 A, B and C sequences of seven resistant strains with those of four susceptible strains are compared. Fitness costs were assessed by growing the strains in RPMI medium and testing their virulence in G. mellonella larvae. In addition, G. mellonella larvae infected with strains of A. flavus were treated with voriconazole and posaconazole. RESULTS: In the CYP51A sequences, we found the A91T, C708T and A1296T nucleotide substitutions only in the resistant strains. The resistant strains showed a fitness cost with reduced in vitro growth and reduced virulence in G. mellonella. In vivo resistance to posaconazole is confirmed in a strain with the highest MIC for this antifungal agent. CONCLUSIONS: These results allow to conclude that some substitutions in CYP51 genes, in particular CYP51A, contribute to resistance to azole drugs in A. flavus. The study of the relationship between drug dosage and treatment duration with resistance and the reduction of fitness costs in resistant strains is a major perspective of this study. This work could help to establish recommendations for the treatment of infections with resistant strains of A. flavus.


Asunto(s)
Antifúngicos , Aspergillus flavus , Azoles , Sistema Enzimático del Citocromo P-450 , Farmacorresistencia Fúngica , Larva , Pruebas de Sensibilidad Microbiana , Voriconazol , Aspergillus flavus/efectos de los fármacos , Aspergillus flavus/genética , Antifúngicos/farmacología , Farmacorresistencia Fúngica/genética , Animales , Voriconazol/farmacología , Azoles/farmacología , Sistema Enzimático del Citocromo P-450/genética , Larva/microbiología , Triazoles/farmacología , Proteínas Fúngicas/genética , Mariposas Nocturnas/microbiología , Aspergilosis/microbiología , Aspergilosis/tratamiento farmacológico , Virulencia , Aptitud Genética , Modelos Animales de Enfermedad
3.
Nat Commun ; 15(1): 6312, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060235

RESUMEN

Azole antifungals inhibit the sterol C14-demethylase (CYP51/Erg11) of the ergosterol biosynthesis pathway. Here we show that the azole-induced synthesis of fungicidal cell wall carbohydrate patches in the pathogenic mold Aspergillus fumigatus strictly correlates with the accumulation of the CYP51 substrate eburicol. A lack of other essential ergosterol biosynthesis enzymes, such as sterol C24-methyltransferase (Erg6A), squalene synthase (Erg9) or squalene epoxidase (Erg1) does not trigger comparable cell wall alterations. Partial repression of Erg6A, which converts lanosterol into eburicol, increases azole resistance. The sterol C5-desaturase (ERG3)-dependent conversion of eburicol into 14-methylergosta-8,24(28)-dien-3ß,6α-diol, the "toxic diol" responsible for the fungistatic activity against yeasts, is not required for the fungicidal effects in A. fumigatus. While ERG3-lacking yeasts are azole resistant, ERG3-lacking A. fumigatus becomes more susceptible. Mutants lacking mitochondrial complex III functionality, which are much less effectively killed, but strongly inhibited in growth by azoles, convert eburicol more efficiently into the supposedly "toxic diol". We propose that the mode of action of azoles against A. fumigatus relies on accumulation of eburicol which exerts fungicidal effects by triggering cell wall carbohydrate patch formation.


Asunto(s)
Antifúngicos , Aspergillus fumigatus , Azoles , Proteínas Fúngicas , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/metabolismo , Aspergillus fumigatus/genética , Antifúngicos/farmacología , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Azoles/farmacología , Ergosterol/metabolismo , Ergosterol/biosíntesis , Pared Celular/metabolismo , Pared Celular/efectos de los fármacos , Farmacorresistencia Fúngica/genética , Monoterpenos Bicíclicos/farmacología , Monoterpenos Bicíclicos/metabolismo , Pruebas de Sensibilidad Microbiana , Esterol 14-Desmetilasa/metabolismo , Esterol 14-Desmetilasa/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Oxidorreductasas/metabolismo , Oxidorreductasas/genética , Metiltransferasas/metabolismo , Metiltransferasas/genética , Escualeno-Monooxigenasa/metabolismo , Escualeno-Monooxigenasa/genética , Lanosterol/análogos & derivados
4.
Mycoses ; 67(7): e13757, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39049157

RESUMEN

BACKGROUND: Candida vulturna is an emerging pathogen belonging to the Metshnikowiaceae family together with Candida auris and Candida haemulonii species complex. Some strains of this species were reported to be resistant to several antifungal agents. OBJECTIVES: This study aims to address identification difficulties, evaluate antiungal susceptibilities and explore the molecular mechanisms of azole resistance of Candida vulturna. METHODS: We studied five C. vulturna clinical strains isolated in three Colombian cities. Identification was performed by phenotypical, proteomic and molecular methods. Antifungal susceptibility testing was performed following CLSI protocol. Its ERG11 genes were sequenced and a substitution was encountered in azole resistant isolates. To confirm the role of this substitution in the resistance phenotype, Saccharomyces cerevisiae strains with a chimeric ERG11 gene were created. RESULTS: Discrepancies in identification methods are highlighted. Sequencing confirmed the identification as C. vulturna. Antifungal susceptibility varied among strains, with four strains exhibiting reduced susceptibility to azoles and amphotericin B. ERG11 sequencing showed a point mutation (producing a P135S substitution) that was associated with the azole-resistant phenotype. CONCLUSIONS: This study contributes to the understanding of C. vulturna's identification challenges, its susceptibility patterns, and sheds light on its molecular mechanisms of azole resistance.


Asunto(s)
Antifúngicos , Azoles , Candida , Candidiasis , Pruebas de Sensibilidad Microbiana , Antifúngicos/farmacología , Azoles/farmacología , Candida/efectos de los fármacos , Candida/genética , Candida/clasificación , Candida/aislamiento & purificación , Candidiasis/microbiología , Humanos , Farmacorresistencia Fúngica Múltiple/genética , Colombia , Anfotericina B/farmacología , Farmacorresistencia Fúngica/genética , Mutación Puntual , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efectos de los fármacos , Sistema Enzimático del Citocromo P-450/genética , Proteínas Fúngicas/genética , Análisis de Secuencia de ADN , Proteínas de Saccharomyces cerevisiae
5.
mSphere ; 9(7): e0042524, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38975761

RESUMEN

Treatment of fungal infections associated with the filamentous fungus Aspergillus fumigatus is becoming more problematic as this organism is developing resistance to the main chemotherapeutic drug at an increasing rate. Azole drugs represent the current standard-of-care in the treatment of aspergillosis with this drug class acting by inhibiting a key step in the biosynthesis of the fungal sterol ergosterol. Azole compounds block the activity of the lanosterol α-14 demethylase, encoded by the cyp51A gene. A common route of azole resistance involves an increase in transcription of cyp51A. This transcriptional increase requires the function of a Zn2Cys6 DNA-binding domain-containing transcription activator protein called AtrR. AtrR was identified through its action as a positive regulator of expression of an ATP-binding cassette transporter (abcC/cdr1B here called abcG1). Using both deletion and alanine scanning mutagenesis, we demonstrate that a conserved C-terminal domain in A. fumigatus is required for the expression of abcG1 but dispensable for cyp51A transcription. This domain is also found in several other fungal pathogen AtrR homologs consistent with a conserved gene-selective function of this protein segment being conserved. Using RNA sequencing (RNA-seq), we find that this gene-specific transcriptional defect extends to several other membrane transporter-encoding genes including a second ABC transporter locus. Our data reveal that AtrR uses at least two distinct mechanisms to induce gene expression and that normal susceptibility to azole drugs cannot be provided by maintenance of wild-type expression of the ergosterol biosynthetic pathway when ABC transporter expression is reduced. IMPORTANCE: Aspergillus fumigatus is the primary human filamentous fungal pathogen. The principal chemotherapeutic drug used to control infections associated with A. fumigatus is the azole compound. These drugs are well-tolerated and effective, but resistance is emerging at an alarming rate. Most resistance is associated with mutations that lead to overexpression of the azole target enzyme, lanosterol α-14 demethylase, encoded by the cyp51A gene. A key regulator of cyp51A gene expression is the transcription factor AtrR. Very little is known of the molecular mechanisms underlying the effect of AtrR on gene expression. Here, we use deletion and clustered amino acid substitution mutagenesis to map a region of AtrR that confers gene-specific activation on target genes of this transcription factor. This region is highly conserved across AtrR homologs from other pathogenic species arguing that its importance in transcriptional regulation is maintained across evolution.


Asunto(s)
Antifúngicos , Aspergillus fumigatus , Proteínas Fúngicas , Regulación Fúngica de la Expresión Génica , Activación Transcripcional , Aspergillus fumigatus/genética , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Antifúngicos/farmacología , Azoles/farmacología , Sistema Enzimático del Citocromo P-450/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Farmacorresistencia Fúngica/genética , Dominios Proteicos
6.
Microbiol Res ; 286: 127816, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38964072

RESUMEN

Apple scab, caused by the hemibiotrophic fungus Venturia inaequalis, is currently the most common and damaging disease in apple orchards. Two strains of V. inaequalis (S755 and Rs552) with different sensitivities to azole fungicides and the bacterial metabolite fengycin were compared to determine the mechanisms responsible for these differences. Antifungal activity tests showed that Rs552 had reduced sensitivity to tebuconazole and tetraconazole, as well as to fengycin alone or in a binary mixture with other lipopeptides (iturin A, pumilacidin, lichenysin). S755 was highly sensitive to fengycin, whose activity was close to that of tebuconazole. Unlike fengycin, lipopeptides from the iturin family (mycosubtilin, iturin A) had similar activity on both strains, while those from the surfactin family (lichenysin, pumilacidin) were not active, except in binary mixtures with fengycin. The activity of lipopeptides varies according to their family and structure. Analyses to determine the difference in sensitivity to azoles (which target the CYP51 enzyme involved in the ergosterol biosynthesis pathway) showed that the reduced sensitivity in Rs552 is linked to (i) a constitutive increased expression of the Cyp51A gene caused by insertions in the upstream region and (ii) greater efflux by membrane pumps with the involvement of ABC transporters. Microscopic observations revealed that fengycin, known to interact with plasma membranes, induced morphological and cytological changes in cells from both strains. Sterol and phospholipid analyses showed a higher level of ergosta-7,22-dien-3-ol and a lower level of PI(C16:0/C18:1) in Rs552 compared with S755. These differences could therefore influence the composition of the plasma membrane and explain the differential sensitivity of the strains to fengycin. However, the similar antifungal activities of mycosubtilin and iturin A in the two strains indirectly indicate that sterols are probably not involved in the fengycin resistance mechanism. This leads to the conclusion that different mechanisms are responsible for the difference in susceptibility to azoles or fengycin in the strains studied.


Asunto(s)
Ascomicetos , Azoles , Lipopéptidos , Malus , Enfermedades de las Plantas , Lipopéptidos/farmacología , Malus/microbiología , Enfermedades de las Plantas/microbiología , Ascomicetos/efectos de los fármacos , Ascomicetos/metabolismo , Ascomicetos/genética , Azoles/farmacología , Farmacorresistencia Fúngica/genética , Pruebas de Sensibilidad Microbiana , Antifúngicos/farmacología , Antifúngicos/metabolismo , Fungicidas Industriales/farmacología , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
7.
Chem Rec ; 24(7): e202300347, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38984727

RESUMEN

The medicinal chemistry of ferrocene has gained its momentum after the discovery of biological activities of ferrocifen and ferroquine. These ferrocenyl drugs have been designed by replacing the aromatic moiety of the organic drugs, tamoxifen and chloroquine respectively, with a ferrocenyl unit. The promising biological activities of these ferrocenyl drugs have paved a path to explore the medicinal applications of several ferrocenyl conjugates. In these conjugates, the ferrocenyl moiety has played a vital role in enhancing or imparting the anticancer activity to the molecule. The ferrocenyl conjugates induce the cytotoxicity by generating reactive oxygen species and thereby damaging the DNA. In medicinal chemistry, the five membered nitrogen heterocycles (azoles) play a significant role due to their rigid ring structure and hydrogen bonding ability with the biomolecules. Several potent drug candidates with azole groups have been in use as chemotherapeutics. Considering the importance of ferrocenyl moiety and azole groups, several ferrocenyl azole conjugates have been synthesized and screened for their biological activities. Hence, in the view of a wide scope in the development of potent drugs based on ferrocenyl azole conjugates, herein we present the details of synthesis and the anticancer activities of ferrocenyl compounds bearing azole groups such as imidazole, triazoles, thiazole and isoxazoles.


Asunto(s)
Antineoplásicos , Azoles , Compuestos Ferrosos , Compuestos Heterocíclicos , Metalocenos , Azoles/química , Azoles/farmacología , Azoles/síntesis química , Compuestos Ferrosos/química , Compuestos Ferrosos/farmacología , Compuestos Ferrosos/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Humanos , Metalocenos/química , Metalocenos/farmacología , Metalocenos/síntesis química , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos/farmacología , Compuestos Heterocíclicos/síntesis química
8.
PLoS Pathog ; 20(7): e1012389, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39078851

RESUMEN

Ergosterol is essential for fungal cell membrane integrity and growth, and numerous antifungal drugs target ergosterol. Inactivation or modification of ergosterol biosynthetic genes can lead to changes in antifungal drug susceptibility, filamentation and stress response. Here, we found that the ergosterol biosynthesis gene ERG251 is a hotspot for point mutations during adaptation to antifungal drug stress within two distinct genetic backgrounds of Candida albicans. Heterozygous point mutations led to single allele dysfunction of ERG251 and resulted in azole tolerance in both genetic backgrounds. This is the first known example of point mutations causing azole tolerance in C. albicans. Importantly, single allele dysfunction of ERG251 in combination with recurrent chromosome aneuploidies resulted in bona fide azole resistance. Homozygous deletions of ERG251 caused increased fitness in low concentrations of fluconazole and decreased fitness in rich medium, especially at low initial cell density. Homozygous deletions of ERG251 resulted in accumulation of ergosterol intermediates consistent with the fitness defect in rich medium. Dysfunction of ERG251, together with FLC exposure, resulted in decreased accumulation of the toxic sterol (14-ɑ-methylergosta-8,24(28)-dien-3ß,6α-diol) and increased accumulation of non-toxic alternative sterols. The altered sterol composition of the ERG251 mutants had pleiotropic effects on transcription, filamentation, and stress responses including cell membrane, osmotic and oxidative stress. Interestingly, while dysfunction of ERG251 resulted in azole tolerance, it also led to transcriptional upregulation of ZRT2, a membrane-bound Zinc transporter, in the presence of FLC, and overexpression of ZRT2 is sufficient to increase azole tolerance in wild-type C. albicans. Finally, in a murine model of systemic infection, homozygous deletion of ERG251 resulted in decreased virulence while the heterozygous deletion mutants maintain their pathogenicity. Overall, this study demonstrates that single allele dysfunction of ERG251 is a recurrent and effective mechanism of acquired azole tolerance. We propose that altered sterol composition resulting from ERG251 dysfunction mediates azole tolerance as well as pleiotropic effects on stress response, filamentation and virulence.


Asunto(s)
Antifúngicos , Candida albicans , Candidiasis , Farmacorresistencia Fúngica , Ergosterol , Proteínas Fúngicas , Candida albicans/efectos de los fármacos , Candida albicans/genética , Candida albicans/metabolismo , Antifúngicos/farmacología , Ratones , Farmacorresistencia Fúngica/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Animales , Candidiasis/microbiología , Candidiasis/metabolismo , Candidiasis/tratamiento farmacológico , Ergosterol/metabolismo , Azoles/farmacología , Esteroles/metabolismo , Fenotipo , Estrés Fisiológico , Pruebas de Sensibilidad Microbiana , Fluconazol/farmacología
9.
Int J Mol Sci ; 25(11)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38891954

RESUMEN

While research has identified several inhibitors of the main protease (Mpro) of SARS-CoV-2, a significant portion of these compounds exhibit reduced activity in the presence of reducing agents, raising concerns about their effectiveness in vivo. Furthermore, the conventional biosafety level 3 (BSL-3) for cellular assays using viral particles poses a limitation for the widespread evaluation of Mpro inhibitor efficacy in a cell-based assay. Here, we established a BSL-1 compatible cellular assay to evaluate the in vivo potential of Mpro inhibitors. This assay utilizes mammalian cells expressing a tagged Mpro construct containing N-terminal glutathione S-transferase (GST) and C-terminal hemagglutinin (HA) tags and monitors Mpro autodigestion. Using this method, GC376 and boceprevir effectively inhibited Mpro autodigestion, suggesting their potential in vivo activity. Conversely, carmofur and ebselen did not exhibit significant inhibitory effects in this assay. We further investigated the inhibitory potential of selenoneine on Mpro using this approach. Computational analyses of binding energies suggest that noncovalent interactions play a critical role in facilitating the covalent modification of the C145 residue, leading to Mpro inhibition. Our method is straightforward, cost-effective, and readily applicable in standard laboratories, making it accessible to researchers with varying levels of expertise in infectious diseases.


Asunto(s)
Antivirales , Azoles , Proteasas 3C de Coronavirus , Isoindoles , Compuestos de Organoselenio , Prolina , SARS-CoV-2 , Antivirales/farmacología , Antivirales/química , Humanos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Compuestos de Organoselenio/farmacología , Compuestos de Organoselenio/química , Isoindoles/farmacología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/metabolismo , Azoles/farmacología , Azoles/química , Prolina/análogos & derivados , Prolina/farmacología , Prolina/química , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Tratamiento Farmacológico de COVID-19 , COVID-19/virología , Células HEK293 , Lactamas , Leucina/análogos & derivados , Ácidos Sulfónicos
10.
Infect Immun ; 92(7): e0007224, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38899880

RESUMEN

Invasive fungal infections impose an enormous clinical, social, and economic burden on humankind. One of the most common species responsible for invasive fungal infections is Candida albicans. More than 30% of patients with disseminated candidiasis fail therapy with existing antifungal drugs, including the widely used azole class. We previously identified a collection of 13 medications that antagonize the activity of the azoles on C. albicans. Although gain-of-function mutations responsible for antifungal resistance are often associated with reduced fitness and virulence, it is currently unknown how exposure to azole antagonistic drugs impacts C. albicans physiology, fitness, or virulence. In this study, we examined how exposure to seven azole antagonists affects C. albicans phenotype and capacity to cause disease. Most of the azole antagonists appear to have little impact on fungal growth, morphology, stress tolerance, or gene transcription. However, aripiprazole had a modest impact on C. albicans hyphal growth and increased cell wall chitin content. It also aggravated the disseminated C. albicans infections in mice. This effect was abrogated in immunosuppressed mice, indicating that it is at least in part dependent upon host immune responses. Collectively, these data provide proof of principle that unanticipated drug-fungus interactions have the potential to influence the incidence and outcomes of invasive fungal disease.


Asunto(s)
Antifúngicos , Aripiprazol , Candida albicans , Candidiasis , Candida albicans/efectos de los fármacos , Candida albicans/genética , Animales , Ratones , Antifúngicos/farmacología , Candidiasis/tratamiento farmacológico , Candidiasis/microbiología , Aripiprazol/farmacología , Aripiprazol/uso terapéutico , Antipsicóticos/farmacología , Antipsicóticos/uso terapéutico , Virulencia , Femenino , Azoles/farmacología , Modelos Animales de Enfermedad
11.
Future Med Chem ; 16(11): 1163-1180, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38916566

RESUMEN

During the last decades, five or six member rings azaheterocycles compounds appear to be an extremely valuable source of antifungal agents. Their use seems to be a very attractive solution in antifungal therapy and to overcome antifungal resistance in agriculture. The present review highlights the main results obtained in the field of hybrid and chimeric azine (especially pyridine, quinoline, phenanthroline, bypyridine, naphthyridine and their fused derivatives) derivatives presented in scientific literature from the last 10 years, with emphasis on antifungal activity of the mentioned compounds. A special attention was played to hybrid and chimeric azole-azine class, having in view the high antifungal potential of azoles.


[Box: see text].


Asunto(s)
Antifúngicos , Pruebas de Sensibilidad Microbiana , Antifúngicos/farmacología , Antifúngicos/química , Antifúngicos/síntesis química , Humanos , Azoles/química , Azoles/farmacología , Azoles/síntesis química , Piridinas/química , Piridinas/farmacología , Piridinas/síntesis química , Hongos/efectos de los fármacos , Estructura Molecular , Relación Estructura-Actividad , Quinolinas/química , Quinolinas/farmacología
12.
Nat Commun ; 15(1): 4984, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862481

RESUMEN

More than 10 million people suffer from lung diseases caused by the pathogenic fungus Aspergillus fumigatus. Azole antifungals represent first-line therapeutics for most of these infections but resistance is rising, therefore the identification of antifungal targets whose inhibition synergises with the azoles could improve therapeutic outcomes. Here, we generate a library of 111 genetically barcoded null mutants of Aspergillus fumigatus in genes encoding protein kinases, and show that loss of function of kinase YakA results in hypersensitivity to the azoles and reduced pathogenicity. YakA is an orthologue of Candida albicans Yak1, a TOR signalling pathway kinase involved in modulation of stress responsive transcriptional regulators. We show that YakA has been repurposed in A. fumigatus to regulate blocking of the septal pore upon exposure to stress. Loss of YakA function reduces the ability of A. fumigatus to penetrate solid media and to grow in mouse lung tissue. We also show that 1-ethoxycarbonyl-beta-carboline (1-ECBC), a compound previously shown to inhibit C. albicans Yak1, prevents stress-mediated septal spore blocking and synergises with the azoles to inhibit A. fumigatus growth.


Asunto(s)
Antifúngicos , Aspergillus fumigatus , Quinasas DyrK , Proteínas Fúngicas , Proteínas Serina-Treonina Quinasas , Proteínas Tirosina Quinasas , Aspergillus fumigatus/genética , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/enzimología , Animales , Antifúngicos/farmacología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/antagonistas & inhibidores , Ratones , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Azoles/farmacología , Aspergilosis/microbiología , Aspergilosis/tratamiento farmacológico , Pulmón/microbiología , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/genética , Femenino
13.
Mycoses ; 67(6): e13752, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38880933

RESUMEN

BACKGROUND: Candida auris is an emerging multidrug-resistant yeast, frequently causing outbreaks in health care facilities. The pathogen persistently colonises human skin and inanimate surfaces such as catheters, aiding to its spread. Moreover, colonisation is a risk factor to develop invasive infection. OBJECTIVES: We investigated 61 C. auris strains isolated from non-sterile human body sites (n = 53) and the hospital environment (n = 8), originating from four different centres in a single Brazilian state. MATERIALS AND METHODS: Antifungal susceptibility testing (AFST) against common antifungals was performed, and resistance-associated genes were evaluated. Genetic relatedness was investigated with short tandem repeat (STR) genotyping and validated with whole-genome sequencing (WGS) single nucleotide polymorphism (SNP) analysis. RESULTS: Antifungal susceptibility testing demonstrated that all isolates were susceptible to azoles, echinocandins and amphotericin B. No mutations were detected in ERG11 and FKS1 genes. With STR typing, isolates were allocated to clade IV and appeared closely related. This was confirmed by WGS SNP analysis of 6 isolates, which demonstrated a maximal difference of only 41 SNPs between these strains. Furthermore, the Brazilian isolates formed a distinct autochthonous branch within clade IV, excluding recent introductions from outside the country. A molecular clock analysis of clade IV isolates from various countries suggests that early in the previous century there was a unique event causing environmental spread of a C. auris ancestor throughout the Latin-American continent, followed by human introduction during the last decades. CONCLUSION: We report the emergence of C. auris patient colonisation in multiple centres by fluconazole-susceptible clade IV close-related strains in Pernambuco State, Brazil.


Asunto(s)
Antifúngicos , Azoles , Candida auris , Candidiasis , Brotes de Enfermedades , Pruebas de Sensibilidad Microbiana , Polimorfismo de Nucleótido Simple , Humanos , Brasil/epidemiología , Antifúngicos/farmacología , Candidiasis/microbiología , Candidiasis/epidemiología , Azoles/farmacología , Candida auris/genética , Candida auris/efectos de los fármacos , Secuenciación Completa del Genoma , Genotipo , Femenino , Masculino , Farmacorresistencia Fúngica/genética , Adulto , Persona de Mediana Edad , Candidiasis Invasiva
14.
Mycopathologia ; 189(4): 50, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864903

RESUMEN

Aspergillus fumigatus is a saprophytic fungal pathogen that causes opportunistic infections in animals and humans. Azole resistance has been reported globally in human A. fumigatus isolates, but the prevalence of resistance in isolates from animals is largely unknown. A retrospective resistance surveillance study was performed using a collection of clinical A. fumigatus isolates from various animal species collected between 2015 and 2020. Agar-based azole resistance screening of all isolates was followed by in vitro antifungal susceptibility testing and cyp51A gene sequencing of the azole-resistant isolates. Over the 5 year period 16 (11.3%) of 142 A. fumigatus culture-positive animals harbored an azole-resistant isolate. Resistant isolates were found in birds (15%; 2/13), cats (21%; 6/28), dogs (8%; 6/75) and free-ranging harbor porpoise (33%; 2/6). Azole-resistance was cyp51A mediated in all isolates: 81.3% (T-67G/)TR34/L98H, 12.5% TR46/Y121F/T289A. In one azole-resistant A. fumigatus isolate a combination of C(-70)T/F46Y/C(intron7)T/C(intron66)T/M172V/E427K single-nucleotide polymorphisms in the cyp51A gene was found. Of the animals with an azole-resistant isolate and known azole exposure status 71.4% (10/14) were azole naive. Azole resistance in A. fumigatus isolates from animals in the Netherlands is present and predominantly cyp51A TR-mediated, supporting an environmental route of resistance selection. Our data supports the need to include veterinary isolates in resistance surveillance programs. Veterinarians should consider azole resistance as a reason for therapy failure when treating aspergillosis and consider resistance testing of relevant isolates.


Asunto(s)
Antifúngicos , Aspergilosis , Aspergillus fumigatus , Azoles , Farmacorresistencia Fúngica , Pruebas de Sensibilidad Microbiana , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/genética , Aspergillus fumigatus/aislamiento & purificación , Animales , Azoles/farmacología , Farmacorresistencia Fúngica/genética , Aspergilosis/microbiología , Aspergilosis/veterinaria , Antifúngicos/farmacología , Países Bajos/epidemiología , Estudios Retrospectivos , Proteínas Fúngicas/genética , Aves/microbiología , Gatos , Perros , Sistema Enzimático del Citocromo P-450
15.
Expert Rev Anti Infect Ther ; 22(6): 399-412, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38841996

RESUMEN

INTRODUCTION: Terbinafine is considered the gold standard for treating skin fungal infections and onychomycosis. However, recent reports suggest that dermatophytes are developing resistance to terbinafine and the other traditional antifungal agents, itraconazole and fluconazole. When there is resistance to terbinafine, itraconazole or fluconazole, or when these agents cannot used, for example, due to potential drug interactions with the patient's current medications, clinicians may need to consider off-label use of new generation azoles, such as voriconazole, posaconazole, fosravuconazole, or oteseconazole. It is essential to emphasize that we do not advocate the use of newer generation azoles unless traditional agents such as terbinafine, itraconazole, or fluconazole have been thoroughly evaluated as first-line therapies. AREAS COVERED: This article reviews the clinical evidence, safety, dosage regimens, pharmacokinetics, and management algorithm of new-generation azole antifungals. EXPERT OPINION: Antifungal stewardship should be the top priority when prescribing new-generation azoles. First-line antifungal therapy is terbinafine and itraconazole. Fluconazole is a consideration but is generally less effective and its use may be off-label in many countries. For difficult-to-treat skin fungal infections and onychomycosis, that have failed terbinafine, itraconazole and fluconazole, we propose consideration of off-label voriconazole or posaconazole.


Asunto(s)
Antifúngicos , Azoles , Farmacorresistencia Fúngica , Onicomicosis , Humanos , Antifúngicos/administración & dosificación , Antifúngicos/efectos adversos , Antifúngicos/farmacología , Onicomicosis/tratamiento farmacológico , Onicomicosis/microbiología , Azoles/administración & dosificación , Azoles/farmacología , Dermatomicosis/tratamiento farmacológico , Dermatomicosis/microbiología , Uso Fuera de lo Indicado , Interacciones Farmacológicas , Arthrodermataceae/efectos de los fármacos
16.
Bioorg Med Chem Lett ; 110: 129852, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38925524

RESUMEN

The global outbreak of the COVID-19 pandemic caused by the SARS-CoV-2 virus had led to profound respiratory health implications. This study focused on designing organoselenium-based inhibitors targeting the SARS-CoV-2 main protease (Mpro). The ligand-binding pathway sampling method based on parallel cascade selection molecular dynamics (LB-PaCS-MD) simulations was employed to elucidate plausible paths and conformations of ebselen, a synthetic organoselenium drug, within the Mpro catalytic site. Ebselen effectively engaged the active site, adopting proximity to H41 and interacting through the benzoisoselenazole ring in a π-π T-shaped arrangement, with an additional π-sulfur interaction with C145. In addition, the ligand-based drug design using the QSAR with GFA-MLR, RF, and ANN models were employed for biological activity prediction. The QSAR-ANN model showed robust statistical performance, with an r2training exceeding 0.98 and an RMSEtest of 0.21, indicating its suitability for predicting biological activities. Integration the ANN model with the LB-PaCS-MD insights enabled the rational design of novel compounds anchored in the ebselen core structure, identifying promising candidates with favorable predicted IC50 values. The designed compounds exhibited suitable drug-like characteristics and adopted an active conformation similar to ebselen, inhibiting Mpro function. These findings represent a synergistic approach merging ligand and structure-based drug design; with the potential to guide experimental synthesis and enzyme assay testing.


Asunto(s)
Antivirales , Proteasas 3C de Coronavirus , Diseño de Fármacos , Isoindoles , Aprendizaje Automático , Simulación de Dinámica Molecular , Compuestos de Organoselenio , Inhibidores de Proteasas , Relación Estructura-Actividad Cuantitativa , SARS-CoV-2 , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Compuestos de Organoselenio/química , Compuestos de Organoselenio/farmacología , Compuestos de Organoselenio/síntesis química , Isoindoles/química , Isoindoles/farmacología , Isoindoles/síntesis química , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/metabolismo , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/síntesis química , Antivirales/farmacología , Antivirales/química , Antivirales/síntesis química , Humanos , Azoles/química , Azoles/farmacología , Azoles/síntesis química , COVID-19/virología , Dominio Catalítico
17.
mSphere ; 9(6): e0024824, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38837382

RESUMEN

Superficial infections of the skin, hair, and nails by fungal dermatophytes are the most prevalent of human mycoses, and many infections are refractory to treatment. As current treatment options are limited, recent research has explored drug synergy with azoles for dermatophytoses. Bisphosphonates, which are approved to treat osteoporosis, can synergistically enhance the activity of azoles in diverse yeast pathogens but their activity has not been explored in dermatophytes or other molds. Market bisphosphonates risedronate, alendronate, and zoledronate (ZOL) were evaluated for antifungal efficacy and synergy with three azole antifungals: fluconazole (FLC), itraconazole (ITR), and ketoconazole (KET). ZOL was the most active bisphosphonate tested, displaying moderate activity against nine dermatophyte species (MIC range 64-256 µg/mL), and was synergistic with KET in eight of these species. ZOL was also able to synergistically improve the anti-biofilm activity of KET and combining KET and ZOL prevented the development of antifungal resistance. Rescue assays in Trichophyton rubrum revealed that the inhibitory effects of ZOL alone and in combination with KET were due to the inhibition of squalene synthesis. Fluorescence microscopy using membrane- and ROS-sensitive probes demonstrated that ZOL and KET:ZOL compromised membrane structure and induced oxidative stress. Antifungal activity and synergy between bisphosphonates and azoles were also observed in other clinically relevant molds, including species of Aspergillus and Mucor. These findings indicate that repurposing bisphosphonates as antifungals is a promising strategy for revitalising certain azoles as topical antifungals, and that this combination could be fast-tracked for investigation in clinical trials. IMPORTANCE: Fungal infections of the skin, hair, and nails, generally grouped together as "tineas" are the most prevalent infectious diseases globally. These infections, caused by fungal species known as dermatophytes, are generally superficial, but can in some cases become aggressive. They are also notoriously difficult to resolve, with few effective treatments and rising levels of drug resistance. Here, we report a potential new treatment that combines azole antifungals with bisphosphonates. Bisphosphonates are approved for the treatment of low bone density diseases, and in fungi they inhibit the biosynthesis of the cell membrane, which is also the target of azoles. Combinations were synergistic across the dermatophyte species and prevented the development of resistance. We extended the study to molds that cause invasive disease, finding synergy in some problematic species. We suggest bisphosphonates could be repurposed as synergents for tinea treatment, and that this combination could be fast-tracked for use in clinical therapy.


Asunto(s)
Antifúngicos , Arthrodermataceae , Difosfonatos , Sinergismo Farmacológico , Pruebas de Sensibilidad Microbiana , Antifúngicos/farmacología , Arthrodermataceae/efectos de los fármacos , Humanos , Difosfonatos/farmacología , Azoles/farmacología , Biopelículas/efectos de los fármacos , Farmacorresistencia Fúngica , Hongos/efectos de los fármacos
18.
Cytokine ; 181: 156671, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38943739

RESUMEN

Nonalcoholic fatty liver disease (NAFLD), a metabolic disease associated with obesity and type 2 diabetes. Due to its complex pathogenesis, there are still limitations in the knowledge of the disease. To date, no drug has been approved to treat NAFLD. This study aims to explore the role and mechanism of Ebselen (EbSe) in NAFLD. A high-fat diet-induced mouse model of NAFLD was employed to investigate EbSe function in NAFLD mice by EbSe gavage and to regularly monitor the mouse body weight. HE and oil red O staining were performed, respectively, to detect the pathological damage and lipid accumulation in mouse liver tissues. The biochemical and ELISA kits were employed to measure the levels of ALT, AST, TG, TC, LDL-C, HDL-C and pro-inflammatory cytokines within mouse serum or liver tissue. The expression of key proteins of PPARα, fatty acid ß oxidation-related protein, PI3K/Akt and TLR4/JNK signaling pathway was detected by western blot. EbSe significantly downregulated body weight, liver weight and liver lipid accumulation in NAFLD mice and downregulated ALT, AST, TG, TC, LDL-C and increased HDL-C serum levels. EbSe upregulated the expression levels of PPARα and fatty acid ß oxidation-associated proteins CPT1α, ACOX1, UCP2 and PGC1α. EbSe promoted Akt and PI3K phosphorylation, and inhibited TLR4 expression and JNK phosphorylation. EbSe can upregulate PPARα to promote fatty acid ß-oxidation and improve hepatic lipid metabolism. Meanwhile, EbSe also activated PI3K/Akt and inhibited TLR4/JNK signaling pathway. EbSe is predicted to be an effective therapeutic drug for treating NAFLD.


Asunto(s)
Isoindoles , Metabolismo de los Lípidos , Hígado , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico , Compuestos de Organoselenio , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Receptor Toll-Like 4 , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Receptor Toll-Like 4/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Masculino , Ratones , Compuestos de Organoselenio/farmacología , Compuestos de Organoselenio/uso terapéutico , Isoindoles/farmacología , Hígado/metabolismo , Hígado/efectos de los fármacos , Azoles/farmacología , Azoles/uso terapéutico , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Dieta Alta en Grasa , Transducción de Señal/efectos de los fármacos , Modelos Animales de Enfermedad
19.
Emerg Infect Dis ; 30(8): 1531-1541, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38935978

RESUMEN

Azole-resistant Aspergillus fumigatus (ARAf) fungi have been found inconsistently in the environment in Denmark since 2010. During 2018-2020, nationwide surveillance of clinical A. fumigatus fungi reported environmental TR34/L98H or TR46/Y121F/T289A resistance mutations in 3.6% of isolates, prompting environmental sampling for ARAf and azole fungicides and investigation for selection of ARAf in field and microcosmos experiments. ARAf was ubiquitous (20% of 366 samples; 16% TR34/L98H- and 4% TR46/Y121F/T289A-related mechanisms), constituting 4.2% of 4,538 A. fumigatus isolates. The highest proportions were in flower- and compost-related samples but were not correlated with azole-fungicide application concentrations. Genotyping showed clustering of tandem repeat-related ARAf and overlaps with clinical isolates in Denmark. A. fumigatus fungi grew poorly in the field experiment with no postapplication change in ARAf proportions. However, in microcosmos experiments, a sustained complete (tebuconazole) or partial (prothioconazole) inhibition against wild-type A. fumigatus but not ARAf indicated that, under some conditions, azole fungicides may favor growth of ARAf in soil.


Asunto(s)
Antifúngicos , Aspergillus fumigatus , Azoles , Farmacorresistencia Fúngica , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/genética , Aspergillus fumigatus/aislamiento & purificación , Azoles/farmacología , Dinamarca/epidemiología , Antifúngicos/farmacología , Humanos , Aspergilosis/epidemiología , Aspergilosis/microbiología , Aspergilosis/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana , Mutación , Fungicidas Industriales/farmacología , Genotipo
20.
Future Microbiol ; 19(11): 1027-1040, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38904325

RESUMEN

The emergence of fungal pathogens and changes in the epidemiological landscape are prevalent issues in clinical mycology. Reports of resistance to antifungals have been reported. This review aims to evaluate molecular and nonmolecular mechanisms related to antifungal resistance. Mutations in the ERG genes and overexpression of the efflux pump (MDR1, CDR1 and CDR2 genes) were the most reported molecular mechanisms of resistance in clinical isolates, mainly related to Azoles. For echinocandins, a molecular mechanism described was mutation in the FSK genes. Furthermore, nonmolecular virulence factors contributed to therapeutic failure, such as biofilm formation and selective pressure due to previous exposure to antifungals. Thus, there are many public health challenges in treating fungal infections.


[Box: see text].


Asunto(s)
Antifúngicos , Farmacorresistencia Fúngica , Hongos , Micosis , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Farmacorresistencia Fúngica/genética , Humanos , Micosis/microbiología , Micosis/tratamiento farmacológico , Micosis/epidemiología , Hongos/efectos de los fármacos , Hongos/genética , Hongos/patogenicidad , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Mutación , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Azoles/farmacología , Azoles/uso terapéutico , Pruebas de Sensibilidad Microbiana , Factores de Virulencia/genética , Equinocandinas/farmacología , Equinocandinas/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...