RESUMEN
Objective: Sclerodermus wasps are important biocontrol agents of a class of wood borers. Bacterial symbionts influence the ecology and biology of their hosts in a variety of ways, including the formation of life-long beneficial or detrimental parasitic infections. However, only a few studies have explored the species and content of the symbionts in the Sclerodermus species. Methods: Here, a high-throughput sequencing study of the V3-V4 region of the 16S ribosomal RNA gene revealed a high level of microbial variety in four Sclerodermus waps, and their diversities and functions were also predicted. Results: The three most prevalent phyla of microorganisms in the sample were Firmicutes, Bacteroides, and Proteus. The KEEG pathways prediction results indicated that the three pathways with the highest relative abundances in the S. sichuanensis species were translation, membrane transport, and nucleotide metabolism. These pathways differed from those observed in S. guani, S. pupariae, and S. alternatusi, which exhibited carbohydrate metabolism, membrane transport, and amino acid metabolism, respectively. Bacteroides were found to be abundant in several species, whereas Wolbachia was the most abundant among S. sichuanensis, with a significant negative correlation between temperature and carriage rate. Conclusions: These results offer insights into the microbial communities associated with the bethylid wasps, which is crucial for understanding how to increase the reproductive capacity of wasps, enhance their parasitic effects, and lower cost in biocontrol.
Asunto(s)
ARN Ribosómico 16S , Simbiosis , Avispas , Animales , Avispas/microbiología , Avispas/fisiología , China , ARN Ribosómico 16S/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Agentes de Control Biológico , Escarabajos/microbiología , Filogenia , Microbiota , Bacteroides/genética , Bacteroides/aislamiento & purificación , Bacteroides/clasificación , Firmicutes/genética , Firmicutes/aislamiento & purificación , Firmicutes/clasificación , Wolbachia/genética , Wolbachia/aislamiento & purificación , Wolbachia/clasificación , Wolbachia/fisiología , BiodiversidadRESUMEN
Two strictly anaerobic, Gram-stain-negative rod-shaped bacterial isolates, A2-P53T and A1-P5, were isolated from an enrichment of fecal material from two alpacas (Vicugna pacos). Based on a comparative 16S rRNA gene sequence analysis, the isolates were assigned to the genus Bacteroides with the highest sequence similarities to Bacteroides koreensis YS-aM39T (A2- P53T 97.7 % and A1-P5 97.9 %). Additionally, the average nucleotide identity and digital DNA-DNA hybridization values between these isolates and their closest relatives within Bacteroides were less than 92.1 % and 49.1 %, respectively. The average nucleotide identity between isolates A2-P53T and A1-P5 was 99.9 %. The predominant cellular fatty acid for isolates A2-P53T and A1-P5 was C15:0 antesio. The G+C % content of the isolates was 41.7 %. Based on biochemical, phylogenetic, genotypic, and chemotaxonomic criteria, these isolates A2-P53T and A1-P5 represent two individual strains of a novel species within the genus Bacteroides for which the name Bacteroides vicugnae sp. nov. is proposed. The type strain of this species is strain A2-P53T (CCUG 77273T = CCM 9377T = NRRL B-65693T).
Asunto(s)
Bacteroides , Composición de Base , Camélidos del Nuevo Mundo , ADN Bacteriano , Ácidos Grasos , Heces , Filogenia , ARN Ribosómico 16S , Heces/microbiología , Bacteroides/genética , Bacteroides/aislamiento & purificación , Bacteroides/clasificación , Animales , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Camélidos del Nuevo Mundo/microbiología , Ácidos Grasos/análisis , Técnicas de Tipificación Bacteriana , Análisis de Secuencia de ADN , Hibridación de Ácido NucleicoRESUMEN
Mucin is a glycoprotein secreted throughout the mammalian gastrointestinal tract that can support endogenous microorganisms in the absence of complex polysaccharides. While several mucin-degrading bacteria have been identified, the interindividual differences in microbial communities capable of metabolizing this complex polymer are not well described. To determine whether community assembly on mucin is deterministic across individuals or whether taxonomically distinct but functionally similar mucin-degrading communities are selected across fecal inocula, we used a 10-day in vitro sequential batch culture fermentation from three human donors with mucin as the sole carbon source. For each donor, 16S rRNA gene amplicon sequencing was used to characterize microbial community succession, and the short-chain fatty acid profile was determined from the final community. All three communities reached a steady-state by day 7 in which the community composition stabilized. Taxonomic comparisons amongst communities revealed that one of the final communities had Desulfovibrio, another had Akkermansia, and all three shared other members, such as Bacteroides. Metabolic output differences were most notable for one of the donor's communities, with significantly less production of acetate and propionate than the other two communities. These findings demonstrate the feasibility of developing stable mucin-degrading communities with shared and unique taxa. Furthermore, the mechanisms and efficiencies of mucin degradation across individuals are important for understanding how this community-level process impacts human health.
Asunto(s)
Heces , Fermentación , Consorcios Microbianos , Mucinas , ARN Ribosómico 16S , Humanos , Mucinas/metabolismo , ARN Ribosómico 16S/genética , Heces/microbiología , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Ácidos Grasos Volátiles/metabolismo , Microbioma Gastrointestinal , Akkermansia/metabolismo , Desulfovibrio/metabolismo , Desulfovibrio/genética , Desulfovibrio/clasificación , Bacteroides/metabolismo , Bacteroides/genética , Bacteroides/clasificación , Bacteroides/crecimiento & desarrolloRESUMEN
Fecal microbial community could not fully represent the intestinal microbial community. However, most studies analyzing diarrhea-dominant irritable bowel syndrome (IBS-D) were mainly based on fecal samples. We aimed to characterize the IBS-D microbial community patterns using samples at multiple intestinal sites. This study recruited 74 IBS-D patients and 20 healthy controls (HC). 22.34%, 8.51%, 14.89%, and 54.26% of them contributed to one, two, three, and four sites: duodenal mucosa (DM), duodenal lumen (DL), rectal mucosa (RM), and rectal lumen (RL) of intestinal samples, respectively. Then 16S rRNA gene analysis was performed on these 283 samples. The result showed that IBS-D microbial communities have specific patterns at each intestinal site differing from that of HC. Across hosts and sites, Bacillus, Burkholderia, and Faecalibacterium were the representative genera in duodenum of IBS-D, duodenum of HC, and rectum of HC, respectively. Samples from mucosa and lumen in rectum were highly distinguishable, regardless of IBS-D and HC. Additionally, IBS-D patients have lower microbial co-abundance network connectivity. Moreover, RM site-specific biomarker: Bacteroides used alone or together with Prevotella and Oscillospira in RM showed outstanding performance in IBS-D diagnosis. Furthermore, Bacteroides and Prevotella in RM were strongly related to the severity of abdominal pain, abdominal discomfort, and bloating in IBS-D patients. In summary, this study also confirmed fecal microbial community could not fully characterize intestinal microbial communities. Among these site-specific microbial communities, RM microbial community would be more applicable in the diagnosis of IBS-D. IMPORTANCE Microbial community varied from one site to another along the gastrointestinal tract, but current studies about intestinal microbial community in IBS-D were mainly based on fecal samples. Based on 283 intestinal samples collected from DM, DL, RM, and RL of HC and IBS-D, we found different intestinal sites had their site-specific microbial patterns in IBS-D. Notably, RM site-specific microbes Bacteroides, Prevotella, and Oscillospira could be used to discriminate IBS-D from HC accurately. Our findings could help clinicians realize the great potential of the intestinal microbial community in RM for better diagnosis of IBS-D patients.
Asunto(s)
Duodeno/microbiología , Microbioma Gastrointestinal/genética , Mucosa Intestinal/microbiología , Síndrome del Colon Irritable/microbiología , Recto/microbiología , Bacillus/clasificación , Bacillus/genética , Bacillus/aislamiento & purificación , Bacteroides/clasificación , Bacteroides/genética , Bacteroides/aislamiento & purificación , Burkholderia/clasificación , Burkholderia/genética , Burkholderia/aislamiento & purificación , Diarrea/microbiología , Diarrea/patología , Disbiosis/microbiología , Faecalibacterium/clasificación , Faecalibacterium/genética , Faecalibacterium/aislamiento & purificación , Humanos , Mucosa Intestinal/patología , Síndrome del Colon Irritable/patología , Prevotella/clasificación , Prevotella/genética , Prevotella/aislamiento & purificación , ARN Ribosómico 16S/genéticaRESUMEN
OBJECTIVES: To assess the differences in antimicrobial susceptibility of UK Bacteroides species across two distinct cohorts from 2000 to 2016. METHODS: Strain identification was performed using matrix-assisted laser-desorption ionisation time of flight mass spectrometry (MALDI-TOF MS) or by partial 16S rRNA sequencing. Minimum inhibitory concentrations (MICs) were determined using agar dilution, following CLSI guidelines (CLSI, 2012; 2017). RESULTS: 224 isolates were included from 2000 to 168 from 2016. Bacteroides fragilis was the most common species, comprising 68% of the 2000 cohort, and 77% in 2016. For all antimicrobials tested, there was an overall increase in the rates of non-susceptible isolates between the cohorts. CONCLUSIONS: The antibiogram of Bacteroides species in the UK is no longer predictable. Multi-drug resistant isolates although rare, are on the rise, and require testing to guide therapy. The monitoring and surveillance of resistance trends is imperative, as is the development of standardised, robust and accessible antimicrobial susceptibility testing methodology for clinical laboratories.
Asunto(s)
Infecciones por Bacteroides/epidemiología , Infecciones por Bacteroides/microbiología , Bacteroides/clasificación , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Técnicas de Tipificación Bacteriana , Bacteroides/efectos de los fármacos , Bacteroides/aislamiento & purificación , Infecciones por Bacteroides/tratamiento farmacológico , Infecciones por Bacteroides/historia , Farmacorresistencia Bacteriana/efectos de los fármacos , Historia del Siglo XXI , Humanos , Estudios Longitudinales , Pruebas de Sensibilidad Microbiana , Vigilancia en Salud Pública , ARN Ribosómico 16S/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Reino Unido/epidemiologíaRESUMEN
Diagnosis and treatment of various diseases in Ayurveda, the Indian system of medicine, relies on 'prakriti' phenotyping of individuals into predominantly three constitutions, kapha, pitta and vata. Recent studies propose that microbiome play an integral role in precision medicine. A study of the relationship between prakriti - the basis of personalized medicine in Ayurveda and that of gut microbiome, and possible biomarker of an individual's health, would vastly improve precision therapy. Towards this, we analyzed bacterial metagenomes from buccal (oral microbiome) and fecal (gut microbiome) samples of 272 healthy individuals of various predominant prakritis. Major bacterial genera from gut microbiome included Prevotella, Bacteroides and Dialister while oral microbiome included Streptococcus, Neisseria, Veilonella, Haemophilus, Porphyromonas and Prevotella. Though the core microbiome was shared across all individuals, we found prakriti specific signatures such as preferential presence of Paraprevotella and Christensenellaceae in vata individuals. A comparison of core gut microbiome of each prakriti with a database of 'healthy' microbes identified microbes unique to each prakriti with functional roles similar to the physiological characteristics of various prakritis as described in Ayurveda. Our findings provide evidence to Ayurvedic interventions based on prakriti phenotyping and possible microbial biomarkers that can stratify the heterogenous population and aid in precision therapy.
Asunto(s)
Medicina Ayurvédica/métodos , Metagenoma , Medicina de Precisión/métodos , Simbiosis/fisiología , Adulto , Técnicas de Tipificación Bacteriana , Bacteroides/clasificación , Bacteroides/genética , Bacteroides/aislamiento & purificación , ADN Bacteriano/genética , Heces/microbiología , Femenino , Microbioma Gastrointestinal/genética , Haemophilus/clasificación , Haemophilus/genética , Haemophilus/aislamiento & purificación , Voluntarios Sanos , Humanos , Masculino , Boca/microbiología , Neisseria/clasificación , Neisseria/genética , Neisseria/aislamiento & purificación , Filogenia , Porphyromonas/clasificación , Porphyromonas/genética , Porphyromonas/aislamiento & purificación , Prevotella/clasificación , Prevotella/genética , Prevotella/aislamiento & purificación , Streptococcus/clasificación , Streptococcus/genética , Streptococcus/aislamiento & purificación , Veillonella/clasificación , Veillonella/genética , Veillonella/aislamiento & purificación , Veillonellaceae/clasificación , Veillonellaceae/genética , Veillonellaceae/aislamiento & purificaciónRESUMEN
BACKGROUND: The human microbiome plays an important role in cancer. Accumulating evidence indicates that commensal microbiome-derived DNA may be represented in minute quantities in the cell-free DNA of human blood and could possibly be harnessed as a new cancer biomarker. However, there has been limited use of rigorous experimental controls to account for contamination, which invariably affects low-biomass microbiome studies. RESULTS: We apply a combination of 16S-rRNA-gene sequencing and droplet digital PCR to determine if the specific detection of cell-free microbial DNA (cfmDNA) is possible in metastatic melanoma patients. Compared to matched stool and saliva samples, the absolute concentration of cfmDNA is low but significantly above the levels detected from negative controls. The microbial community of plasma is strongly influenced by laboratory and reagent contaminants introduced during the DNA extraction and sequencing processes. Through the application of an in silico decontamination strategy including the filtering of amplicon sequence variants (ASVs) with batch dependent abundances and those with a higher prevalence in negative controls, we identify known gut commensal bacteria, such as Faecalibacterium, Bacteroides and Ruminococcus, and also other uncharacterised ASVs. We analyse additional plasma samples, highlighting the potential of this framework to identify differences in cfmDNA between healthy and cancer patients. CONCLUSIONS: Together, these observations indicate that plasma can harbour a low yet detectable level of cfmDNA. The results highlight the importance of accounting for contamination and provide an analytical decontamination framework to allow the accurate detection of cfmDNA for future biomarker studies in cancer and other diseases.
Asunto(s)
Ácidos Nucleicos Libres de Células/genética , ADN Bacteriano/genética , Melanoma/microbiología , Microbiota/genética , Neoplasias Cutáneas/microbiología , Bacteroides/clasificación , Bacteroides/genética , Bacteroides/aislamiento & purificación , Ácidos Nucleicos Libres de Células/sangre , Contaminación de ADN , ADN Bacteriano/sangre , Faecalibacterium/clasificación , Faecalibacterium/genética , Faecalibacterium/aislamiento & purificación , Heces/microbiología , Humanos , Melanoma/diagnóstico , Melanoma/patología , Metástasis de la Neoplasia , Estadificación de Neoplasias , Reacción en Cadena de la Polimerasa/métodos , ARN Ribosómico 16S/genética , Ruminococcus/clasificación , Ruminococcus/genética , Ruminococcus/aislamiento & purificación , Saliva/microbiología , Neoplasias Cutáneas/diagnóstico , Neoplasias Cutáneas/patología , Simbiosis/fisiologíaRESUMEN
Experimental manipulation of gut microbes in animal models alters fear behavior and relevant neurocircuitry. In humans, the first year of life is a key period for brain development, the emergence of fearfulness, and the establishment of the gut microbiome. Variation in the infant gut microbiome has previously been linked to cognitive development, but its relationship with fear behavior and neurocircuitry is unknown. In this pilot study of 34 infants, we find that 1-year gut microbiome composition (Weighted Unifrac; lower abundance of Bacteroides, increased abundance of Veillonella, Dialister, and Clostridiales) is significantly associated with increased fear behavior during a non-social fear paradigm. Infants with increased richness and reduced evenness of the 1-month microbiome also display increased non-social fear. This study indicates associations of the human infant gut microbiome with fear behavior and possible relationships with fear-related brain structures on the basis of a small cohort. As such, it represents an important step in understanding the role of the gut microbiome in the development of human fear behaviors, but requires further validation with a larger number of participants.
Asunto(s)
Bacteroides/genética , Clostridiales/genética , Miedo/psicología , Microbioma Gastrointestinal/genética , Veillonella/genética , Veillonellaceae/genética , Adulto , Bacteroides/clasificación , Bacteroides/aislamiento & purificación , Encéfalo/fisiología , Lactancia Materna , Clostridiales/clasificación , Clostridiales/aislamiento & purificación , Heces/microbiología , Femenino , Humanos , Lactante , Fórmulas Infantiles , Estudios Longitudinales , Masculino , Proyectos Piloto , ARN Ribosómico 16S/genética , Veillonella/clasificación , Veillonella/aislamiento & purificación , Veillonellaceae/clasificación , Veillonellaceae/aislamiento & purificaciónRESUMEN
Dysbiosis of gut microbiota has been retrospectively linked to autism spectrum disorders but the temporal association between gut microbiota and early neurodevelopment in healthy infants is largely unknown. We undertook this study to determine associations between gut microbiota at two critical periods during infancy and neurodevelopment in a general population birth cohort.Here, we analyzed data from 405 infants (199 females) from the CHILD (Canadian Healthy Infant Longitudinal Development) Cohort Study. Neurodevelopmental outcomes were objectively assessed using the Bayley Scale of Infant Development (BSID-III) at 1 and 2 years of age. Microbiota profiling with 16S rRNA gene sequencing was conducted on fecal samples obtained at a mean age of 4 and 12 months.Using clustering methods, we identified three groups of infants based on relative abundance of gut microbiota at 12 months: Proteobacteria-dominant cluster (22.4% higher abundance at 12 months), Firmicutes-dominant cluster (46.0% higher abundance at 12 months) and Bacteroidetes-dominant cluster (31.6% higher abundance at 12 months). Relative to the Proteobacteria-dominant cluster, the Bacteroidetes-dominant cluster was associated with higher scores for cognitive (4.8 points; FDRp = .02), language (4.2 points; FDRp≤0.001), and motor (3.1 points; FDRp = .03) development at age 2 in models adjusted for covariates. When stratified by sex, only male infants with a Bacteroidetes-dominant microbiota had more favorable cognitive (5.9 points, FDRp = .06) and language (7.9 points; FDRp≤0.001) development. Genus Bacteroides abundance in gut microbiota was positively correlated with cognitive and language scores at age 2. Fully adjusted linear mixed model analysis revealed a positive association between Bacteroidetes-dominant cluster and change in cognitive and language performance from 1 to 2 years, predominantly among males. No associations were evident between 4-month microbiota clusters and BSID-II scores. Noteworthy is that enhanced sphingolipid synthesis and metabolism, and antagonism or competition between Bacteroides and Streptococcus were characteristic of a Bacteroidetes-dominant gut microbiota.This study found strong evidence of positive associations between Bacteroidetes gut microbiota in late infancy and subsequent neurodevelopment, most prominently among males but not females.
Asunto(s)
Bacteroides/crecimiento & desarrollo , Desarrollo Infantil , Microbioma Gastrointestinal , Sistema Nervioso/crecimiento & desarrollo , Bacterias/clasificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , Bacterias/aislamiento & purificación , Bacteroides/clasificación , Bacteroides/genética , Bacteroides/aislamiento & purificación , Canadá , Femenino , Estudios de Seguimiento , Humanos , Lactante , Masculino , ARN Ribosómico 16S/genética , Estudios RetrospectivosRESUMEN
The aim of the study was to evaluate the pathogenic potential of Bacteroides pyogenes, rarely identified in clinical laboratories anaerobic bacteria. To increase the knowledge about this poorly understood anaerobic microorganism, the study also includes cases of infections described so far in the literature. Only the use of 16S rRNA sequencing and mass spectrometry technique allowed the identification of B. pyogenes from clinical specimens. We reported 13 severe human infections caused by B. pyogenes. Bacteria were cultured from the wound after biting by animals, chronic infections within the oral cavity, from patients with histologically or radiological proven osteomyelitis, surgical site infection, and from urine sample collected after a urological procedure. Most (9/13) of the patients required hospitalization. Almost 70% of them needed urgent admission via the emergency room. Two inpatients due to a life-threatening condition were admitted to the intensive care unit. Almost 50% of isolates were resistant to penicillin. All resistant to penicillin strains were isolated from skin and mucous membrane infections.
Asunto(s)
Infecciones por Bacteroides/microbiología , Bacteroides/clasificación , Bacteroides/patogenicidad , Adulto , Anciano , Anciano de 80 o más Años , Antibacterianos/farmacología , Bacteroides/efectos de los fármacos , Bacteroides/genética , Infecciones por Bacteroides/diagnóstico , Infecciones por Bacteroides/tratamiento farmacológico , Farmacorresistencia Bacteriana , Femenino , Humanos , Masculino , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , ARN Ribosómico 16S , Estudios Retrospectivos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , VirulenciaRESUMEN
Four unknown strains, characterized as Gram-stain-negative, strictly anaerobic, non-motile and rod-shaped, were isolated from fresh faeces of healthy humans in PR China. Pairwise sequence comparisons of the 16S rRNA genes showed that these isolates were separated into two clusters. Cluster I (strains HF-5141T and HF-106) was most closely related to Bacteroides xylanisolvens XB1AT (98.0-98.3â% similarity) and Bacteroides ovatus ATCC 8483T (97.3-97.5â%), whereas cluster II (strains HF-5287T and HF-5300) exhibited a similarity range of 96.8-97.0â% to Bacteroides finegoldii JCM 13345T, 96.7-96.9â% to Bacteroides faecis MAJ27T and 96.4-96.5â% to Bacteroides xylanisolvens XB1AT. The DNA G+C contents of type strains HF-5141T and HF-5287T were 41.5 and 42.6 mol%, respectively. These strains had anteiso-C15â:â0 as the major cellular fatty acid, MK-9 and MK-11 as the predominant respiratory quinones, and phosphatidylethanolamine, aminophospholipids and phospholipids as major polar lipids, which is typical for members of the genus Bacteroides. However, the average nucleotide identity and digital DNA-DNA hybridization values, accompanied by different phenotypic and biochemical characteristics, distinguished them from their corresponding closest relatives as well as from other recognized members of the genus Bacteroides. Therefore, strains HF-5141T and HF-5287T represent two novel species in the genus Bacteroides, for which the names Bacteroides luhongzhouii sp. nov. and Bacteroides zhangwenhongii sp. nov. are proposed, with HF-5141T (=CGMCC 1.16787T=GDMCC 1.1591T=JCM 33480T) and HF-5287T (=CGMCC 1.16724T=GDMCC 1.1590T=JCM 33481T) as type strains.
Asunto(s)
Bacteroides/clasificación , Heces/microbiología , Filogenia , Técnicas de Tipificación Bacteriana , Bacteroides/aislamiento & purificación , Composición de Base , China , ADN Bacteriano/genética , Ácidos Grasos/química , Humanos , Hibridación de Ácido Nucleico , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/químicaRESUMEN
The human gut microbiota is a dense microbial ecosystem with extensive opportunities for bacterial contact-dependent processes such as conjugation and Type VI secretion system (T6SS)-dependent antagonism. In the gut Bacteroidales, two distinct genetic architectures of T6SS loci, GA1 and GA2, are contained on Integrative and Conjugative Elements (ICE). Despite intense interest in the T6SSs of the gut Bacteroidales, there is only a superficial understanding of their evolutionary patterns, and of their dissemination among Bacteroidales species in human gut communities. Here, we combine extensive genomic and metagenomic analyses to better understand their ecological and evolutionary dynamics. We identify new genetic subtypes, document extensive intrapersonal transfer of these ICE to Bacteroidales species within human gut microbiomes, and most importantly, reveal frequent population fixation of these newly armed strains in multiple species within a person. We further show the distribution of each of the distinct T6SSs in human populations and show there is geographical clustering. We reveal that the GA1 T6SS ICE integrates at a minimal recombination site leading to their integration throughout genomes and their frequent interruption of genes, whereas the GA2 T6SS ICE integrate at one of three different tRNA genes. The exclusion of concurrent GA1 and GA2 T6SSs in individual strains is associated with intact T6SS loci and with an ICE-encoded gene. By performing a comprehensive analysis of mobile genetic elements (MGE) in co-resident Bacteroidales species in numerous human gut communities, we identify 74 MGE that transferred to multiple Bacteroidales species within individual gut microbiomes. We further show that only three other MGE demonstrate multi-species spread in human gut microbiomes to the degree demonstrated by the GA1 and GA2 ICE. These data underscore the ubiquity and dissemination of mobile T6SS loci within Bacteroidales communities and across human populations.
Asunto(s)
Bacteroides/genética , Genoma Bacteriano/genética , Secuencias Repetitivas Esparcidas/genética , Sistemas de Secreción Tipo VI/genética , Bacteroides/clasificación , Análisis por Conglomerados , Ecosistema , Microbioma Gastrointestinal/genética , Genómica , Geografía , Humanos , Microbiota/genética , Sistemas de Secreción Tipo VI/clasificaciónRESUMEN
One of the main impacts of urban sprawl in rapidly growing countries has been contamination of coastal environments by waterborne pathogens, posing a critical risk to ecosystem and human health. Microbial source tracking (MST) has been a robust tool to identify the origin of these pathogens globally. This study compared the occurrence of a human-associated Bacteroides marker (BT-α) with faecal indicator bacteria (FIB) in an urban estuary (Golden Horn, Istanbul, Turkey). Faecal coliform (culture method), enterococci (both culture and qPCR method) concentrations and physicochemical variables were compared with the BT-α concentrations in monthly collected samples for a year (n = 108). Enterococci concentrations detected by culture and qPCR were positively correlated (r = 0·86, P < 0·01) suggesting that qPCR can be an alternative method for monitoring. BT-α marker was positive for 30% of the samples and positively correlated with enterococci (r = 0·61 and r = 0·64 for culture and qPCR methods respectively, P < 0·01). Rainfall had a moderate positive correlation with all faecal/MST indicators suggesting combined sewer overflows also severely impacted estuarine water quality. The high FIB and BT-α concentrations at upper estuary suggested that faecal pollution mainly originated from the peri-urban settlements around two creeks entering the estuary.
Asunto(s)
Bacteroides/aislamiento & purificación , Enterococcus/aislamiento & purificación , Monitoreo del Ambiente/métodos , Estuarios , Heces/microbiología , Contaminación del Agua/análisis , Bacteroides/clasificación , Ecosistema , Enterococcus/clasificación , Humanos , Turquía , Urbanización , Microbiología del Agua , Calidad del AguaRESUMEN
Overweight and obese individuals may have leaky intestinal barrier and microbiome dysbiosis. The aim of this study was to determine whether body mass reduction with diet and synbiotics in an adult person with excess body mass has an influence on the gut microbiota and zonulin concentration. The study was a single blinded trial. 60 persons with excess body mass were examined. Based on randomization, patients were qualified either to the intervention group (Synbiotic group) or to the control group (Placebo group). Anthropometric measurements, microbiological assessment of faecal samples and zonulin concentration in the stool were performed before and after observation. After 3-months, an increase in the variety of intestinal bacteria (increase in the Shannon-Weaver index and the Simpson index) and a decrease in concentration of zonulin in faecal samples were observed in the Synbiotic group. Also, statistically significant correlation between zonulin and Bifidobacterium spp. (Spearman test, R=-0.51; p=0.0040) was noticed. There were no significant relationships between the body mass, BMI and changes in the intestinal microbiota or zonulin concentrations. The use of diet and synbiotics improved the condition of the microbiota and intestinal barrier in patients in the Synbiotic group.
Asunto(s)
Microbioma Gastrointestinal/fisiología , Obesidad/dietoterapia , Simbióticos/administración & dosificación , Adulto , Bacteroides/clasificación , Bacteroides/aislamiento & purificación , Bacteroides/fisiología , Bifidobacterium/clasificación , Bifidobacterium/aislamiento & purificación , Bifidobacterium/fisiología , Índice de Masa Corporal , Clostridium/clasificación , Clostridium/aislamiento & purificación , Clostridium/fisiología , Dieta/métodos , Enterococcus/clasificación , Enterococcus/aislamiento & purificación , Enterococcus/fisiología , Escherichia coli/clasificación , Escherichia coli/aislamiento & purificación , Escherichia coli/fisiología , Heces/microbiología , Femenino , Haptoglobinas/metabolismo , Humanos , Intestinos/microbiología , Lactobacillus/clasificación , Lactobacillus/aislamiento & purificación , Lactobacillus/fisiología , Masculino , Persona de Mediana Edad , Obesidad/microbiología , Permeabilidad , Estudios Prospectivos , Precursores de Proteínas/metabolismo , Proteus/clasificación , Proteus/aislamiento & purificación , Proteus/fisiología , Pseudomonas/clasificación , Pseudomonas/aislamiento & purificación , Pseudomonas/fisiologíaRESUMEN
Recent studies indicate that microbial enterotypes may influence the beneficial effects of wholegrain enriched diets including bodyweight regulation. In a 4-week intervention trial, overweight subjects were randomized to consume either arabinoxylan-oligosaccharides (AXOS) (10.4 g/d) from wheat bran or polyunsaturated fatty acids (PUFA) (3.6 g/d). In the present study, we have stratified the subjects participating in the intervention (n = 29) according to the baseline Prevotella-to-Bacteroides (P/B) ratios through a post-hoc analysis and applied a linear mixed model analysis to identify the influence of this P/B ratio on the differences in weight changes in the intervention arms. Following AXOS consumption (n = 15), the high P/B group showed no bodyweight changes [-0.14 kg (95% CI: -0.67; 0.38, p = .59)], while the low P/B group gained 0.65 kg (95% CI: 0.16; 1.14, p = .009). Consequently, a difference of -0.79 kg was found between P/B groups (95% CI: -1.51; -0.08, p = .030). No differences were found between P/B groups following PUFA consumption (0.61 kg, 95% CI: -0.13; 1.35, p = .10). Among the Bacteroides species, B. cellulosilyticus relative abundance exhibited the highest positive rank correlation (Kendall's tau = 0.51, FDR p = .070) with 4-week weight change on AXOS, and such association was further supported by using supervised classification methods (Random Forest). We outlined several carbohydrate-active enzyme (CAZy) genes involved in xylan-binding and degradation to be enriched in B. cellulosilyticus genomes, as well as multiple accessory genes, suggesting a supreme AXOS-derived glycan scavenging role of such species. This post-hoc analysis, ensuring species and strain demarcation at the human gut microbiota, permitted to uncover the predictive role of Bacteroides species over P/B enterotype in weight gain during a fiber-based intervention. The results of this pilot trial pave the way for future assessments on fiber fermentation outputs from Bacteroides species affecting lipid metabolism in the host and with direct impact on adiposity, thus helping to design personalized interventions.
Asunto(s)
Bacteroides/crecimiento & desarrollo , Microbioma Gastrointestinal , Oligosacáridos/metabolismo , Sobrepeso/dietoterapia , Sobrepeso/microbiología , Xilanos/metabolismo , Adolescente , Adulto , Bacteroides/clasificación , Bacteroides/genética , Bacteroides/aislamiento & purificación , Biomarcadores/metabolismo , Peso Corporal , Heces/microbiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Sobrepeso/fisiopatología , Adulto JovenRESUMEN
Several studies in recent times have linked gut microbiome (GM) diversity to the pathogenesis of cancer and its role in disease progression through immune response, inflammation and metabolism modulation. This study focused on the use of network analysis and weighted gene co-expression network analysis (WGCNA) to identify the biological interaction between the gut ecosystem and its metabolites that could impact the immunotherapy response in non-small cell lung cancer (NSCLC) patients undergoing second-line treatment with anti-PD1. Metabolomic data were merged with operational taxonomic units (OTUs) from 16S RNA-targeted metagenomics and classified by chemometric models. The traits considered for the analyses were: (i) condition: disease or control (CTRLs), and (ii) treatment: responder (R) or non-responder (NR). Network analysis indicated that indole and its derivatives, aldehydes and alcohols could play a signaling role in GM functionality. WGCNA generated, instead, strong correlations between short-chain fatty acids (SCFAs) and a healthy GM. Furthermore, commensal bacteria such as Akkermansia muciniphila, Rikenellaceae, Bacteroides, Peptostreptococcaceae, Mogibacteriaceae and Clostridiaceae were found to be more abundant in CTRLs than in NSCLC patients. Our preliminary study demonstrates that the discovery of microbiota-linked biomarkers could provide an indication on the road towards personalized management of NSCLC patients.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Microbioma Gastrointestinal/inmunología , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Neoplasias Pulmonares/genética , Metaboloma/inmunología , Akkermansia/clasificación , Akkermansia/genética , Akkermansia/aislamiento & purificación , Alcoholes/metabolismo , Aldehídos/metabolismo , Antineoplásicos Inmunológicos/uso terapéutico , Bacteroides/clasificación , Bacteroides/genética , Bacteroides/aislamiento & purificación , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/microbiología , Clostridiaceae/clasificación , Clostridiaceae/genética , Clostridiaceae/aislamiento & purificación , Bases de Datos Genéticas , Progresión de la Enfermedad , Monitoreo de Drogas/métodos , Ácidos Grasos Volátiles/metabolismo , Microbioma Gastrointestinal/genética , Humanos , Inmunoterapia/métodos , Indoles/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/microbiología , Metaboloma/genética , Metagenómica/métodos , Peptostreptococcus/clasificación , Peptostreptococcus/genética , Peptostreptococcus/aislamiento & purificación , Medicina de Precisión/métodos , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/inmunología , ARN Ribosómico 16S/genética , Transducción de SeñalRESUMEN
The aims of this study were to explore intestinal microbial composition and functionality in primary Sjögren's syndrome (pSS) and to relate these findings to inflammation, permeability and the transcription factor Forkhead box protein P3 (FOXP3) gene expression in peripheral blood. The study included 19 pSS patients and 19 healthy controls matched for age, sex, and body mass index. Fecal bacterial DNA was extracted and analyzed by 16S rRNA sequencing using an Ion S5 platform followed by a bioinformatics analysis using Quantitative Insights into Microbial Ecology (QIIME II) and Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt). Our data suggest that the gut microbiota of pSS patients differs at both the taxonomic and functional levels with respect to healthy controls. The gut microbiota profile of our pSS patients was characterized by a lower diversity and richness and with Bacteroidetes dominating at the phylum level. The pSS patients had less beneficial or commensal butyrate-producing bacteria and a higher proportion of opportunistic pathogens with proinflammatory activity, which may impair intestinal barrier function and therefore contribute to inflammatory processes associated with pSS by increasing the production of proinflammatory cytokines and decreasing the release of the anti-inflammatory cytokine IL-10 and the peripheral FOXP3 mRNA expression, implicated in the development and function of regulatory T cells (Treg) cells. Further studies are needed to better understand the real impact of dysbiosis on the course of pSS and to conceive preventive or therapeutic strategies to counteract microbiome-driven inflammation.
Asunto(s)
Disbiosis/microbiología , Factores de Transcripción Forkhead/inmunología , Microbioma Gastrointestinal/inmunología , Intestinos/microbiología , Síndrome de Sjögren/microbiología , Actinobacteria/clasificación , Actinobacteria/genética , Actinobacteria/aislamiento & purificación , Adolescente , Adulto , Anciano , Bacteroides/clasificación , Bacteroides/genética , Bacteroides/aislamiento & purificación , Índice de Masa Corporal , Estudios de Casos y Controles , Disbiosis/genética , Disbiosis/inmunología , Disbiosis/patología , Heces/microbiología , Femenino , Firmicutes/clasificación , Firmicutes/genética , Firmicutes/aislamiento & purificación , Factores de Transcripción Forkhead/genética , Variación Genética , Humanos , Inflamación , Interleucina-10/genética , Interleucina-10/inmunología , Intestinos/inmunología , Persona de Mediana Edad , Permeabilidad , Proteobacteria/clasificación , Proteobacteria/genética , Proteobacteria/aislamiento & purificación , ARN Ribosómico 16S/genética , Síndrome de Sjögren/genética , Síndrome de Sjögren/inmunología , Síndrome de Sjögren/patología , Linfocitos T Reguladores/microbiologíaRESUMEN
Yeast mannan (YM) is an indigestible water-soluble polysaccharide of the yeast cell wall, with a notable prebiotic effect on the intestinal microbiota. We previously reported that YM increased Bacteroides thetaiotaomicron abundance in in vitro rat faeces fermentation, concluding that its effects on human colonic microbiota should be investigated. In this study, we show the effects of YM on human colonic microbiota and its metabolites using an in vitro human faeces fermentation system. Bacterial 16S rRNA gene sequence analysis showed that YM administration did not change the microbial diversity or composition. Quantitative real-time PCR analysis revealed that YM administration significantly increased the relative abundance of Bacteroides ovatus and B. thetaiotaomicron. Moreover, a positive correlation was observed between the relative ratio (with or without YM administration) of B. thetaiotaomicron and B. ovatus (r = 0.92), suggesting that these bacteria utilise YM in a coordinated manner. In addition, YM administration increased the production of acetate, propionate, and total short-chain fatty acids. These results demonstrate the potential of YM as a novel prebiotic that selectively increases B. thetaiotaomicron and B. ovatus and improves the intestinal environment. The findings also provide insights that might be useful for the development of novel functional foods.
Asunto(s)
Bacteroides/crecimiento & desarrollo , Colon/microbiología , Microbioma Gastrointestinal , Mananos/farmacología , Prebióticos , Levaduras/metabolismo , Bacteroides/clasificación , Alimentos Funcionales , Humanos , Especificidad de la EspecieRESUMEN
Mechanistic studies of anaerobic gut bacteria have been hindered by the lack of a fluorescent protein system to track and visualize proteins and dynamic cellular processes in actively growing bacteria. Although underappreciated, many gut "anaerobes" are able to respire using oxygen as the terminal electron acceptor. The oxygen continually released from gut epithelial cells creates an oxygen gradient from the mucus layer to the anaerobic lumen [L. Albenberg et al., Gastroenterology 147, 1055-1063.e8 (2014)], with oxygen available to bacteria growing at the mucus layer. Here, we show that Bacteroides species are metabolically and energetically robust and do not mount stress responses in the presence of 0.10 to 0.14% oxygen, defined as nanaerobic conditions [A. D. Baughn, M. H. Malamy, Nature 427, 441-444 (2004)]. Taking advantage of this metabolic capability, we show that nanaerobic growth provides sufficient oxygen for the maturation of oxygen-requiring fluorescent proteins in Bacteroides species. Type strains of four different Bacteroides species show bright GFP fluorescence when grown nanaerobically versus anaerobically. We compared four different red fluorescent proteins and found that mKate2 yields the highest red fluorescence intensity in our assay. We show that GFP-tagged proteins can be localized in nanaerobically growing bacteria. In addition, we used time-lapse fluorescence microscopy to image dynamic type VI secretion system processes in metabolically active Bacteroides fragilis The ability to visualize fluorescently labeled Bacteroides and fluorescently linked proteins in actively growing nanaerobic gut symbionts ushers in an age of imaging analyses not previously possible in these bacteria.
Asunto(s)
Bacteroides/metabolismo , Microbioma Gastrointestinal , Aerobiosis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteroides/clasificación , Bacteroides/genética , Bacteroides/crecimiento & desarrollo , Humanos , Oxígeno/metabolismo , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/metabolismoRESUMEN
Gut mucosal microbes evolved closest to the host, developing specialized local communities. There is, however, insufficient knowledge of these communities as most studies have employed sequencing technologies to investigate faecal microbiota only. This work used shotgun metagenomics of mucosal biopsies to explore the microbial communities' compositions of terminal ileum and large intestine in 5 healthy individuals. Functional annotations and genome-scale metabolic modelling of selected species were then employed to identify local functional enrichments. While faecal metagenomics provided a good approximation of the average gut mucosal microbiome composition, mucosal biopsies allowed detecting the subtle variations of local microbial communities. Given their significant enrichment in the mucosal microbiota, we highlight the roles of Bacteroides species and describe the antimicrobial resistance biogeography along the intestine. We also detail which species, at which locations, are involved with the tryptophan/indole pathway, whose malfunctioning has been linked to pathologies including inflammatory bowel disease. Our study thus provides invaluable resources for investigating mechanisms connecting gut microbiota and host pathophysiology.