Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.276
Filtrar
1.
Virology ; 595: 110100, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38714025

RESUMEN

Enterobacter cloacae is a clinically significant pathogen due to its multi-resistance to antibiotics, presenting a challenge in the treatment of infections. As concerns over antibiotic resistance escalate, novel therapeutic approaches have been explored. Bacteriophages, characterized by their remarkable specificity and ability to self-replicate within target bacteria, are emerging as a promising alternative therapy. In this study, we isolated and partially characterized nine lytic bacteriophages targeting E. cloacae, with two selected for comprehensive genomic analysis based on their host range and bacteriolytic activity. All identified phages exhibited a narrow host range, demonstrated stability within a temperature range of 30-60 °C, displayed pH tolerance from 3 to 10, and showed an excellent bacteriolytic capacity for up to 18 h. Notably, the fully characterized phage genomes revealed an absence of lysogenic, virulence, or antibiotic-resistance genes, positioning them as promising candidates for therapeutic intervention against E. cloacae-related diseases. Nonetheless, translating this knowledge into practical therapeutic applications mandates a deeper understanding of bacteriophage interactions within complex biological environments.


Asunto(s)
Bacteriófagos , Enterobacter cloacae , Genoma Viral , Genómica , Especificidad del Huésped , Enterobacter cloacae/virología , Enterobacter cloacae/genética , Bacteriófagos/genética , Bacteriófagos/fisiología , Bacteriófagos/clasificación , Bacteriófagos/aislamiento & purificación , Terapia de Fagos , Infecciones por Enterobacteriaceae/microbiología , Bacteriólisis
2.
Parasit Vectors ; 17(1): 222, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38745242

RESUMEN

BACKGROUND: Culex pipiens pallens is a well-known mosquito vector for several diseases. Deltamethrin, a commonly used pyrethroid insecticide, has been frequently applied to manage adult Cx. pipiens pallens. However, mosquitoes can develop resistance to these insecticides as a result of insecticide misuse and, therefore, it is crucial to identify novel methods to control insecticide resistance. The relationship between commensal bacteria and vector resistance has been recently recognized. Bacteriophages (= phages) are effective tools by which to control insect commensal bacteria, but there have as yet been no studies using phages on adult mosquitoes. In this study, we isolated an Aeromonas phage vB AhM-LH that specifically targets resistance-associated symbiotic bacteria in mosquitoes. We investigated the impact of Aeromonas phage vB AhM-LH in an abundance of Aeromonas hydrophila in the gut of Cx. pipiens pallens and its effect on the status of deltamethrin resistance. METHODS: Phages were isolated on double-layer agar plates and their biological properties analyzed. Phage morphology was observed by transmission electron microscopy (TEM) after negative staining. The phage was then introduced into the mosquito intestines via oral feeding. The inhibitory effect of Aeromonas phage vB AhM-LH on Aeromonas hydrophila in mosquito intestines was assessed through quantitative real-time PCR analysis. Deltamethrin resistance of mosquitoes was assessed using WHO bottle bioassays. RESULTS: An Aeromonas phage vB AhM-LH was isolated from sewage and identified as belonging to the Myoviridae family in the order Caudovirales using TEM. Based on biological characteristics analysis and in vitro antibacterial experiments, Aeromonas phage vB AhM-LH was observed to exhibit excellent stability and effective bactericidal activity. Sequencing revealed that the Aeromonas phage vB AhM-LH genome comprises 43,663 bp (51.6% CG content) with 81 predicted open reading frames. No integrase-related gene was detected in the vB AH-LH genome, which marked it as a potential biological antibacterial. Finally, we found that Aeromonas phage vB AhM-LH could significantly reduce deltamethrin resistance in Cx. pipiens pallens, in both the laboratory and field settings, by decreasing the abundance of Aeromonas hydrophila in their midgut. CONCLUSIONS: Our findings demonstrate that Aeromonas phage vB AhM-LH could effectively modulate commensal bacteria Aeromonas hydrophila in adult mosquitoes, thus representing a promising strategy to mitigate mosquito vector resistance.


Asunto(s)
Aeromonas hydrophila , Bacteriófagos , Culex , Resistencia a los Insecticidas , Nitrilos , Piretrinas , Animales , Aeromonas hydrophila/virología , Aeromonas hydrophila/efectos de los fármacos , Culex/virología , Culex/microbiología , Bacteriófagos/fisiología , Bacteriófagos/aislamiento & purificación , Bacteriófagos/genética , Piretrinas/farmacología , Nitrilos/farmacología , Insecticidas/farmacología , Mosquitos Vectores/virología , Mosquitos Vectores/microbiología , Femenino
3.
BMC Infect Dis ; 24(1): 497, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755537

RESUMEN

BACKGROUND: In recent years, there has been a growing interest in phage therapy as an effective therapeutic tool against colibacillosis caused by avian pathogenic Escherichia coli (APEC) which resulted from the increasing number of multidrug resistant (MDR) APEC strains. METHODS: In the present study, we reported the characterization of a new lytic bacteriophage (Escherichia phage AG- MK-2022. Basu) isolated from poultry slaughterhouse wastewater. In addition, the in vitro bacteriolytic activity of the newly isolated phage (Escherichia phage AG- MK-2022. Basu) and the Escherichia phage VaT-2019a isolate PE17 (GenBank: MK353636.1) were assessed against MDR- APEC strains (n = 100) isolated from broiler chickens with clinical signs of colibacillosis. RESULTS: Escherichia phage AG- MK-2022. Basu belongs to the Myoviridae family and exhibits a broad host range. Furthermore, the phage showed stability under a wide range of temperatures, pH values and different concentrations of NaCl. Genome analysis of the Escherichia phage AG- MK-2022. Basu revealed that the phage possesses no antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and any E. coli virulence associated genes. In vitro bacterial challenge tests demonstrated that two phages, the Escherichia phage VaT-2019a isolate PE17 and the Escherichia phage AG- MK-2022. Basu exhibited high bactericidal activity against APEC strains and lysed 95% of the tested APEC strains. CONCLUSIONS: The current study findings indicate that both phages could be suggested as safe biocontrol agents and alternatives to antibiotics for controlling MDR-APEC strains isolated from broilers.


Asunto(s)
Pollos , Farmacorresistencia Bacteriana Múltiple , Infecciones por Escherichia coli , Escherichia coli , Terapia de Fagos , Enfermedades de las Aves de Corral , Animales , Escherichia coli/virología , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/veterinaria , Pollos/microbiología , Enfermedades de las Aves de Corral/microbiología , Colifagos/genética , Colifagos/fisiología , Especificidad del Huésped , Genoma Viral , Aguas Residuales/microbiología , Aguas Residuales/virología , Myoviridae/genética , Myoviridae/aislamiento & purificación , Myoviridae/fisiología , Myoviridae/clasificación , Bacteriófagos/genética , Bacteriófagos/fisiología , Bacteriófagos/aislamiento & purificación
4.
Arch Virol ; 169(5): 117, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739272

RESUMEN

Xanthomonas phage AhaSv was isolated from lake water. Genome sequencing showed that its genome is a linear dsDNA molecule with a length of 55,576 bp and a G+C content of 63.23%. Seventy-one open reading frames (ORFs) were predicted, and no tRNAs were found in the genome. Phylogenetic analysis showed that AhaSv is closely related to members of the genus Salvovirus of the family Casjensviridae. Intergenomic similarity values between phage AhaSv and homologous phages were up to 90.6%, suggesting that phage AhaSv should be considered a member of a new species in the genus Salvovirus.


Asunto(s)
Bacteriófagos , Composición de Base , Genoma Viral , Sistemas de Lectura Abierta , Filogenia , Xanthomonas , Xanthomonas/virología , Xanthomonas/genética , Xanthomonas/clasificación , Bacteriófagos/genética , Bacteriófagos/clasificación , Bacteriófagos/aislamiento & purificación , ADN Viral/genética , Análisis de Secuencia de ADN , Lagos/virología , Lagos/microbiología
5.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38709876

RESUMEN

The microbiomes in macroalgal holobionts play vital roles in regulating macroalgal growth and ocean carbon cycling. However, the virospheres in macroalgal holobionts remain largely underexplored, representing a critical knowledge gap. Here we unveil that the holobiont of kelp (Saccharina japonica) harbors highly specific and unique epiphytic/endophytic viral species, with novelty (99.7% unknown) surpassing even extreme marine habitats (e.g. deep-sea and hadal zones), indicating that macroalgal virospheres, despite being closest to us, are among the least understood. These viruses potentially maintain microbiome equilibrium critical for kelp health via lytic-lysogenic infections and the expression of folate biosynthesis genes. In-situ kelp mesocosm cultivation and metagenomic mining revealed that kelp holobiont profoundly reshaped surrounding seawater and sediment virus-prokaryote pairings through changing surrounding environmental conditions and virus-host migrations. Some kelp epiphytic viruses could even infect sediment autochthonous bacteria after deposition. Moreover, the presence of ample viral auxiliary metabolic genes for kelp polysaccharide (e.g. laminarin) degradation underscores the underappreciated viral metabolic influence on macroalgal carbon cycling. This study provides key insights into understanding the previously overlooked ecological significance of viruses within macroalgal holobionts and the macroalgae-prokaryotes-virus tripartite relationship.


Asunto(s)
Bacterias , Kelp , Microbiota , Agua de Mar , Kelp/microbiología , Agua de Mar/microbiología , Agua de Mar/virología , Bacterias/genética , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Metagenómica , Algas Marinas/microbiología , Algas Marinas/virología , Sedimentos Geológicos/microbiología , Sedimentos Geológicos/virología , Células Procariotas/virología , Células Procariotas/metabolismo , Bacteriófagos/genética , Bacteriófagos/fisiología , Bacteriófagos/aislamiento & purificación , Viroma
6.
Viruses ; 16(5)2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38793629

RESUMEN

Plague is an endemic infectious disease caused by Yersinia pestis. In this study, we isolated fourteen phages with similar sequence arrangements to phage 186; these phages exhibited different lytic abilities in Enterobacteriaceae strains. To illustrate the phylogenetic relationships and evolutionary relationships between previously designated 186-type phages, we analysed the complete sequences and important genes of the phages, including whole-genome average nucleotide identity (ANI) and collinearity comparison, evolutionary analysis of four conserved structural genes (V, T, R, and Q genes), and analysis of the regulatory genes (cI, apl, and cII) and integrase gene (int). Phylogenetic analysis revealed that thirteen of the newly isolated phages belong to the genus Eganvirus and one belongs to the genus Felsduovirus in the family Peduoviridae, and these Eganvirus phages can be roughly clustered into three subgroups. The topological relationships exhibited by the whole-genome and structural genes seemed similar and stable, while the regulatory genes presented different topological relationships with the structural genes, and these results indicated that there was some homologous recombination in the regulatory genes. These newly isolated 186-type phages were mostly isolated from dogs, suggesting that the resistance of Canidae to Y. pestis infection may be related to the wide distribution of phages with lytic capability.


Asunto(s)
Bacteriófagos , Genoma Viral , Filogenia , Yersinia pestis , Yersinia pestis/virología , Yersinia pestis/genética , Bacteriófagos/genética , Bacteriófagos/clasificación , Bacteriófagos/aislamiento & purificación , Animales , Evolución Molecular , Perros , Peste/microbiología
7.
Nat Commun ; 15(1): 4089, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744831

RESUMEN

Dominant microorganisms of the Sargasso Sea are key drivers of the global carbon cycle. However, associated viruses that shape microbial community structure and function are not well characterised. Here, we combined short and long read sequencing to survey Sargasso Sea phage communities in virus- and cellular fractions at viral maximum (80 m) and mesopelagic (200 m) depths. We identified 2,301 Sargasso Sea phage populations from 186 genera. Over half of the phage populations identified here lacked representation in global ocean viral metagenomes, whilst 177 of the 186 identified genera lacked representation in genomic databases of phage isolates. Viral fraction and cell-associated viral communities were decoupled, indicating viral turnover occurred across periods longer than the sampling period of three days. Inclusion of long-read data was critical for capturing the breadth of viral diversity. Phage isolates that infect the dominant bacterial taxa Prochlorococcus and Pelagibacter, usually regarded as cosmopolitan and abundant, were poorly represented.


Asunto(s)
Bacteriófagos , Metagenoma , Metagenómica , Océanos y Mares , Agua de Mar , Metagenómica/métodos , Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Bacteriófagos/clasificación , Agua de Mar/virología , Agua de Mar/microbiología , Metagenoma/genética , Genoma Viral/genética , Filogenia , Prochlorococcus/virología , Prochlorococcus/genética , Microbiota/genética , Bacterias/genética , Bacterias/virología , Bacterias/clasificación , Bacterias/aislamiento & purificación
8.
Front Cell Infect Microbiol ; 14: 1382145, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38736748

RESUMEN

Carbapenem-resistant Acinetobacter baumannii (CRAB) has become a new threat in recent years, owing to its rapidly increasing resistance to antibiotics and new effective therapies are needed to combat this pathogen. Phage therapy is considered to be the most promising alternative for treating CRAB infections. In this study, a novel phage, Ab_WF01, which can lyse clinical CRAB, was isolated and characterized from hospital sewage. The multiplicity of infection, morphology, one-step growth curve, stability, sensitivity, and lytic activity of the phage were also investigated. The genome of phage Ab_WF01 was 41, 317 bp in size with a GC content of 39.12% and encoded 51 open reading frames (ORFs). tRNA, virulence, and antibiotic resistance genes were not detected in the phage genome. Comparative genomic and phylogenetic analyses suggest that phage Ab_WF01 is a novel species of the genus Friunavirus, subfamily Beijerinckvirinae, and family Autographiviridae. The in vivo results showed that phage Ab_WF01 significantly increased the survival rate of CRAB-infected Galleria mellonella (from 0% to 70% at 48 h) and mice (from 0% to 60% for 7 days). Moreover, after day 3 post-infection, phage Ab_WF01 reduced inflammatory response, with strongly ameliorated histological damage and bacterial clearance in infected tissue organs (lungs, liver, and spleen) in mouse CRAB infection model. Taken together, these results show that phage Ab_WF01 holds great promise as a potential alternative agent with excellent stability for against CRAB infections.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Bacteriófagos , Carbapenémicos , Genoma Viral , Terapia de Fagos , Filogenia , Aguas del Alcantarillado , Acinetobacter baumannii/virología , Acinetobacter baumannii/efectos de los fármacos , Aguas del Alcantarillado/virología , Aguas del Alcantarillado/microbiología , Animales , Carbapenémicos/farmacología , Bacteriófagos/genética , Bacteriófagos/fisiología , Bacteriófagos/clasificación , Bacteriófagos/aislamiento & purificación , Infecciones por Acinetobacter/microbiología , Ratones , Antibacterianos/farmacología , Sistemas de Lectura Abierta , Modelos Animales de Enfermedad , Mariposas Nocturnas/virología , Mariposas Nocturnas/microbiología , Composición de Base
9.
Sci Rep ; 14(1): 10540, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719945

RESUMEN

Viruses are crucial for regulating deep-sea microbial communities and biogeochemical cycles. However, their roles are still less characterized in deep-sea holobionts. Bathymodioline mussels are endemic species inhabiting cold seeps and harboring endosymbionts in gill epithelial cells for nutrition. This study unveiled a diverse array of viruses in the gill tissues of Gigantidas platifrons mussels and analyzed the viral metagenome and transcriptome from the gill tissues of Gigantidas platifrons mussels collected from a cold seep in the South Sea. The mussel gills contained various viruses including Baculoviridae, Rountreeviridae, Myoviridae and Siphovirdae, but the active viromes were Myoviridae, Siphoviridae, and Podoviridae belonging to the order Caudovirales. The overall viral community structure showed significant variation among environments with different methane concentrations. Transcriptome analysis indicated high expression of viral structural genes, integrase, and restriction endonuclease genes in a high methane concentration environment, suggesting frequent virus infection and replication. Furthermore, two viruses (GP-phage-contig14 and GP-phage-contig72) interacted with Gigantidas platifrons methanotrophic gill symbionts (bathymodiolin mussels host intracellular methanotrophic Gammaproteobacteria in their gills), showing high expression levels, and have huge different expression in different methane concentrations. Additionally, single-stranded DNA viruses may play a potential auxiliary role in the virus-host interaction using indirect bioinformatics methods. Moreover, the Cro and DNA methylase genes had phylogenetic similarity between the virus and Gigantidas platifrons methanotrophic gill symbionts. This study also explored a variety of viruses in the gill tissues of Gigantidas platifrons and revealed that bacteria interacted with the viruses during the symbiosis with Gigantidas platifrons. This study provides fundamental insights into the interplay of microorganisms within Gigantidas platifrons mussels in deep sea.


Asunto(s)
Bacteriófagos , Bivalvos , Branquias , Metagenómica , Animales , Metagenómica/métodos , Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Branquias/microbiología , Branquias/virología , Branquias/metabolismo , Bivalvos/microbiología , Bivalvos/virología , Bivalvos/genética , Perfilación de la Expresión Génica , Transcriptoma , Viroma/genética , Bacterias/genética , Bacterias/clasificación , Simbiosis/genética , Metagenoma
10.
Commun Biol ; 7(1): 535, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710842

RESUMEN

Escherichia coli O157 can cause foodborne outbreaks, with infection leading to severe disease such as hemolytic-uremic syndrome. Although phage-based detection methods for E. coli O157 are being explored, research on their specificity with clinical isolates is lacking. Here, we describe an in vitro assembly-based synthesis of vB_Eco4M-7, an O157 antigen-specific phage with a 68-kb genome, and its use as a proof of concept for E. coli O157 detection. Linking the detection tag to the C-terminus of the tail fiber protein, gp27 produces the greatest detection sensitivity of the 20 insertions sites tested. The constructed phage detects all 53 diverse clinical isolates of E. coli O157, clearly distinguishing them from 35 clinical isolates of non-O157 Shiga toxin-producing E. coli. Our efficient phage synthesis methods can be applied to other pathogenic bacteria for a variety of applications, including phage-based detection and phage therapy.


Asunto(s)
Escherichia coli O157 , Escherichia coli O157/virología , Escherichia coli O157/genética , Escherichia coli O157/aislamiento & purificación , Humanos , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/diagnóstico , Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Colifagos/genética , Colifagos/aislamiento & purificación , Sensibilidad y Especificidad , Genoma Viral
11.
Appl Environ Microbiol ; 90(5): e0024624, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38597658

RESUMEN

Bacterial viruses (phages) are potent agents of lateral gene transfer and thus are important drivers of evolution. A group of mobile genetic elements, referred to as phage satellites, exploits phages to disseminate their own genetic material. Here, we isolated a novel member of the family Inoviridae, Shewanella phage Dolos, along with an autonomously replicating plasmid, pDolos. Dolos causes a chronic infection in its host Shewanella oneidensis by phage production with only minor effects on the host cell proliferation. When present, plasmid pDolos hijacks Dolos functions to be predominantly packaged into phage virions and released into the environment and, thus, acts as a phage satellite. pDolos can disseminate further genetic material encoding, e.g., resistances or fluorophores to host cells sensitive to Dolos infection. Given the rather simple requirements of a plasmid for takeover of an inovirus and the wide distribution of phages of this group, we speculate that similar phage-satellite systems are common among bacteria.IMPORTANCEPhage satellites are mobile genetic elements, which hijack phages to be transferred to other host cells. The vast majority of these phage satellites integrate within the host's chromosome, and they all carry remaining phage genes. Here, we identified a novel phage satellite, pDolos, which uses an inovirus for dissemination. pDolos (i) remains as an autonomously replicating plasmid within its host, (ii) does not carry recognizable phage genes, and (iii) is smaller than any other phage satellites identified so far. Thus, pDolos is the first member of a new class of phage satellites, which resemble natural versions of phagemids.


Asunto(s)
Plásmidos , Shewanella , Plásmidos/genética , Shewanella/virología , Shewanella/genética , Inovirus/genética , Virus Satélites/genética , Genoma Viral , Bacteriófagos/genética , Bacteriófagos/clasificación , Bacteriófagos/aislamiento & purificación
12.
mSystems ; 9(5): e0008324, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38647296

RESUMEN

Algal blooms can give snowmelt a red color, reducing snow albedo and creating a runaway effect that accelerates snow melting. The occurrence of red snow is predicted to grow in polar and subpolar regions with increasing global temperatures. We hypothesize that these algal blooms affect virus-bacteria interactions in snow, with potential effects on snowmelt dynamics. A genomic analysis of double-stranded DNA virus communities in red and white snow from the Whistler region of British Columbia, Canada, identified 792 putative viruses infecting bacteria. The most abundant putative snow viruses displayed low genomic similarity with known viruses. We recovered the complete circular genomes of nine putative viruses, two of which were classified as temperate. Putative snow viruses encoded genes involved in energy metabolisms, such as NAD+ synthesis and salvage pathways. In model phages, these genes facilitate increased viral particle production and lysis rates. The frequency of temperate phages was positively correlated with microbial abundance in the snow samples. These results suggest the increased frequency of temperate virus-bacteria interactions as microbial densities increase during snowmelt. We propose that this virus-bacteria dynamic may facilitate the red snow algae growth stimulated by bacteria.IMPORTANCEMicrobial communities in red snow algal blooms contribute to intensifying snowmelt rates. The role of viruses in snow during this environmental shift, however, has yet to be elucidated. Here, we characterize novel viruses extracted from snow viral metagenomes and define the functional capacities of snow viruses in both white and red snow. These results are contextualized using the composition and functions observed in the bacterial communities from the same snow samples. Together, these data demonstrate the energy metabolism performed by viruses and bacteria in a snow algal bloom, as well as expand the overall knowledge of viral genomes in extreme environments.


Asunto(s)
Nieve , Nieve/virología , Nieve/microbiología , Colombia Británica , Bacterias/genética , Bacterias/virología , Bacterias/aislamiento & purificación , Eutrofización , Genoma Viral/genética , Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Rhodophyta/virología , Virus/genética , Virus/aislamiento & purificación , Virus/clasificación
13.
Viruses ; 16(4)2024 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-38675852

RESUMEN

Fire blight, caused by the bacterium Erwinia amylovora, is a major threat to pear production worldwide. Bacteriophages, viruses that infect bacteria, are a promising alternative to antibiotics for controlling fire blight. In this study, we isolated a novel bacteriophage, RH-42-1, from Xinjiang, China. We characterized its biological properties, including host range, plaque morphology, infection dynamics, stability, and sensitivity to various chemicals. RH-42-1 infected several E. amylovora strains but not all. It produced clear, uniform plaques and exhibited optimal infectivity at a multiplicity of infection (MOI) of 1, reaching a high titer of 9.6 × 109 plaque-forming units (PFU)/mL. The bacteriophage had a short latent period (10 min), a burst size of 207 PFU/cell, and followed a sigmoidal one-step growth curve. It was stable at temperatures up to 60 °C but declined rapidly at higher temperatures. RH-42-1 remained viable within a pH range of 5 to 9 and was sensitive to extreme pH values. The bacteriophage demonstrates sustained activity upon exposure to ultraviolet radiation for 60 min, albeit with a marginal reduction. In our assays, it exhibited a certain level of resistance to 5% chloroform (CHCl3), 5% isopropanol (C3H8O), and 3% hydrogen peroxide (H2O2), which had little effect on its activity, whereas it showed sensitivity to 75% ethanol (C2H5OH). Electron microscopy revealed that RH-42-1 has a tadpole-shaped morphology. Its genome size is 14,942 bp with a GC content of 48.19%. Based on these characteristics, RH-42-1 was identified as a member of the Tectiviridae family, Alphatectivirus genus. This is the first report of a bacteriophage in this genus with activity against E. amylovora.


Asunto(s)
Bacteriófagos , Erwinia amylovora , Microbiología del Suelo , Bacteriófagos/aislamiento & purificación , Bacteriófagos/genética , Bacteriófagos/fisiología , Bacteriófagos/clasificación , China , Erwinia amylovora/virología , Erwinia amylovora/efectos de los fármacos , Genoma Viral , Especificidad del Huésped , Concentración de Iones de Hidrógeno , Filogenia , Enfermedades de las Plantas/microbiología , Pyrus/microbiología , Pyrus/virología
14.
Viruses ; 16(4)2024 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-38675877

RESUMEN

The concentration of viruses in sewage sludge is significantly higher (10-1000-fold) than that found in natural environments, posing a potential risk for human and animal health. However, the composition of these viruses and their role in the transfer of pathogenic factors, as well as their role in the carbon, nitrogen, and phosphorus cycles remain poorly understood. In this study, we employed a shotgun metagenomic approach to investigate the pathogenic bacteria and viral composition and function in two wastewater treatment plants located on a campus. Our analysis revealed the presence of 1334 amplicon sequence variants (ASVs) across six sludge samples, with 242 ASVs (41.22% of total reads) identified as pathogenic bacteria. Arcobacter was found to be the most dominant pathogen accounting for 6.79% of total reads. The virome analysis identified 613 viral genera with Aorunvirus being the most abundant genus at 41.85%. Approximately 0.66% of these viruses were associated with human and animal diseases. More than 60% of the virome consisted of lytic phages. Host prediction analysis revealed that the phages primarily infected Lactobacillus (37.11%), Streptococcus (21.11%), and Staphylococcus (7.11%). Furthermore, our investigation revealed an abundance of auxiliary metabolic genes (AMGs) involved in carbon, nitrogen, and phosphorus cycling within the virome. We also detected a total of 113 antibiotic resistance genes (ARGs), covering major classes of antibiotics across all samples analyzed. Additionally, our findings indicated the presence of virulence factors including the clpP gene accounting for approximately 4.78%, along with toxin genes such as the RecT gene representing approximately 73.48% of all detected virulence factors and toxin genes among all samples analyzed. This study expands our understanding regarding both pathogenic bacteria and viruses present within sewage sludge while providing valuable insights into their ecological functions.


Asunto(s)
Bacterias , Metagenómica , Aguas del Alcantarillado , Virus , Aguas Residuales , Aguas Residuales/virología , Aguas Residuales/microbiología , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Aguas del Alcantarillado/virología , Aguas del Alcantarillado/microbiología , Humanos , Virus/genética , Virus/clasificación , Virus/aislamiento & purificación , Metagenoma , Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Bacteriófagos/clasificación , Viroma/genética , Purificación del Agua , Animales
15.
Biosens Bioelectron ; 257: 116334, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38678788

RESUMEN

Burkholderia pseudomallei, widely distributed in tropical and subtropical ecosystems, is capable of causing the fatal zoonotic disease melioidosis and exhibiting a global trend of dissemination. Rapid and sensitive detection of B. pseudomallei is essential for environmental monitoring as well as infection control. Here, we developed an innovative biosensor for quantitatively detecting B. pseudomallei relies on ATP released triggered by bacteriophage-induced bacteria lysis. The lytic bacteriophage vB_BpP_HN01, with high specificity, is employed alongside magnetic nanoparticles assembly to create a biological receptor, facilitating the capture and enrichment of viable target bacteria. Following a brief extraction and incubation process, the captured target undergoes rapid lysis to release contents including ATP. The EXPAR-CRISPR cascade reaction provides an efficient signal transduction and dual amplification module that allowing the generated ATP to guide the signal output as an activator, ultimately converting the target bacterial amount into a detectable fluorescence signal. The proposed bacteriophage affinity strategy exhibited superior performance for B. pseudomallei detection with a dynamic range from 10^2 to 10^7 CFU mL-1, and a LOD of 45 CFU mL-1 within 80 min. Moreover, with the output signal compatible across various monitoring methods, this work offers a robust assurance for rapid diagnosis and on-site environmental monitoring of B. pseudomallei.


Asunto(s)
Adenosina Trifosfato , Bacteriófagos , Técnicas Biosensibles , Burkholderia pseudomallei , Sistemas CRISPR-Cas , Burkholderia pseudomallei/virología , Técnicas Biosensibles/métodos , Bacteriófagos/química , Bacteriófagos/aislamiento & purificación , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/análisis , Melioidosis/microbiología , Límite de Detección , Humanos , Nanopartículas de Magnetita/química
16.
Microbiol Spectr ; 12(5): e0322123, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38526142

RESUMEN

The emergence of antibiotic-resistant bacteria (ARB) has necessitated the development of alternative therapies to deal with this global threat. Bacteriophages (viruses that target bacteria) that kill ARB are one such alternative. Although phages have been used clinically for decades with inconsistent results, a number of recent advances in phage selection, propagation, and purification have enabled a reevaluation of their utility in contemporary clinical medicine. In most phage therapy cases, phages are administered in combination with antibiotics to ensure that patients receive the standard-of-care treatment. Some phages may work cooperatively with antibiotics to eradicate ARB, as often determined using non-standardized broth assays. We sought to develop a solid media-based assay to assess cooperativity between antibiotics and phages to offer a standardized platform for such testing. We modeled the interactions that occur between antibiotics and phages on solid medium to measure additive, antagonistic, and synergistic interactions. We then tested the method using different bacterial isolates and identified a number of isolates where synergistic interactions were identified. These interactions were not dependent on the specific organism, phage family, or antibiotic used. A priori susceptibility to the antibiotic or the specific phage were not requirements to observe synergistic interactions. Our data also confirm the potential for the restoration of vancomycin to treat vancomycin-resistant Enterococcus (VRE) when used in combination with phages. Solid media assays for the detection of cooperative interactions between antibiotics and phages can be an accessible technique adopted by clinical laboratories to evaluate antibiotic and phage choices in phage therapy.IMPORTANCEBacteriophages have become an important alternative treatment for individuals with life-threatening antibiotic-resistant bacteria (ARB) infections. Because antibiotics represent the standard-of-care for treatment of ARB, antibiotics and phages often are delivered together without evidence that they work cooperatively. Testing for cooperativity can be difficult due to the equipment necessary and a lack of standardized means for performing the testing in liquid medium. We developed an assay using solid medium to identify interactions between antibiotics and phages for gram-positive and gram-negative bacteria. We modeled the interactions between antibiotics and phages on solid medium, and then tested multiple replicates of vancomycin-resistant Enterococcus (VRE) and Stenotrophomonas in the assay. For each organism, we identified synergy between different phage and antibiotic combinations. The development of this solid media assay for assessing synergy between phages and antibiotics will better inform the use of these combinations in the treatment of ARB infections.


Asunto(s)
Antibacterianos , Bacteriófagos , Terapia de Fagos , Bacteriófagos/fisiología , Bacteriófagos/aislamiento & purificación , Antibacterianos/farmacología , Terapia de Fagos/métodos , Humanos , Medios de Cultivo/química , Pruebas de Sensibilidad Microbiana/métodos , Bacterias/virología , Bacterias/efectos de los fármacos , Farmacorresistencia Bacteriana
17.
J Virol ; 98(3): e0173123, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38329345

RESUMEN

In our 2012 genome announcement (J Virol 86:11403-11404, 2012, https://doi.org/10.1128/JVI.01954-12), we initially identified the host bacterium of bacteriophage Enc34 as Enterobacter cancerogenus using biochemical tests. However, later in-house DNA sequencing revealed that the true host is a strain of Hafnia alvei. Capitalizing on our new DNA-sequencing capabilities, we also refined the genomic termini of Enc34, confirming a 60,496-bp genome with 12-nucleotide 5' cohesive ends. IMPORTANCE: Our correction reflects the evolving landscape of bacterial identification, where molecular methods have supplanted traditional biochemical tests. This case underscores the significance of revisiting past identifications, as seemingly known bacterial strains may yield unexpected discoveries, necessitating essential updates to the scientific record. Despite the host identity correction, our genome announcement retains importance as the first complete genome sequence of a Hafnia alvei bacteriophage.


Asunto(s)
Bacteriófagos , Hafnia alvei , Tropismo al Anfitrión , Bacteriófagos/clasificación , Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Bacteriófagos/fisiología , Enterobacter/química , Enterobacter/virología , Genoma Viral/genética , Hafnia alvei/clasificación , Hafnia alvei/genética , Hafnia alvei/virología , Error Científico Experimental , Análisis de Secuencia de ADN
18.
J Virol ; 98(3): e0147623, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38376991

RESUMEN

The ability of virulent bacteriophages to lyse bacteria influences bacterial evolution, fitness, and population structure. Knowledge of both host susceptibility and resistance factors is crucial for the successful application of bacteriophages as biological control agents in clinical therapy, food processing, and agriculture. In this study, we isolated 12 bacteriophages termed SPLA phage which infect the foodborne pathogen Salmonella enterica. To determine phage host range, a diverse collection of Enterobacteriaceae and Salmonella enterica was used and genes involved in infection by six SPLA phages were identified using Salmonella Typhimurium strain ST4/74. Candidate host receptors included lipopolysaccharide (LPS), cellulose, and BtuB. Lipopolysaccharide was identified as a susceptibility factor for phage SPLA1a and mutations in LPS biosynthesis genes spontaneously emerged during culture with S. Typhimurium. Conversely, LPS was a resistance factor for phage SPLA5b which suggested that emergence of LPS mutations in culture with SPLA1a represented collateral sensitivity to SPLA5b. We show that bacteria-phage co-culture with SPLA1a and SPLA5b was more successful in limiting the emergence of phage resistance compared to single phage co-culture. Identification of host susceptibility and resistance genes and understanding infection dynamics are critical steps in the rationale design of phage cocktails against specific bacterial pathogens.IMPORTANCEAs antibiotic resistance continues to emerge in bacterial pathogens, bacterial viruses (phage) represent a potential alternative or adjunct to antibiotics. One challenge for their implementation is the predisposition of bacteria to rapidly acquire resistance to phages. We describe a functional genomics approach to identify mechanisms of susceptibility and resistance for newly isolated phages that infect and lyse Salmonella enterica and use this information to identify phage combinations that exploit collateral sensitivity, thus increasing efficacy. Collateral sensitivity is a phenomenon where resistance to one class of antibiotics increases sensitivity to a second class of antibiotics. We report a functional genomics approach to rationally design a phage combination with a collateral sensitivity dynamic which resulted in increased efficacy. Considering such evolutionary trade-offs has the potential to manipulate the outcome of phage therapy in favor of resolving infection without selecting for escape mutants and is applicable to other virus-host interactions.


Asunto(s)
Bacteriófagos , Microbiología Ambiental , Salmonella enterica , Antibacterianos/uso terapéutico , Bacteriófagos/aislamiento & purificación , Sensibilidad Colateral al uso de Fármacos , Lipopolisacáridos , Salmonella enterica/virología , Terapia de Fagos , Infecciones por Salmonella/terapia , Humanos
19.
Ir J Med Sci ; 193(3): 1377-1384, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38158479

RESUMEN

BACKGROUND: Typhoid fever is a fatal disease in humans that is caused by Salmonella typhi. S. typhi infections need immediate antibiotic therapy, and their extensive use has led to multidrug-resistant (MDR) pathogens. The use of bacteriophages is becoming a new way to treat these resistant bacteria. This research was directed to bacteriophage isolation against S. typhi and to determine phage-antibiotic synergism. AIMS: To isolate bacteriophages targeting S. typhi, the causative agent of typhoid fever, and investigate their potential synergistic effects when combined with antibiotics. STUDY DESIGN: A cross-sectional study. METHODS: The Widal test was positive; twenty diarrheal stool samples were taken, and for confirmation of S. typhi, different biochemical tests were performed. The disc-diffusion technique was used to determine antimicrobial resistance, and the double agar overlay method was used for bacteriophage isolation from sewage water against S. typhi. To test antibiotic-phage synergism, the S. typhi bacteria was treated by phages together with varying antibiotic concentrations. RESULTS: Eleven samples were positive for S. typhi with black colonies on SS-agar. These were catalase and MR positive with alkali butt on TSI. Clear plaques were observed after the agar overlay. Isolated phages were stable at various pH and temperature levels. Synergism was observed on agar plate. The zone was enlarged when phages were combined with bacterial lawn culture and ciprofloxacin disk. Bacterial growth inhibition had a significant p-value of 0.03 in titration plates, with the phage-ciprofloxacin combination being more effective than the phage and antibiotic alone. CONCLUSION: The study highlights the synergistic effects of isolated bacteriophages with antibiotics, which are not only effective against S. typhi infection but also decrease antibiotic resistance.


Asunto(s)
Antibacterianos , Heces , Salmonella typhi , Fiebre Tifoidea , Salmonella typhi/efectos de los fármacos , Salmonella typhi/aislamiento & purificación , Humanos , Fiebre Tifoidea/microbiología , Fiebre Tifoidea/tratamiento farmacológico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Estudios Transversales , Heces/microbiología , Heces/virología , Bacteriófagos/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Terapia de Fagos/métodos
20.
Arch Virol ; 168(8): 216, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37525023

RESUMEN

In this study, a new Salmonella phage, NX263, was isolated from sewage. This phage could lyse 90.57% (48/53) of the bacterial strains tested and showed good activity over a wide range of temperature (up to 60°C) and pH (5-10). Phylogenetic analysis showed that it should be classified as a member of the genus Skatevirus. The genome of phage NX263 is 46,574 bp in length with a GC content of 45.52%. It contains 89 open reading frames and two tRNA genes. No lysogeny, drug resistance, or virulence-associated genes were identified in the genome sequence, suggesting that this phage could potentially be used to treat Salmonella Pullorum infections.


Asunto(s)
Bacteriófagos , Genoma Viral , Salmonella enterica , Bacteriófagos/clasificación , Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Genoma Viral/genética , Filogenia , Salmonella enterica/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA