Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39274980

RESUMEN

Carotenoids are high added-value products primarily known for their intense coloration and high antioxidant activity. They can be extracted from a variety of natural sources, such as plants, animals, microalgae, yeasts, and bacteria. Gordonia alkanivorans strain 1B is a bacterium recognized as a hyper-pigment producer. However, due to its adaptations to its natural habitat, hydrocarbon-contaminated soils, strain 1B is resistant to different organic solvents, making carotenoid extraction through conventional methods more laborious and inefficient. Ionic liquids (ILs) have been abundantly shown to increase carotenoid extraction in plants, microalgae, and yeast; however, there is limited information regarding bacterial carotenoid extraction, especially for the Gordonia genus. Therefore, the main goal of this study was to evaluate the potential of ILs to mediate bacterial carotenoid extraction and develop a method to achieve higher yields with fewer pre-processing steps. In this context, an initial screening was performed with biomass of strain 1B and nineteen different ILs in various conditions, revealing that tributyl(ethyl)phosphonium diethyl phosphate (IL#18), combined with ethyl acetate (EAc) as a co-solvent, presented the highest level of carotenoid extraction. Afterward, to better understand the process and optimize the extraction results, two experimental designs were performed, varying the amounts of IL#18 and EAc used. These allowed the establishment of 50 µL of IL#18 with 1125 µL of EAc, for 400 µL of biomass (cell suspension with about 36 g/L), as the ideal conditions to achieve maximal carotenoid extraction. Compared to the conventional extraction method using DMSO, this novel procedure eliminates the need for biomass drying, reduces extraction temperatures from 50 °C to 22 ± 2 °C, and increases carotenoid extraction by 264%, allowing a near-complete recovery of carotenoids contained in the biomass. These results highlight the great potential of ILs for bacterial carotenoid extraction, increasing the process efficiency, while potentially reducing energy consumption, related costs, and emissions.


Asunto(s)
Biomasa , Carotenoides , Líquidos Iónicos , Líquidos Iónicos/química , Carotenoides/química , Carotenoides/aislamiento & purificación , Solventes/química , Bacteria Gordonia/química , Bacteria Gordonia/metabolismo , Bacterias
2.
Bioresour Technol ; 412: 131303, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39214183

RESUMEN

Methylpyridines are a class of highly toxic pyridine derivatives. In this study, a novel degrading bacterium was isolated for 3-methylpyridine (3-MP) degradation (Gordonia rubripertincta ZJJ, GenBank accession NO. OP430847.1; CCTCC M 2022975). The maximum specific degradation rate, half-saturation constant and inhibition constant were fitted to be 0.48 h-1, 88.3 mg L-1 and 924.0 mg L-1, respectively. During 3-MP biodegradation, the lost total organic carbon was transformed into CO2 (67.4 %) and biomass (32.6 %), and ammonia nitrogen was almost the sole inorganic species with a conversion rate of 36.3 %. Three metabolic pathways were possibly involved in 3-MP degradation: I) methyl oxidation followed by ring hydroxylation and hydrogenation; II) rupture of C=C and C-N bonds after ring reduction; III) initial ring hydroxylation. The study not only provides a novel strain for the high-efficient degradation of 3-MP, but also contributes to an in-depth understanding of 3-MP biotransformation.


Asunto(s)
Biodegradación Ambiental , Piridinas , Piridinas/metabolismo , Bacteria Gordonia/metabolismo , Filogenia , Biomasa
3.
Biochemistry ; 63(17): 2153-2165, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39152907

RESUMEN

Per and polyfluoroalkyl substances (PFAS) are a large family of anthropogenic fluorinated chemicals of increasing environmental concern. Over recent years, numerous microbial communities have been found to be capable of metabolizing some polyfluoroalkyl substances, generating a range of low-molecular-weight PFAS metabolites. One proposed pathway for the microbial breakdown of fluorinated carboxylates includes ß-oxidation, this pathway is initiated by the formation of a CoA adduct. However, until recently no PFAS-CoA adducts had been reported. In a previous study, we were able to use a bacterial medium-chain acyl-CoA synthetase (mACS) to form CoA adducts of fluorinated adducts of propanoic acid and pentanoic acid but were not able to detect any products of fluorinated hexanoic acid analogues. Herein, we expressed and purified a long-chain acyl-CoA synthetase (lACS) and a A461K variant of mACS from the soil bacterium Gordonia sp. strain NB4-1Y and performed an analysis of substrate scope and enzyme kinetics using fluorinated and nonfluorinated carboxylates. We determined that lACS can catalyze the formation of CoA adducts of 1:5 fluorotelomer carboxylic acid (FTCA), 2:4 FTCA and 3:3 FTCA, albeit with generally low turnover rates (<0.02 s-1) compared with the nonfluorinated hexanoic acid (5.39 s-1). In addition, the A461K variant was found to have an 8-fold increase in selectivity toward hexanoic acid compared with wild-type mACS, suggesting that Ala-461 has a mechanistic role in selectivity toward substrate chain length. This provides further evidence to validate the proposed activation step involving the formation of CoA adducts in the enzymatic breakdown of PFAS.


Asunto(s)
Caproatos , Coenzima A Ligasas , Coenzima A Ligasas/metabolismo , Coenzima A Ligasas/genética , Coenzima A Ligasas/química , Caproatos/metabolismo , Caproatos/química , Bacteria Gordonia/metabolismo , Bacteria Gordonia/enzimología , Bacteria Gordonia/genética , Halogenación , Coenzima A/metabolismo , Coenzima A/química , Cinética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Acilcoenzima A/metabolismo , Acilcoenzima A/química , Especificidad por Sustrato
4.
J Environ Manage ; 368: 122161, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39126842

RESUMEN

Phthalic acid esters (PAEs) showed high environmental risk due to the widely existence and toxicity. Microbial-excreted extracellular polymeric substances (EPS) showed potential of degrading organic compounds. In this study, the degradation ability and the mechanisms of EPS from two bacteria (PAEs degrader Gordonia sihwensis; electrochemically active strain Shewanella oneidensis MR-1) were investigated. Results showed that EPS of the two bacteria had different composition of C-type cytochromes, flavins, catalase, and α-glucosidase. The removal of dibutyl phthalate (DBP) by total EPS were 68% of G. sihwensis and 72% for S. oneidensis. For both bacteria, the degradation rates k of EPS were as TB-EPS > LB-EPS > S-EPS. The degradation mechanisms of EPS from the two bacteria showed difference with electrochemical active components mediated electron transmission for S. oneidensis MR-1 and enzymes catalysis for G. sihwensis. Results of this study illustrated the variation of the contribution of active components of EPS to degradation.


Asunto(s)
Dibutil Ftalato , Shewanella , Dibutil Ftalato/metabolismo , Shewanella/metabolismo , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Biodegradación Ambiental , Catálisis , Bacteria Gordonia/metabolismo
5.
Appl Environ Microbiol ; 90(8): e0034024, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39082821

RESUMEN

Soil-dwelling Actinomycetes are a diverse and ubiquitous component of the global microbiome but largely lack genetic tools comparable to those available in model species such as Escherichia coli or Pseudomonas putida, posing a fundamental barrier to their characterization and utilization as hosts for biotechnology. To address this, we have developed a modular plasmid assembly framework, along with a series of genetic control elements for the previously genetically intractable Gram-positive environmental isolate Rhodococcus ruber C208, and demonstrate conserved functionality in 11 additional environmental isolates of Rhodococcus, Nocardia, and Gordonia. This toolkit encompasses five Mycobacteriale origins of replication, five broad-host-range antibiotic resistance markers, transcriptional and translational control elements, fluorescent reporters, a tetracycline-inducible system, and a counter-selectable marker. We use this toolkit to interrogate the carotenoid biosynthesis pathway in Rhodococcus erythropolis N9T-4, a weakly carotenogenic environmental isolate and engineer higher pathway flux toward the keto-carotenoid canthaxanthin. This work establishes several new genetic tools for environmental Mycobacteriales and provides a synthetic biology framework to support the design of complex genetic circuits in these species.IMPORTANCESoil-dwelling Actinomycetes, particularly the Mycobacteriales, include both diverse new hosts for sustainable biomanufacturing and emerging opportunistic pathogens. Rhodococcus, Gordonia, and Nocardia are three abundant genera with particularly flexible metabolisms and untapped potential for natural product discovery. Among these, Rhodococcus ruber C208 was shown to degrade polyethylene; Gordonia paraffinivorans can assimilate carbon from solid hydrocarbons; and Nocardia neocaledoniensis (and many other Nocardia spp.) possesses dual isoprenoid biosynthesis pathways. Many species accumulate high levels of carotenoid pigments, indicative of highly active isoprenoid biosynthesis pathways which may be harnessed for fermentation of terpenes and other commodity isoprenoids. Modular genetic toolkits have proven valuable for both fundamental and applied research in model organisms, but such tools are lacking for most Actinomycetes. Our suite of genetic tools and DNA assembly framework were developed for broad functionality and to facilitate rapid prototyping of genetic constructs in these organisms.


Asunto(s)
Nocardia , Rhodococcus , Rhodococcus/genética , Rhodococcus/metabolismo , Nocardia/genética , Nocardia/metabolismo , Bacteria Gordonia/metabolismo , Bacteria Gordonia/genética , Ingeniería Metabólica , Plásmidos/genética
6.
Environ Pollut ; 360: 124618, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39067736

RESUMEN

The intrinsic issue associated with the application of microbes for practical pollution remediation involves maintaining the expected activity of engaged strains or consortiums as effectively as that noted under laboratory conditions. Faced with various stress factors, degraders with dormancy ability are more likely to survive and exhibit degradation activity. In this study, a hydrocarbonoclastic and halotolerant strain, Gordonia polyisoprenivorans ZM27, was isolated via stimulation with resuscitation-promoting factor (Rpf). Long-term exposure to dual stresses of 10% NaCl and starvation induced ZM27 to enter a viable but nonculturable (VBNC)-like state, and ZM27 cells could be resuscitated upon Rpf stimulation. Notable changes in both morphological and physiological characteristics between VBNC-like ZM27 cells and resuscitated cells confirmed the response to Rpf and their robust resistance against harsh environments. Whole-genome sequencing and analysis indicated ZM27 could be a generalist degrader with dormancy ability. Subsequently, VBNC-like ZM27 was applied in a soil microcosm experiment to investigate the practical application potential under harsh conditions. VBNC-like ZM27 combined with Rpf stimulation exhibited the most effective biodegradation performance, and the initial n-hexadecane content (1000 mg kg-1) decreased by 63.29% after 14-day incubation. Based on 16S rRNA amplicon sequencing and analysis, Gordonia exhibited a positive response to Rpf stimulation. The relative abundance of genus Gordonia was negatively correlated with that of Alcanivorax, a genus of obligate hydrocarbon degrader with the greatest abundance during soil incubation. Based on the degradation profile and community analysis, generalist Gordonia may be more efficient in hydrocarbon degradation than specialist Alcanivorax under harsh conditions. The characteristics of ZM27, including its sustainable culturability under long-term stress, response to Rpf and robust performance in soil microcosms, are valuable for the remediation of petroleum pollution under stressful conditions. Our work validated the importance of dormancy and highlighted the underestimated role of low-activity degraders in petroleum remediation.


Asunto(s)
Biodegradación Ambiental , Petróleo , Petróleo/metabolismo , Bacteria Gordonia/metabolismo , Bacteria Gordonia/genética , Microbiología del Suelo , Contaminantes del Suelo/metabolismo
7.
Ecotoxicol Environ Saf ; 281: 116635, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38944007

RESUMEN

Since we rely entirely on plastics or their products in our daily lives, plastics are the invention of the hour. Polyester plastics, such as Polyethylene Terephthalate (PET), are among the most often used types of plastics. PET plastics have a high ratio of aromatic components, which makes them very resistant to microbial attack and highly persistent. As a result, massive amounts of plastic trash accumulate in the environment, where they eventually transform into microplastic (<5 mm). Rather than macroplastics, microplastics are starting to pose a serious hazard to the environment. It is imperative that these polymer microplastics be broken down. Through the use of enrichment culture, the PET microplastic-degrading bacterium was isolated from solid waste management yards. Bacterial strain was identified as Gordonia sp. CN2K by 16 S rDNA sequence analysis and biochemical characterization. It is able to use polyethylene terephthalate as its only energy and carbon source. In 45 days, 40.43 % of the PET microplastic was degraded. By using mass spectral analysis and HPLC to characterize the metabolites produced during PET breakdown, the degradation of PET is verified. The metabolites identified in the spent medium included dimer compound, bis (2-hydroxyethyl) terephthalate (BHET), mono (2-hydroxyethyl) terephthalate (MHET), and terephthalate. Furthermore, the PET sheet exposed to the culture showed considerable surface alterations in the scanning electron microscope images. This illustrates how new the current work is.


Asunto(s)
Biodegradación Ambiental , Bacteria Gordonia , Tereftalatos Polietilenos , Tereftalatos Polietilenos/metabolismo , Tereftalatos Polietilenos/química , Bacteria Gordonia/metabolismo , Bacteria Gordonia/genética , Plásticos , Microplásticos , ARN Ribosómico 16S/genética
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124534, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-38878718

RESUMEN

In this study, Gordonia sp. HS126-4N was employed for dibenzothiophene (DBT) biodesulfurization, tracked over 9 days using SERS. During the initial lag phase, no significant spectral changes were observed, but after 48 h, elevated metabolic activity was evident. At 72 h, maximal bacterial population correlated with peak spectrum variance, followed by stable spectral patterns. Despite 2-hydroxybiphenyl (2-HBP) induced enzyme suppression, DBT biodesulfurization persisted. PCA and PLS-DA analysis of the SERS spectra revealed distinctive features linked to both bacteria and DBT, showcasing successful desulfurization and bacterial growth stimulation. PLS-DA achieved a specificity of 95.5 %, sensitivity of 94.3 %, and AUC of 74 %, indicating excellent classification of bacteria exposed to DBT. SERS effectively tracked DBT biodesulfurization and bacterial metabolic changes, offering insights into biodesulfurization mechanisms and bacterial development phases. This study highlights SERS' utility in biodesulfurization research, including its use in promising advancements in the field.


Asunto(s)
Bacteria Gordonia , Espectrometría Raman , Tiofenos , Tiofenos/metabolismo , Tiofenos/química , Espectrometría Raman/métodos , Bacteria Gordonia/metabolismo , Azufre/metabolismo , Azufre/química , Biodegradación Ambiental
9.
Chemosphere ; 361: 142489, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38825247

RESUMEN

Microorganisms have great potential for bioremediation as they have powerful enzymes and machineries that can transform xenobiotics. The use of a microbial consortium provides more advantages in application point of view than pure cultures due to cross-feeding, adaptations, functional redundancies, and positive interactions among the organisms. In this study, we screened about 107 isolates for their ability to degrade dyes in aerobic conditions and without additional carbon source. From our screening results, we finally limited our synthetic consortium to Gordonia and Rhodococcus isolates. The synthetic consortium was trained and optimized for azo dye degradation using sequential treatment of small aromatic compounds such as phenols that act as selective pressure agents. After four rounds of optimization with different aims for each round, the consortium was able to decolorize and degrade various dyes after 48 h (80%-100% for brilliant black bn, methyl orange, and chromotrop 2b; 50-70% for orange II and reactive orange 16; 15-30% for chlorazol black e, reactive red 120, and allura red ac). Through rational approaches, we can show that treatment with phenolic compounds at micromolar dosages can significantly improve the degradation of bulky dyes and increase its substrate scope. Moreover, our selective pressure approach led to the production of various dye-degrading enzymes as azoreductase, laccase-like, and peroxidase-like activities were detected from the phenol-treated consortium. Evidence of degradation was also shown as metabolites arising from the degradation of methyl red and brilliant black bn were detected using HPLC and LC-MS analysis. Therefore, this study establishes the importance of rational and systematic screening and optimization of a consortium. Not only can this approach be applied to dye degradation, but this study also offers insights into how we can fully maximize microbial consortium activity for other applications, especially in biodegradation and biotransformation.


Asunto(s)
Compuestos Azo , Biodegradación Ambiental , Colorantes , Consorcios Microbianos , Rhodococcus , Colorantes/química , Colorantes/metabolismo , Compuestos Azo/química , Compuestos Azo/metabolismo , Rhodococcus/metabolismo , Bacteria Gordonia/metabolismo , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/química , Fenoles/metabolismo , Fenoles/química , Nitrorreductasas/metabolismo
10.
Sci Prog ; 107(2): 368504241253695, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38801654

RESUMEN

The current emphasis within the cosmetic market on sustainable ingredients has heightened the exploration of new sources for natural, active components. Actinomycetota, recognized for producing pigments with bioactive potential, offer promising functional cosmetic ingredients. This study aimed to optimize pigment and antioxidant metabolite production from the Gordonia hongkongensis strain EUFUS-Z928 by implementing the Plackett-Burman experimental design and response surface methodology. Extracts derived from this strain exhibited no cytotoxic activity against human primary dermal fibroblast (HDFa, ATCC® PCS-201-012™, Primary Dermal Fibroblast; Normal, Human, Adult). Eight variables, including inoculum concentration, carbon and nitrogen source concentration, NaCl concentration, pH, incubation time, temperature, and stirring speed, were analyzed using the Plackett-Burman experimental design. Subsequently, factors significantly influencing pigment and antioxidant metabolite production, such as temperature, inoculum concentration, and agitation speed, were further optimized using response surface methodology and Box-Behnken design. The results demonstrated a substantial increase in absorbance (from 0.091 to 0.32), DPPH radical scavenging capacity (from 27.60% to 84.61%), and ABTS radical scavenging capacity (from 17.39% to 79.77%) compared to responses obtained in the isolation medium. The validation of the mathematical model accuracy exceeded 90% for all cases. Furthermore, liquid chromatography coupled with mass spectrometry (LC-MS) facilitated the identification of compounds potentially responsible for enhanced pigment production and antioxidant capacity in extracts derived from G. hongkongensis. Specifically, six carotenoids, red-orange pigments with inherent antioxidant capacity, were identified as the main enhanced compounds. This comprehensive approach effectively optimized the culture conditions and medium of a G. hongkongensis strain, resulting in enhanced carotenoid production and antioxidant capacity. Beyond identifying bioactive compounds and their potential cosmetic applications, this study offers insights into the broader industrial applicability of these extracts. It underscores the potential of G. hongkongensis and hints at the future utilization of other untapped sources of rare actinomycetes within the industry.


Asunto(s)
Antioxidantes , Carotenoides , Antioxidantes/metabolismo , Antioxidantes/química , Carotenoides/metabolismo , Carotenoides/química , Humanos , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Bacteria Gordonia/metabolismo
11.
Sci Total Environ ; 892: 164532, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37270019

RESUMEN

Microbial bioremediation is a highly effective method to degrade phthalates in the environment. However, the response of native microbial communities to the exogenously introduced microorganism remains unknown. In this study, the native fungal community was monitored by amplicon sequencing of the fungal ITS region during the restoration process of the di-n-butyl phthalate (DBP)-contaminated soils with Gordonia phthalatica QH-11T. Our results showed that the diversity, composition, and structure of the fungal community in the bioremediation treatment did not differ from the control, and no significant correlations were found between number of Gordonia and variation of fungal community. It was also observed that DBP pollution initially increased the relative abundance of plant pathogens and soil saprotrophs first, but their proportions returned to the initial level. Molecular ecological network analysis showed that DBP pollution increased the network complexity, while the network was not significantly altered by bioremediation. Overall, the introduction of Gordonia was shown to not have a long-term impact on the native soil fungal community. Therefore, this restoration method can be considered safe in terms of soil ecosystem stability. The present study provides a deeper insight into the effect of bioremediation on fungal communities and provides an extended basis to further explore the ecological risks of introducing exogenous microorganisms.


Asunto(s)
Bacteria Gordonia , Micobioma , Contaminantes del Suelo , Dibutil Ftalato/metabolismo , Biodegradación Ambiental , Ecosistema , Suelo/química , Bacteria Gordonia/metabolismo , Contaminantes del Suelo/metabolismo , Microbiología del Suelo
12.
Chemosphere ; 320: 138017, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36736480

RESUMEN

Beta-cypermethrin (ß-CY) is an organic compound that is widely used as a synthetic pesticide in agriculture and family. Excessive accumulation of ß-CY inevitably causes environmental pollution, which has led to food safety and human health concerns. Identification of microorganisms from food sources that are capable of ß-CY biodegradation may help prevent pollution due to ß-CY accumulation. Here, Gordonia alkanivorans GH-1, which was isolated from the traditional Sichuan fermented food, Pixian Doubanjiang, could not only degrade 82.76% of 50 mg/L ß-CY at 96 h, but also degraded the intermediate degradation products including dibutyl phthalate (DBP), benzoic acid (BA) and phenol (Ph). This bacterial strain, thus, effectively improved the efficiency of removal of ß-CY and its related metabolites, without being limited by toxic intermediates. Whole genome sequencing and transcriptomics analyses have demonstrated that the bacteria affected the transcription of genes related to cell response and material transport under the stress induced by ß-CY, and thereby promoted degradation and transformation of ß-CY. Moreover, a complete pathway of ß-CY degradation is proposed based on the key genes involved in degradation. This study provides important theoretical significance and reference value for eliminating pesticide residues in agricultural products and food to ensure food safety.


Asunto(s)
Alimentos Fermentados , Bacteria Gordonia , Humanos , Transcriptoma , Biodegradación Ambiental , Bacterias/genética , Secuenciación Completa del Genoma , Bacteria Gordonia/metabolismo
13.
PLoS One ; 17(11): e0276603, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36395171

RESUMEN

Holins are bacteriophage-encoded transmembrane proteins that function to control the timing of bacterial lysis event, assist with the destabilization of the membrane proton motive force and in some models, generate large "pores" in the cell membrane to allow the exit of the phage-encoded endolysin so they can access the peptidoglycan components of the cell wall. The lysis mechanism has been rigorously evaluated through biochemical and genetic studies in very few phages, and the results indicate that phages utilize endolysins, holins and accessory proteins to the outer membrane to achieve cell lysis through several distinct operational models. This observation suggests the possibility that phages may evolve novel variations of how the lysis proteins functionally interact in an effort to improve fitness or evade host defenses. To begin to address this hypothesis, the current study utilized a comprehensive bioinformatic approach to systematically identify the proteins encoded by the genes within the lysis cassettes in 16 genetically diverse phages that infect the Gram-positive Gordonia rubripertincta NRLL B-16540 strain. The results show that there is a high level of diversity of the various lysis genes and 16 different genome organizations of the putative lysis cassette, many which have never been described. Thirty-four different genes encoding holin-like proteins were identified as well as a potential holin-major capsid fusion protein. The holin-like proteins contained between 1-4 transmembrane helices, were not shared to a high degree amongst the different phages and are present in the lysis cassette in a wide range of combinations of up to 4 genes in which none are duplicated. Detailed evaluation of the transmembrane domains and predicted membrane topologies of the holin-like proteins show that many have novel structures that have not been previously characterized. These results provide compelling support that there are novel operational lysis models yet to be discovered.


Asunto(s)
Bacteriófagos , Bacteria Gordonia , Bacteriófagos/genética , Bacteriófagos/metabolismo , Bacteriólisis , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Biología Computacional , Proteínas Virales/genética , Proteínas Virales/metabolismo , Bacteria Gordonia/metabolismo
14.
Environ Technol ; 43(17): 2604-2611, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33577396

RESUMEN

A previous isolated Gordonia sp. (Lff) was used to degrade di-n-octyl phthalate (DOP) contamination in both aqueous solution and soil. The influence of temperature, pH, inoculum size, salt content and initial concentration of DOP on DOP degradation by Lff were analysed. The response of soil bacterial community to DOP and Lff was also analysed by Illumina MiSeq sequence method. Results showed that the optimal temperature, pH, inoculum size and salt content were 35oC, 8.0, 5% and <5%, respectively. Under the optimal condition, more than 91.25% of DOP with different initial concentrations (100-2000 mg/L) could be degraded by Lff. Kinetics analysis indicated that biodegradation of DOP by Lff could be described by first-order kinetics (R2 > 0.917) with the half-life (t1/2) changing irregularly between 0.58 and 0.83 d. In addition, Lff enhanced the removal of DOP in soil and alleviated the toxicity of DOP on soil microorganisms. Furthermore, its influence on soil bacterial community is not obvious. These results suggested that Lff was effective in remediating DOP contamination in different environments.


Asunto(s)
Bacteria Gordonia , Ácidos Ftálicos , Biodegradación Ambiental , Bacteria Gordonia/metabolismo , Ácidos Ftálicos/química , Ácidos Ftálicos/metabolismo , Suelo
15.
Microbiology (Reading) ; 166(12): 1181-1190, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33215983

RESUMEN

WhiB is a transcription regulator which has been reported to be involved in the regulation of cell morphogenesis, cell division, antibiotic resistance, stress, etc., in several members of the family Actinomycetes. The present study describes functional characterization of a WhiB family protein, WhiB1 (protein ID: WP_065632651.1), from Gordonia sp. IITR100. We demonstrate that WhiB1 affects chromosome segregation and cell morphology in recombinant Escherichia coli, Gordonia sp. IITR100 as well as in Rhodococcus erythropolis. Multiple sequence alignment suggests that WhiB1 is a conserved protein among members of the family Actinomycetes. It has been reported that overexpression of WhiB1 leads to repression of the biodesulfurization operon in recombinant E. coli, Gordonia sp. IITR100 and R. erythropolis. A WhiB1-mut containing a point mutation Q116A in the DNA binding domain of WhiB1 led to partial alleviation of repression of the biodesulfurization operon. We show for the first time that the WhiB family protein WhiB1 is also involved in repression of the biodesulfurization operon by directly binding to the dsz promoter DNA.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacteria Gordonia/metabolismo , Factores de Transcripción/metabolismo , Actinobacteria/química , Actinobacteria/clasificación , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Segregación Cromosómica , Secuencia Conservada , Regulación Bacteriana de la Expresión Génica , Bacteria Gordonia/química , Bacteria Gordonia/citología , Bacteria Gordonia/crecimiento & desarrollo , Mutación , Operón , Oxigenasas/genética , Regiones Promotoras Genéticas , Factores de Transcripción/química , Factores de Transcripción/genética
16.
Chemosphere ; 250: 126210, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32109698

RESUMEN

This study utilized innovative analyses to develop multiple lines of evidence for natural attenuation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in groundwater at the U.S. Department of Energy's Pantex Plant. RDX, as well as the degradation product 4-nitro-2,4-diazabutanal (NDAB; produced by aerobic biodegradation or alkaline hydrolysis) were detected in a large portion of the plume, with lower concentrations of the nitroso-containing metabolites produced during anaerobic biodegradation. 16S metagenomic sequencing detected the presence of bacteria known to aerobically degrade RDX (e.g., Gordonia, Rhodococcus) and NDAB (Methylobacterium), as well as the known anoxic RDX degrader Pseudomonas fluorescens I-C. Proteomic analysis detected both the aerobic RDX degradative enzyme XplA, and the anoxic RDX degradative enzyme XenB. Groundwater enrichment cultures supplied with low concentrations of labile carbon confirmed the potential of the extant groundwater community to aerobically degrade RDX and produce NDAB. Compound-specific isotope analysis (CSIA) of RDX collected at the site showed fractionation of nitrogen isotopes with δ15N values ranging from approximately -5‰ to +9‰, providing additional evidence of RDX degradation. Taken together, these results provide evidence of in situ RDX degradation in the Pantex Plant groundwater. Furthermore, they demonstrate the benefit of multiple lines of evidence in supporting natural attenuation assessments, especially with the application of innovative isotopic and -omic technologies.


Asunto(s)
Biodegradación Ambiental , Agua Subterránea/química , Triazinas/metabolismo , Contaminantes Químicos del Agua/metabolismo , Sustancias Explosivas/análisis , Bacteria Gordonia/metabolismo , Agua Subterránea/microbiología , Isótopos de Nitrógeno/análisis , Proteómica , Rhodococcus/metabolismo , Triazinas/análisis , Contaminantes Químicos del Agua/análisis
17.
J Hazard Mater ; 387: 121529, 2020 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-31911385

RESUMEN

In situ bioaugmentation for cleanup of an hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)-contaminated groundwater plume was recently demonstrated. Results of a forced-gradient, field-scale cell transport test with Gordonia sp. KTR9 and Pseudomonas fluorescens strain I-C cells (henceforth "KTR9" and "Strain I-C") showed these strains were transported 13 m downgradient over 1 month. Abundances of xplA and xenB genes, respective indicators of KTR9 and Strain I-C, approached injection well cell densities at 6 m downgradient, whereas gene abundances (and conservative tracer) had begun to increase at 13 m downgradient at test conclusion. In situ push-pull tests were subsequently completed to measure RDX degradation rates in the bioaugmented wells under ambient gradient conditions. Time-series monitoring of RDX, RDX end-products, conservative tracer, xplA and xenB gene copy numbers and XplA and XenB protein abundance were used to assess the efficacy of bioaugmentation and to estimate the apparent first-order RDX degradation rates during each test. A collective evaluation of redox conditions, RDX end-products, varied RDX degradation kinetics, and biomarkers indicated that Strain I-C and KTR9 rapidly degraded RDX. Results showed bioaugmentation is a viable technology for accelerating RDX cleanup in the demonstration site aquifer and may be applicable to other sites. Full-scale implementation considerations are discussed.


Asunto(s)
Sustancias Explosivas/metabolismo , Triazinas/metabolismo , Contaminantes Químicos del Agua/metabolismo , Biodegradación Ambiental , Sustancias Explosivas/química , Bacteria Gordonia/metabolismo , Agua Subterránea/química , Cinética , Pseudomonas fluorescens/metabolismo , Triazinas/química , Contaminantes Químicos del Agua/química
18.
J Biosci Bioeng ; 129(5): 603-612, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31992527

RESUMEN

The purpose of this study is to investigate the effect of soil organic matter (SOM) content levels on the biodegradation of total petroleum hydrocarbons (TPH). Batch experiments were conducted with soils with 2% or 10% organic matter that had been contaminated by diesel or fuel oil. In addition to the TPH (diesel or fuel oil) degradation efficiency, a comprehensive investigation was conducted on the TPH-degrading microbial community using molecular tools including oligonucleotide microarray technique and terminal restriction fragment length polymorphism analysis (T-RFLP). TPH was reduced from 10,000 mg/kg to 1849-4352 mg/kg dry weight soil. Higher biodegradation efficiencies and kinetic rate constants were observed in higher SOM contents. Hydrocarbon fractional analyses were conducted to explain the optimal operation with relatively low resin and aromatic fractions detected at the end of the remediation. The bacterial and fungal counts in the 10% SOM were approximately 10 CFU/g to 102 CFU/g above those in the 2% SOM, and the lowest fungal level was found when the least TPH degradability was measured. The internal transcribed spacer microarray identified the microorganisms that were introduced and proved their survival. The associated growth pattern confirmed that different kinds of contamination oils affected the microbial community diversity over time. Both the microarray and T-RFLP profiles indicated that Gordonia alkanivorans, G. desulfuricans, and Rhodococcus erythoropolis were the dominant bacteria, while Fusarium oxysporum and Aspergillus versicolor were the dominant fungi. The T-RFLP-derived nonmetric multidimensional scaling concluded that the dynamics of the microbial communities were impacted by the TPH degradation stages.


Asunto(s)
Bacterias/metabolismo , Hidrocarburos/metabolismo , Petróleo/metabolismo , Contaminantes del Suelo/metabolismo , Suelo/química , Biodegradación Ambiental , Aceites Combustibles/análisis , Gasolina/análisis , Bacteria Gordonia/metabolismo , Aceites/metabolismo , Petróleo/análisis , Microbiología del Suelo , Contaminantes del Suelo/análisis
19.
J Basic Microbiol ; 60(1): 14-21, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31696960

RESUMEN

Gordoniae are one of the most promising hydrocarbon-oxidizing actinobacteria. Here we present the genome sequence analysis of thermotolerant strain Gordonia sp. 1D isolated from oil-refinery soil. It is capable of alkane consumption and biosurfactant production at temperatures of up to 50°C. Gordonia sp. 1D demonstrates maximum biosurfactant production when grown on hexadecane, and at 40°C it was slightly higher than at 27°C: 35 and 39 mN/m, respectively. For the first time, it was experimentally confirmed that the carbohydrate component of extracellular biosurfactants produced by strain 1D is trehalose. In addition, genes for the production of trehalose lipid biosurfactants were identified. The genetic determinants for two different pathways for trehalose synthesis were found. The strain carries genes otsA and otsB involved in de novo trehalose biosynthesis. Moreover, the genes treY and treZ responsible for trehalose biosynthesis from maltooligosaccharides and starch or glycogen were identified.


Asunto(s)
Genoma Bacteriano/genética , Bacteria Gordonia/genética , Bacteria Gordonia/metabolismo , Trehalosa/metabolismo , Genes Bacterianos , Glucolípidos/química , Glucolípidos/metabolismo , Bacteria Gordonia/clasificación , Hidrocarburos/metabolismo , Petróleo/microbiología , Filogenia , Microbiología del Suelo , Tensoactivos/química , Tensoactivos/metabolismo , Temperatura
20.
Int J Biol Macromol ; 141: 671-679, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31493456

RESUMEN

Gordonia sp. IITR100 is a biodesulfurizing bacterium which can metabolize dibenzothiophene (DBT) to 2 hydroxybiphenyl in four steps via the 4S pathway. The genes involved in the metabolism are present in the form of an operon, dszABC, which gets activated by a TetR family protein. Here, we report the detailed characterization of the DNA binding and ligand binding property of the TetR family protein. The protein was found to be conserved across other desulfurizing organisms. The protein was purified and was found to exist as dimer. The presence of ligand binding site was identified by docking studies and the structural changes in the protein upon ligand binding were determined by CD spectroscopy and tryptophan fluorescence. Further, it was determined that this protein binds to an imperfect palindromic DNA sequence present in the dsz promoter DNA. Binding to the DNA also changes conformation of the protein.


Asunto(s)
Proteínas Bacterianas/metabolismo , ADN/metabolismo , Bacteria Gordonia/genética , Bacteria Gordonia/metabolismo , Operón/genética , Proteínas Bacterianas/química , Sitios de Unión , Ligandos , Modelos Moleculares , Regiones Promotoras Genéticas/genética , Unión Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...