Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 466
Filtrar
1.
Luminescence ; 39(5): e4768, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38719590

RESUMEN

In this study, we synthesize nanostructured nickel oxide (NiO) and doped cobalt (Co) by combining nickel(II) chloride hexahydrate (NiCl2.6H2O) and sodium hydroxide (NaOH) as initial substances. We analyzed the characteristics of the product nanostructures, including their structure, optical properties, and magnetic properties, using various techniques such as x-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet absorption spectroscopy (UV-Vis), Fourier transform infrared (FTIR) spectroscopy, and vibrating sample magnetometers (VSM). The NiO nanoparticles doped with Co showed photocatalytic activity in degrading methylene blue (MB) dye in aqueous solutions. We calculated the degradation efficiencies by analyzing the UV-Vis absorption spectra at the dye's absorption wavelength of 664 nm. It was observed that the NiO-doped Co nanoparticles facilitated enhanced recombination and migration of active elements, which led to more effective degradation of organic dyes during photocatalysis. We also assessed the electrochemical properties of the materials using cyclic voltammetry (CV) and impedance spectroscopy in a 1 mol% NaOH solution. The NiO-modified electrode exhibited poor voltammogram performance due to insufficient contact between nanoparticles and the electrolyte solution. In contrast, the uncapped NiO's oxidation and reduction cyclic voltammograms displayed redox peaks at 0.36 and 0.30 V, respectively.


Asunto(s)
Cobalto , Electroquímica , Electrodos , Nanocompuestos , Níquel , Nanocompuestos/química , Níquel/química , Cobalto/química , Difracción de Rayos X , Espectroscopía Infrarroja por Transformada de Fourier , Luminiscencia , Microscopía Electrónica de Rastreo , Tamaño de la Partícula , Fenómenos Magnéticos , Nanopartículas/química , Luz , Catálisis , Óxidos/química , Azul de Metileno/metabolismo
2.
J Colloid Interface Sci ; 669: 712-722, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38735253

RESUMEN

The industrial applications of enzymes are usually hindered by the high production cost, intricate reusability, and low stability in terms of thermal, pH, salt, and storage. Therefore, the de novo design of nanozymes that possess the enzyme mimicking biocatalytic functions sheds new light on this field. Here, we propose a facile one-pot synthesis approach to construct Cu-chelated polydopamine nanozymes (PDA-Cu NPs) that can not only catalyze the chromogenic reaction of 2,4-dichlorophenol (2,4-DP) and 4-aminoantipyrine (4-AP), but also present enhanced photothermal catalytic degradation for typical textile dyes. Compared with natural laccase, the designed mimic has higher affinity to the substrate of 2,4-DP with Km of 0.13 mM. Interestingly, PDA-Cu nanoparticles are stable under extreme conditions (temperature, ionic strength, storage), are reusable for 6 cycles with 97 % activity, and exhibit superior substrate universality. Furthermore, PDA-Cu nanozymes show a remarkable acceleration of the catalytic degradation of dyes, malachite green (MG) and methylene blue (MB), under near-infrared (NIR) laser irradiation. These findings offer a promising paradigm on developing novel nanozymes for biomedicine, catalysis, and environmental engineering.


Asunto(s)
Colorantes , Cobre , Indoles , Lacasa , Polímeros , Cobre/química , Indoles/química , Colorantes/química , Lacasa/química , Lacasa/metabolismo , Catálisis , Polímeros/química , Tamaño de la Partícula , Propiedades de Superficie , Clorofenoles/química , Clorofenoles/metabolismo , Azul de Metileno/química , Azul de Metileno/metabolismo , Colorantes de Rosanilina
3.
J Biosci Bioeng ; 137(6): 413-419, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38485553

RESUMEN

Uracil-thymine dehydrogenase (UTDH), which catalyzes the irreversible oxidation of uracil to barbituric acid in oxidative pyrimidine metabolism, was purified from Rhodococcus erythropolis JCM 3132. The finding of unusual stabilizing conditions (pH 11, in the presence of NADP+ or NADPH) enabled the enzyme purification. The purified enzyme was a heteromer consisting of three different subunits. The enzyme catalyzed oxidation of uracil to barbituric acid with artificial electron acceptors such as methylene blue, phenazine methosulfate, benzoquinone, and α-naphthoquinone; however, NAD+, NADP+, flavin adenine dinucleotide, and flavin mononucleotide did not serve as electron acceptors. The enzyme acted not only on uracil and thymine but also on 5-halogen-substituted uracil and hydroxypyrimidine (pyrimidone), while dihydropyrimidine, which is an intermediate in reductive pyrimidine metabolism, and purine did not serve as substrates. The activity of UTDH was enhanced by cerium ions, and this activation was observed with all combinations of substrates and electron acceptors.


Asunto(s)
Oxidación-Reducción , Pirimidinas , Rhodococcus , Uracilo , Uracilo/metabolismo , Uracilo/química , Pirimidinas/metabolismo , Rhodococcus/enzimología , NADP/metabolismo , Azul de Metileno/metabolismo , Azul de Metileno/química , Barbitúricos/metabolismo , Barbitúricos/química , Benzoquinonas/metabolismo , Benzoquinonas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Concentración de Iones de Hidrógeno , Timina/metabolismo , Timina/química , Especificidad por Sustrato , Metosulfato de Metilfenazonio/metabolismo , Metosulfato de Metilfenazonio/química
4.
Altern Ther Health Med ; 29(8): 156-165, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37535922

RESUMEN

Objective: Diabetic retinopathy (DR), characterized by neuronal damage in the retina, is primarily driven by oxidative stress resulting from diabetes (DM). This study investigated the potential effects of methylene blue (MB) on streptozotocin (STZ)-induced DR. Methods: A rat model of DR was established via STZ injection, while a cell model was created using high-glucose (HG) exposure of human retinal microvascular endothelial cells. Evaluation of oxidative stress markers, pro-inflammatory cytokines, and pro-apoptotic proteins was performed based on their expression profiles in human retinal microvascular endothelial cells. Results: MB treatment significantly upregulated the expression of sirtuin 1 (SIRT1), which was found to be downregulated in the retinal tissues of STZ-treated rats and HG-exposed human retinal microvascular endothelial cells, as determined by polymerase chain reaction (PCR). Furthermore, MB therapy effectively suppressed STZ-induced oxidative stress, inflammation, and cell death. Consistent with the in vivo findings, MB activated the expression of SIRT1, thereby protecting HG-treated human retinal microvascular endothelial cells against oxidative stress, inflammation, and apoptosis. Conclusion: These results support the conclusion that MB mitigates DR by activating SIRT1, leading to a reduction of inflammation, apoptosis, and oxidative stress.


Asunto(s)
Diabetes Mellitus Experimental , Retinopatía Diabética , Ratas , Humanos , Animales , Retinopatía Diabética/tratamiento farmacológico , Retinopatía Diabética/metabolismo , Sirtuina 1/metabolismo , Sirtuina 1/farmacología , Azul de Metileno/efectos adversos , Azul de Metileno/metabolismo , Células Endoteliales/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/inducido químicamente , Estrés Oxidativo/fisiología , Inflamación/tratamiento farmacológico , Apoptosis
5.
Curr Protoc ; 3(7): e835, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37427867

RESUMEN

Much of the skeletal system develops by endochondral ossification, a process that takes place in early fetal life. This makes the early stages of chondrogenesis, i.e., when chondroprogenitor mesenchymal cells differentiate to chondroblasts, challenging to study in vivo. In vitro methods for the study of chondrogenic differentiation have been available for some time. There is currently high interest in developing fine-tuned methodology that would allow chondrogenic cells to rebuild articular cartilage and restore joint functionality. The micromass culture system that relies on embryonic limb bud-derived chondroprogenitor cells is a popular method for the study of the signaling pathways that control the formation and maturation of cartilage. In this protocol, we describe a technique fine-tuned in our laboratory for culturing limb bud-derived mesenchymal cells from early-stage chick embryos in high density (Basic Protocol 1). We also provide a fine-tuned method for high-efficiency transient transfection of cells before plating using electroporation (Basic Protocol 2). In addition, protocols for histochemical detection of cartilage extracellular matrix using dimethyl methylene blue, Alcian blue, and safranin O are also provided (Basic Protocol 3 and Alternate Protocols 1 and 2, respectively). Finally, a step-by-step guide on a cell viability/proliferation assay using MTT reagent is also described (Basic Protocol 4). © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Micromass culture of chick embryonic limb bud-derived cells Basic Protocol 2: Transfection of cells with siRNA constructs using electroporation prior to micromass culturing Basic Protocol 3: Qualitative and quantitative assessment of cartilage matrix production using dimethyl methylene blue staining and image analysis Alternate Protocol 1: Qualitative assessment of cartilage matrix production using Alcian blue staining Alternate Protocol 2: Qualitative assessment of cartilage matrix production using safranin O staining Basic Protocol 4: Measurement of mitochondrial activity with the MTT assay.


Asunto(s)
Pollos , Azul de Metileno , Animales , Embrión de Pollo , Azul de Metileno/metabolismo , Azul Alcián/metabolismo , Células Cultivadas , Cartílago/metabolismo , Regeneración
6.
Sci Rep ; 13(1): 9168, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37280270

RESUMEN

In the present paper, for the first time the ability of the porous biosilica originated from three marine diatom strains of 'Nanofrustulum spp.' viz. N. wachnickianum (SZCZCH193), N. shiloi (SZCZM1342), N. cf. shiloi (SZCZP1809), to eliminate MB from aqueous solutions was investigated. The highest biomass was achieved under silicate enrichment for N. wachnickianum and N. shiloi (0.98 g L-1 DW and 0.93 g L-1 DW respectively), and under 15 °C for N. cf. shiloi (2.2 g L-1 DW). The siliceous skeletons of the strains were purified with hydrogen peroxide and characterized by SEM, EDS, the N2 adsorption/desorption, XRD, TGA, and ATR-FTIR. The porous biosilica (20 mg DW) obtained from the strains i.e. SZCZCH193, SZCZM1342, SZCZP1809, showed efficiency in 77.6%, 96.8%, and 98.1% of 14 mg L-1 MB removal under pH 7 for 180 min, and the maximum adsorption capacity was calculated as 8.39, 19.02, and 15.17 mg g-1, respectively. Additionally, it was possible to increase the MB removal efficiency in alkaline (pH = 11) conditions up to 99.08% for SZCZP1809 after 120 min. Modelling revealed that the adsorption of MB follows Pseudo-first order, Bangham's pore diffusion and Sips isotherm models.


Asunto(s)
Diatomeas , Azul de Metileno , Dióxido de Silicio , Diatomeas/química , Diatomeas/crecimiento & desarrollo , Dióxido de Silicio/química , Dióxido de Silicio/aislamiento & purificación , Adsorción , Azul de Metileno/metabolismo , Concentración de Iones de Hidrógeno , Porosidad , Contaminantes del Agua/aislamiento & purificación , Purificación del Agua/instrumentación , Purificación del Agua/métodos
7.
Int Immunopharmacol ; 120: 110349, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37210913

RESUMEN

Methylene blue (MB) has anti-inflammatory properties, however, its underlying molecular mechanism remains elusive. This study aimed to investigate whether and how MB could attenuate lipopolysaccharide (LPS)-induced microglial activation, neuroinflammation, and neurobehavioral deficits. We measured the expression of pro-inflammatory factors and performed three neurobehavioral tests to assess the effect of MB on neuroinflammation and neurocognitive dysfunction in LPS-treated adult C57BL/6N male mice or LPS-stimulated microglia cells. In vitro and in vivo experiments were further performed to investigate the molecular mechanism underlying MB inhibition of neuroinflammation using various experimental methods, including western blot, RT-qPCR, immunofluorescence, seahorse measurement, positron emission tomography (PET) scan, and flow cytometry analyses. Our results demonstrated that microglial activation and M1 polarization were induced by LPS exposure, resulting in an inflammatory response and neuronal apoptosis. Furthermore, LPS induced metabolic reprogramming in microglial cells. However, MB treatment substantially inhibited LPS-induced elevated levels of pro-inflammatory factors and reversed metabolic activation in vivo, which eventually led to the resolution of neuroinflammation and neurobehavioral improvement. Mechanistically, MB specifically inhibited the LPS-induced overexpression of PHD3 in vitro and in vivo. The pharmacological and genetic manipulations unveiled that the Siah2/Morg1/PHD3 signaling pathway may mediate MB protection against LPS-induced neuroinflammation and neurotoxicity. Therefore MB inhibited PHD3-dependent neuroinflammation may via Siah2/Morg1/PHD3 pathway, and that PHD3 expressed in microglia may be a drug target for the treatment of neuroinflammation-related brain disorders.


Asunto(s)
Inflamación , Microglía , Ratones , Animales , Masculino , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Enfermedades Neuroinflamatorias , Azul de Metileno/farmacología , Azul de Metileno/uso terapéutico , Azul de Metileno/metabolismo , Ratones Endogámicos C57BL , Ratones Endogámicos , Ubiquitina-Proteína Ligasas/metabolismo
8.
Lab Chip ; 23(9): 2304-2315, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37073607

RESUMEN

Transdermal drug delivery has emerged as an alternative administration route for therapeutic drugs, overcoming current issues in oral and parenteral administration. However, this technology is hindered by the low permeability of the stratum corneum of the skin. In this work, we develop a synergic combination of two enhancing technologies to contribute to an improved and on-demand drug delivery through an iontophoretic system coupled with hollow microneedles (HMNs). For the first time, a polymeric HMN array coupled with integrated iontophoresis for the delivery of charged molecules and macromolecules (e.g. proteins) is devised. To prove the concept, methylene blue, fluorescein sodium, lidocaine hydrochloride, and bovine serum albumin-fluorescein isothiocyanate conjugate (BSA-FITC) were first tested in an in vitro setup using 1.5% agarose gel model. Subsequently, the ex vivo drug permeation study using a Franz diffusion cell was conducted, exhibiting a 61-fold, 43-fold, 54-fold, and 17-fold increment of the permeation of methylene blue, fluorescein sodium, lidocaine hydrochloride, and BSA-FITC, respectively, during the application of 1 mA cm-2 current for 6 h. Moreover, the total amount of drug delivered (i.e. in the skin and receptor compartment) was analysed to untangle the different delivery profiles according to the types of molecule. Finally, the integration of the anode and cathode into an iontophoretic hollow microneedle array system (IHMAS) offers the full miniaturisation of the concept. Overall, the IHMAS device provides a versatile wearable technology for transdermal on-demand drug delivery that can improve the administration of personalised doses, and potentially enhance precision medicine.


Asunto(s)
Azul de Metileno , Absorción Cutánea , Azul de Metileno/metabolismo , Fluoresceína/metabolismo , Fluoresceína-5-Isotiocianato/metabolismo , Piel/metabolismo , Sistemas de Liberación de Medicamentos , Preparaciones Farmacéuticas/metabolismo , Agujas , Lidocaína/metabolismo
9.
Cells ; 12(4)2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36831278

RESUMEN

Ferroptosis induced by erastin (an inhibitor of cystine transport) and butionine sulfoximine (an inhibitor of glutathione biosynthesis) was prevented by the mitochondria-targeted antioxidants SkQ1 and MitoTEMPO. These effects correlate with the prevention of mitochondrial lipid peroxidation, which precedes cell death. Methylene blue, a redox agent that inhibits the production of reactive oxygen species (ROS) in complex I of the mitochondrial electron transport chain, also inhibits ferroptosis and mitochondrial lipid peroxidation. Activation of ROS production in complex I with rotenone in the presence of ferrous iron stimulates lipid peroxidation in isolated mitochondria, while ROS produced by complex III are ineffective. SkQ1 and methylene blue inhibit lipid peroxidation. We suggest that ROS formed in complex I promote mitochondrial lipid peroxidation and ferroptosis.


Asunto(s)
Ferroptosis , Peroxidación de Lípido , Especies Reactivas de Oxígeno/metabolismo , Azul de Metileno/metabolismo , Mitocondrias/metabolismo
10.
J Cereb Blood Flow Metab ; 43(2_suppl): 95-105, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-36803299

RESUMEN

Methylene Blue (MB) is a brain-penetrating drug with putative neuroprotective, antioxidant and metabolic enhancing effects. In vitro studies suggest that MB enhances mitochondrial complexes activity. However, no study has directly assessed the metabolic effects of MB in the human brain. We used in vivo neuroimaging to measure the effect of MB on cerebral blood flow (CBF) and brain metabolism in humans and in rats. Two doses of MB (0.5 and 1 mg/kg in humans; 2 and 4 mg/kg in rats; iv) induced reductions in global cerebral blood flow (CBF) in humans (F(1.74, 12.17)5.82, p = 0.02) and rats (F(1,5)26.04, p = 0.0038). Human cerebral metabolic rate of oxygen (CMRO2) was also significantly reduced (F(1.26, 8.84)8.01, p = 0.016), as was the rat cerebral metabolic rate of glucose (CMRglu) (t = 2.6(16) p = 0.018). This was contrary to our hypothesis that MB will increase CBF and energy metrics. Nevertheless, our results were reproducible across species and dose dependent. One possible explanation is that the concentrations used, although clinically relevant, reflect MB's hormetic effects, i.e., higher concentrations produce inhibitory rather than augmentation effects on metabolism. Additionally, here we used healthy volunteers and healthy rats with normal cerebral metabolism where MB's ability to enhance cerebral metabolism might be limited.


Asunto(s)
Encéfalo , Azul de Metileno , Humanos , Ratas , Animales , Azul de Metileno/farmacología , Azul de Metileno/metabolismo , Encéfalo/irrigación sanguínea , Glucosa/metabolismo , Oxígeno/metabolismo , Consumo de Oxígeno , Circulación Cerebrovascular
11.
Biochim Biophys Acta Mol Cell Res ; 1870(3): 119429, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36608805

RESUMEN

Photodynamic therapy (PDT) is a process in which a photosensitizer (PS) is exposed to specific wavelengths and generates reactive oxygen species (ROS) which act within nanometers. The low invasive nature and directed cytotoxicity of this approach render it attractive to the treatment of different conditions, including the ones that affect the central nervous system (CNS). The effect of PDT on healthy neurons is one main concern over its use in the CNS, since neuronal-like cells were shown to be particularly sensitive to certain PSs. Among available PSs, 1,9-dimethyl-methylene blue (DMMB) stands out as being resistant to reduction to its inactive leuco form and by being able to produce high levels of singlet­oxygen. In this study, we aimed to investigate DMMB photodamage mechanisms in the hippocampal cell line HT22. Our results demonstrate that DMMB-PDT decrease in cell viability was linked with an increase in cell death and overall ROS production. Besides, it resulted in a significant increase in mitochondrial ROS production and decreased mitochondria membrane potential. Furthermore, DMMB-PDT significantly increased the presence of acidic autolysosomes, which was accompanied by an increase in ATG1 and ATG8 homologue GaBarap1 expression, and decreased DRAM1 expression. Taken together our results indicated that mitochondrial and autophagic dysfunction underlie DMMB-PDT cytotoxicity in neuronal cells.


Asunto(s)
Fotoquimioterapia , Fotoquimioterapia/métodos , Azul de Metileno/metabolismo , Azul de Metileno/farmacología , Especies Reactivas de Oxígeno/metabolismo , Mitocondrias/metabolismo
12.
Mol Pain ; 18: 17448069221142523, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-36408567

RESUMEN

Methylene blue (MB) is an effective treatment for methemoglobinemia, ifosfamide-induced encephalopathy, cyanide poisoning, and refractory vasoplegia. However, clinical case reports and preclinical studies indicate potentially neurotoxic activity of MB at certain concentrations. The exact mechanisms of MB neurotoxicity are not known, and while the effects of MB on neuronal tissue from different brain regions and myenteric ganglia have been examined, its effects on primary afferent neurons from dorsal root ganglia (DRG) have not been studied. Mouse DRG were exposed to MB (0.3-10 µM) in vitro to assess neurite outgrowth. Increasing concentrations of MB (0.3-10 µM) were associated with neurotoxicity as shown by a substantial loss of cells with neurite formation, particularly at 10 µM. In parallel experiments, cultured rat DRG neurons were treated with MB (100 µM) to examine how MB affects electrical membrane properties of small-diameter sensory neurons. MB decreased peak inward and outward current densities, decreased action potential amplitude, overshoot, afterhyperpolarization, increased action potential rise time, and decreased action potential firing in response to current stimulation. MB induced dose-dependent toxicity in peripheral neurons, in vitro. These findings are consistent with studies in brain and myenteric ganglion neurons showing increased neuronal loss and altered membrane electrical properties after MB application. Further research is needed to parse out the toxicity profile for MB to minimize damage to neuronal structures and reduce side effects in clinical settings.


Asunto(s)
Ganglios Espinales , Azul de Metileno , Ratas , Ratones , Animales , Azul de Metileno/farmacología , Azul de Metileno/metabolismo , Ganglios Espinales/metabolismo , Células Receptoras Sensoriales/metabolismo , Electrofisiología , Técnicas de Cultivo de Célula , Células Cultivadas
13.
Biochemistry (Mosc) ; 87(9): 940-956, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36180986

RESUMEN

Methylene blue (MB) is the first fully synthetic compound that had found its way into medicine over 120 years ago as a treatment against malaria. MB has been approved for the treatment of methemoglobinemia, but there are premises for its repurposing as a neuroprotective agent based on the efficacy of this compound demonstrated in the models of Alzheimer's, Parkinson's, and Huntington's diseases, traumatic brain injury, amyotrophic lateral sclerosis, depressive disorders, etc. However, the goal of this review was not so much to focus on the therapeutic effects of MB in the treatment of various neurodegeneration diseases, but to delve into the mechanisms of direct or indirect effect of this drug on the signaling pathways. MB can act as an alternative electron carrier in the mitochondrial respiratory chain in the case of dysfunctional electron transport chain. It also displays the anti-inflammatory and anti-apoptotic effects, inhibits monoamine oxidase (MAO) and nitric oxide synthase (NOS), activates signaling pathways involved in the mitochondrial pool renewal (mitochondrial biogenesis and autophagy), and prevents aggregation of misfolded proteins. Comprehensive understanding of all aspects of direct and indirect influence of MB, and not just some of its effects, can help in further research of this compound, including its clinical applications.


Asunto(s)
Fármacos Neuroprotectores , Azul de Metileno/metabolismo , Azul de Metileno/farmacología , Azul de Metileno/uso terapéutico , Mitocondrias/metabolismo , Monoaminooxidasa/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Óxido Nítrico Sintasa/metabolismo
14.
Respir Physiol Neurobiol ; 304: 103939, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35777722

RESUMEN

While administration of the cyclic redox agent methylene blue (MB) during intoxication by mitochondrial poisons (cyanide, hydrogen sulfide, rotenone) increases survival, the mechanisms behind these antidotal properties remain poorly understood. The objective of the studies presented in this paper was to characterize the interactions between the redox properties of MB, the intermediate metabolism and the mitochondrial respiration. We first show that intra-venous administration of micromolar levels of methylene blue in sedated and mechanically ventilated rats, increases not only resting oxygen consumption but also CO2 production (by ~ 50%), with no change in their ratio. This hypermetabolic state could be reproduced in a cellular model, where we found that the rate of electron transfer to MB was of the same order of magnitude as that of normal cellular metabolism. Notably, the large increase in cellular oxygen consumption caused by MB was relatively indifferent to the status of the mitochondrial respiratory chain: oxygen consumption persisted even when the respiratory chain was inhibited or absent (using inhibitors and cells deficient in mitochondrial oxidative phosphorylation); yet MB did not impede mitochondrial ATP production in control conditions. We present evidence that after being reduced into leuco-methylene blue (LMB) in presence of reducing molecules that are physiologically found in cells (such as NADH), the re-oxidation of LMB by oxygen can account for the increased oxygen consumption observed in vivo. In conditions of acute mitochondrial dysfunction, these MB redox cycling properties allow the rescue of the glycolysis activity and Krebs cycle through an alternate route of oxidation of NADH (or other potential reduced molecules), which accumulation would have otherwise exerted negative feedback on these metabolic pathways. Our most intriguing finding is that re-oxidization of MB by oxygen ultimately results in an in vivo matching between the increase in the rate of O2 consumed, by MB re-oxidation, and the rate of CO2, produced by the intermediate metabolism, imitating the fundamental coupling between the glycolysis/Krebs cycle and the mitochondrial respiration.


Asunto(s)
Azul de Metileno , Fosforilación Oxidativa , Animales , Dióxido de Carbono/metabolismo , Azul de Metileno/metabolismo , Azul de Metileno/farmacología , Mitocondrias/metabolismo , NAD/metabolismo , Oxígeno/metabolismo , Consumo de Oxígeno , Ratas
15.
Microb Cell Fact ; 20(1): 234, 2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-34965861

RESUMEN

The progress in industrialization everyday life has led to the continuous entry of several anthropogenic compounds, including dyes, into surrounding ecosystem causing arduous concerns for human health and biosphere. Therefore, microbial degradation of dyes is considered an eco-efficient and cost-competitive alternative to physicochemical approaches. These degradative biosystems mainly depend on the utilization of nutritive co-substrates such as yeast extract peptone in conjunction with glucose. Herein, a synergestic interaction between strains of mixed-culture consortium consisting of Rhodotorula sp., Raoultella planticola; and Staphylococcus xylosus was recruited in methylene blue (MB) degradation using agro-industrial waste as an economic and nutritive co-substrate. Via statistical means such as Plackett-Burman design and central composite design, the impact of significant nutritional parameters on MB degradation was screened and optimized. Predictive modeling denoted that complete degradation of MB was achieved within 72 h at MB (200 mg/L), NaNO3 (0.525 gm/L), molasses (385 µL/L), pH (7.5) and inoculum size (18%). Assessment of degradative enzymes revealed that intracellular NADH-reductase and DCIP-reductase were key enzymes controlling degradation process by 104.52 ± 1.75 and 274.04 ± 3.37 IU/min/mg protein after 72 h of incubation. In addition, azoreductase, tyrosinase, laccase, nitrate reductase, MnP and LiP also contributed significantly to MB degradation process. Physicochemical monitoring analysis, namely UV-Visible spectrophotometry and FTIR of MB before treatment and degradation byproducts indicated deterioration of azo bond and demethylation. Moreover, the non-toxic nature of degradation byproducts was confirmed by phytotoxicity and cytotoxicity assays. Chlorella vulgaris retained its photosynthetic capability (˃ 85%) as estimated from Chlorophyll-a/b contents compared to ˃ 30% of MB-solution. However, the viability of Wi-38 and Vero cells was estimated to be 90.67% and 99.67%, respectively, upon exposure to MB-metabolites. Furthermore, an eminent employment of consortium either freely-suspended or immobilized in plain distilled water and optimized slurry in a bioaugmentation process was implemented to treat MB in artificially-contaminated municipal wastewater and industrial effluent. The results showed a corporative interaction between the consortium examined and co-existing microbiota; reflecting its compatibility and adaptability with different microbial niches in different effluents with various physicochemical contents.


Asunto(s)
Colorantes/metabolismo , Enterobacteriaceae/metabolismo , Azul de Metileno/metabolismo , Modelos Estadísticos , Rhodotorula/metabolismo , Staphylococcus/metabolismo , Animales , Biodegradación Ambiental , Línea Celular , Chlorella vulgaris/metabolismo , Chlorocebus aethiops , Técnicas de Cocultivo , Ecosistema , Humanos , Residuos Industriales , Azul de Metileno/toxicidad , Células Vero , Aguas Residuales/microbiología , Purificación del Agua/métodos
16.
Biomed Khim ; 67(6): 485-490, 2021 Nov.
Artículo en Ruso | MEDLINE | ID: mdl-34964442

RESUMEN

Methylene blue is a phenothiazine dye that is widely used in medicine and clinical trials for the treatment of Alzheimer's disease. One of the factors of the unique therapeutic effect of methylene blue is its redox properties, allowing implementation of alternative electron transport - the dye accepts electrons from reducing equivalents in the mitochondria and transfer it them to other components of the respiratory chain or molecular oxygen. Azure I, an N-dimethylated metabolite of methylene blue, is potentially a more effective compound than methylene blue, but its ability for alternative electron transport has not been studied. We have shown that azure I, unlike methylene blue, is unable to restore the membrane potential in isolated mouse brain mitochondria, inhibited by rotenone and, therefore, is unable to perform bypass of the respiratory chain Complex I. Moreover, the addition of azure I does not affect the rate of mitochondrial respiration in contrast to methylene blue, which increases the rate of non-phosphorylation respiration. At the same time, both dyes stimulate an increase in H2O2 production. As a consequence, only methylene blue is capable of alternative electron transport, while azure I does not produce complex I bypass. This limits its therapeutic application only as a mitochondrial-targeted drug, but not as a substance with a potentially powerful antidepressant effect.


Asunto(s)
Peróxido de Hidrógeno , Azul de Metileno , Animales , Encéfalo/metabolismo , Metabolismo Energético , Azul de Metileno/metabolismo , Azul de Metileno/farmacología , Ratones , Mitocondrias/metabolismo
17.
Photochem Photobiol Sci ; 20(10): 1323-1331, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34562235

RESUMEN

To meet the requirements of theranostics with diagnosis and treatment, photodynamic-based therapy is simultaneously enabled with the incorporation of methylene blue (MB) as imaging agent and photosensitizer in core-shell structured drug vehicles. Citrate-modified hydroxyapatite (HAp) powders are first grafted with ß-cyclodextrin (CD), then combined with MB molecules through electrostatic interactions, and finally encapsulated with carbon shells through hydro-thermal carbonization of glucose to prepare HAp-CD-MB@C powders. Processing parameters of carbonization temperature, glucose addition, reaction time and CD addition are varied to prepare drug carriers with modulated crystallite degrees and photo-physical properties. Increased crystallite sizes of HAp are accompanied with the formation of C=O, C=C and C-OH groups in carbon shell, endowing sustainable release behaviors of MB through carbonous structures. High photoluminescence intensities are fairly related with red-shifted vibration peaks of groups in tightly combined MB molecules through hydrogen bonds. This hydrogen bonding effect is significantly increased for HAp-CD-MB@C140 with the splitting of CH3-involved vibration peaks in infrared spectra, which causes increase in photoluminescence intensity and four-fold increase in generation ratio of singlet oxygen. The present studies shed light on preparation of core-shell structured drug carriers, modulation of aggregate states of MB molecules, enhancement of photo-physical properties and improvement of generation ratio of singlet oxygen during photodynamic-based therapy.


Asunto(s)
Carbono/química , Hidroxiapatitas/química , Azul de Metileno/química , beta-Ciclodextrinas/química , Cristalización , Portadores de Fármacos/química , Glucosa/química , Enlace de Hidrógeno , Azul de Metileno/metabolismo , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/metabolismo , Oxígeno Singlete/química , Temperatura
18.
Viruses ; 13(8)2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34452480

RESUMEN

We compared the electrostatic properties of the spike proteins (S-proteins) of three coronaviruses, SARS-CoV, MERS-CoV, and SARS-CoV-2, and their interactions with photosensitizers (PSs), octacationic octakis(cholinyl)zinc phthalocyanine (Zn-PcChol8+) and monocationic methylene blue (MB). We found a major common PS binding site at the connection of the S-protein stalk and head. The molecules of Zn-PcChol8+ and MB also form electrostatic encounter complexes with large area of negative electrostatic potential at the head of the S-protein of SARS-CoV-2, between fusion protein and heptad repeat 1 domain. The top of the SARS-CoV spike head demonstrates a notable area of electrostatic contacts with Zn-PcChol8+ and MB that corresponds to the N-terminal domain. The S-protein protomers of SARS-CoV-2 in "open" and "closed" conformations demonstrate different ability to attract PS molecules. In contrast with Zn-PcChol8+, MB possesses the ability to penetrate inside the pocket formed as a result of SARS-CoV-2 receptor binding domain transition into the "open" state. The existence of binding site for cationic PSs common to the S-proteins of SARS-CoV, SARS-CoV-2, and MERS-CoV creates prospects for the wide use of this type of PSs to combat the spread of coronaviruses.


Asunto(s)
Colina/metabolismo , Indoles/metabolismo , Isoindoles/metabolismo , Coronavirus del Síndrome Respiratorio de Oriente Medio/química , Compuestos Organometálicos/metabolismo , Fármacos Fotosensibilizantes/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Compuestos de Zinc/metabolismo , Sitios de Unión , Indoles/química , Azul de Metileno/metabolismo , Modelos Moleculares , Simulación de Dinámica Molecular , Compuestos Organometálicos/química , Conformación Proteica , Dominios Proteicos , Subunidades de Proteína/química , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/química , SARS-CoV-2/química , Glicoproteína de la Espiga del Coronavirus/química , Electricidad Estática
19.
Cells ; 10(8)2021 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-34440931

RESUMEN

Abnormal aggregation of tau is the pathological hallmark of tauopathies including frontotemporal dementia (FTD). We have generated tau-transgenic mice that express the aggregation-prone P301S human tau (line 66). These mice present with early-onset, high tau load in brain and FTD-like behavioural deficiencies. Several of these behavioural phenotypes and tau pathology are reversed by treatment with hydromethylthionine but key pathways underlying these corrections remain elusive. In two proteomic experiments, line 66 mice were compared with wild-type mice and then vehicle and hydromethylthionine treatments of line 66 mice were compared. The brain proteome was investigated using two-dimensional electrophoresis and mass spectrometry to identify protein networks and pathways that were altered due to tau overexpression or modified by hydromethylthionine treatment. Overexpression of mutant tau induced metabolic/mitochondrial dysfunction, changes in synaptic transmission and in stress responses, and these functions were recovered by hydromethylthionine. Other pathways, such as NRF2, oxidative phosphorylation and protein ubiquitination were activated by hydromethylthionine, presumably independent of its function as a tau aggregation inhibitor. Our results suggest that hydromethylthionine recovers cellular activity in both a tau-dependent and a tau-independent fashion that could lead to a wide-spread improvement of homeostatic function in the FTD brain.


Asunto(s)
Demencia Frontotemporal/metabolismo , Azul de Metileno/análogos & derivados , Proteómica/métodos , Proteínas tau/metabolismo , Animales , Femenino , Inmunohistoquímica , Azul de Metileno/metabolismo , Ratones , Ratones Transgénicos , Espectrometría de Masas en Tándem
20.
Molecules ; 26(16)2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34443562

RESUMEN

A sensitive and reliable method was developed to determine methylene blue (MB) and its metabolite residues, including azure A (AZA), azure B (AZB), and azure C (AZC) in aquatic products by HPLC-MS/MS. The samples were extracted by acetonitrile and cleaned up by alumina-neutral (ALN) cartridges. The analytes were separated on a Sunfire C18 column (150 mm × 2.1 mm, 5 µm). The method was validated according to the European criteria of Commission Decision 2002/657/CE. Good linearity between 1-500 µg/L was obtained with correlation coefficients (R2) greater than 0.99. The limit of quantification (LOQ) was 1.0 µg/kg. The average recoveries at three levels of each compound (1, 5, and 10 µg/kg) were demonstrated to be in the range of 71.8-97.5%, with relative standard deviations (RSDs) from 1.05% to 8.63%. This method was suitable for the detection of methylene blue and its metabolite residues in aquatic products.


Asunto(s)
Cromatografía Líquida de Alta Presión , Azul de Metileno/análisis , Espectrometría de Masas en Tándem , Residuos de Medicamentos/análisis , Residuos de Medicamentos/metabolismo , Límite de Detección , Modelos Lineales , Azul de Metileno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA