Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Development ; 151(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38682276

RESUMEN

The GPR124/RECK/WNT7 pathway is an essential regulator of CNS angiogenesis and blood-brain barrier (BBB) function. GPR124, a brain endothelial adhesion seven-pass transmembrane protein, associates with RECK, which binds and stabilizes newly synthesized WNT7 that is transferred to frizzled (FZD) to initiate canonical ß-catenin signaling. GPR124 remains enigmatic: although its extracellular domain (ECD) is essential, the poorly conserved intracellular domain (ICD) appears to be variably required in mammals versus zebrafish, potentially via adaptor protein bridging of GPR124 and FZD ICDs. GPR124 ICD deletion impairs zebrafish angiogenesis, but paradoxically retains WNT7 signaling upon mammalian transfection. We thus investigated GPR124 ICD function using the mouse deletion mutant Gpr124ΔC. Despite inefficiently expressed GPR124ΔC protein, Gpr124ΔC/ΔC mice could be born with normal cerebral cortex angiogenesis, in comparison with Gpr124-/- embryonic lethality, forebrain avascularity and hemorrhage. Gpr124ΔC/ΔC vascular phenotypes were restricted to sporadic ganglionic eminence angiogenic defects, attributable to impaired GPR124ΔC protein expression. Furthermore, Gpr124ΔC and the recombinant GPR124 ECD rescued WNT7 signaling in culture upon brain endothelial Gpr124 knockdown. Thus, in mice, GPR124-regulated CNS forebrain angiogenesis and BBB function are exerted by ICD-independent functionality, extending the signaling mechanisms used by adhesion seven-pass transmembrane receptors.


Asunto(s)
Barrera Hematoencefálica , Encéfalo , Neovascularización Fisiológica , Receptores Acoplados a Proteínas G , Animales , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/embriología , Neovascularización Fisiológica/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Ratones , Encéfalo/metabolismo , Encéfalo/embriología , Dominios Proteicos , Ratones Noqueados , Transducción de Señal , Proteínas Wnt/metabolismo , Proteínas Wnt/genética , Humanos , Células Endoteliales/metabolismo , Angiogénesis , Proteínas Ligadas a GPI
2.
J Neurosci ; 42(3): 362-376, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-34819341

RESUMEN

Multifaceted microglial functions in the developing brain, such as promoting the differentiation of neural progenitors and contributing to the positioning and survival of neurons, have been progressively revealed. Although previous studies have noted the relationship between vascular endothelial cells and microglia in the developing brain, little attention has been given to the importance of pericytes, the mural cells surrounding endothelial cells. In this study, we attempted to dissect the role of pericytes in microglial distribution and function in developing mouse brains. Our immunohistochemical analysis showed that approximately half of the microglia attached to capillaries in the cerebral walls. Notably, a magnified observation of the position of microglia, vascular endothelial cells and pericytes demonstrated that microglia were preferentially associated with pericytes that covered 79.8% of the total capillary surface area. Through in vivo pericyte depletion induced by the intraventricular administration of a neutralizing antibody against platelet-derived growth factor receptor (PDGFR)ß (clone APB5), we found that microglial density was markedly decreased compared with that in control antibody-treated brains because of their low proliferative capacity. Moreover, in vitro coculture of isolated CD11b+ microglia and NG2+PDGFRα- cells, which are mostly composed of pericytes, from parenchymal cells indicated that pericytes promote microglial proliferation via the production of soluble factors. Furthermore, pericyte depletion by APB5 treatment resulted in a failure of microglia to promote the differentiation of neural stem cells into intermediate progenitors. Taken together, our findings suggest that pericytes facilitate microglial homeostasis in the developing brains, thereby indirectly supporting microglial effects on neural progenitors.SIGNIFICANCE STATEMENT This study highlights the novel effect of pericytes on microglia in the developing mouse brain. Through multiple analyses using an in vivo pericyte depletion mouse model and an in vitro coculture study of isolated pericytes and microglia from parenchymal cells, we demonstrated that pericytes contribute to microglial proliferation and support microglia in efficiently promoting the differentiation of neural stem cells into intermediate progenitors. Our present data provide evidence that pericytes function not only in the maintenance of cerebral microcirculation and blood brain barrier (BBB) integrity but also in microglial homeostasis in the developing cerebral walls. These findings will expand our knowledge and help elucidate the mechanism of brain development both in healthy and disease conditions.


Asunto(s)
Corteza Cerebral/citología , Homeostasis/fisiología , Microglía/citología , Células-Madre Neurales/citología , Pericitos/citología , Animales , Anticuerpos Neutralizantes , Barrera Hematoencefálica/citología , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/embriología , Permeabilidad Capilar/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/embriología , Ácido Clodrónico/farmacología , Homeostasis/efectos de los fármacos , Liposomas , Ratones , Microglía/efectos de los fármacos , Células-Madre Neurales/efectos de los fármacos , Pericitos/efectos de los fármacos , Receptor beta de Factor de Crecimiento Derivado de Plaquetas
3.
Yakugaku Zasshi ; 141(3): 359-368, 2021.
Artículo en Japonés | MEDLINE | ID: mdl-33642504

RESUMEN

Microglia are immune cells resident in the central nervous system (CNS). It has been gradually clarified that microglia play various roles at the developmental stage of the CNS. From embryonic to early postnatal age, microglia remove apoptotic cells by phagocytosis and refine the neural circuits by synaptic pruning. In addition, microglia promote the proliferation and differentiation of neural stem cells by releasing physiologically active substances. Our group has focused on the physiological actions of microglia via cytokines and chemokines at the early postnatal developmental stage. We found that a large number of activated microglia accumulate in the early postnatal subventricular zone (SVZ). We demonstrated that the these SVZ microglia facilitate neurogenesis and oligodendrogenesis via inflammatory cytokines including IL-1ß, TNFα, IL-6, IFNγ. We have also found that microglia regulate the functional maturation of the blood brain barrier (BBB) and identified the cytokines and chemokines involved in the effects of microglia. These findings indicate that microglia are physiologically more important than ever thought to reveal robust brain functions. Furthermore, the new mode of microglial action may lead to the discovery of drug targets of the incurable CNS diseases.


Asunto(s)
Sistema Nervioso Central/embriología , Sistema Nervioso Central/crecimiento & desarrollo , Quimiocinas/metabolismo , Citocinas/metabolismo , Microglía/inmunología , Microglía/fisiología , Animales , Apoptosis/inmunología , Barrera Hematoencefálica/embriología , Barrera Hematoencefálica/crecimiento & desarrollo , Diferenciación Celular , Proliferación Celular , Quimiocinas/fisiología , Citocinas/fisiología , Humanos , Mediadores de Inflamación/metabolismo , Células-Madre Neurales/fisiología , Neurogénesis , Plasticidad Neuronal/fisiología , Fagocitosis
4.
Development ; 147(16)2020 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-32747434

RESUMEN

Central nervous system (CNS) blood vessels contain a functional blood-brain barrier (BBB) that is necessary for neuronal survival and activity. Although Wnt/ß-catenin signaling is essential for BBB development, its downstream targets within the neurovasculature remain poorly understood. To identify targets of Wnt/ß-catenin signaling underlying BBB maturation, we performed a microarray analysis that identified Fgfbp1 as a novel Wnt/ß-catenin-regulated gene in mouse brain endothelial cells (mBECs). Fgfbp1 is expressed in the CNS endothelium and secreted into the vascular basement membrane during BBB formation. Endothelial genetic ablation of Fgfbp1 results in transient hypervascularization but delays BBB maturation in specific CNS regions, as evidenced by both upregulation of Plvap and increased tracer leakage across the neurovasculature due to reduced Wnt/ß-catenin activity. In addition, collagen IV deposition in the vascular basement membrane is reduced in mutant mice, leading to defective endothelial cell-pericyte interactions. Fgfbp1 is required cell-autonomously in mBECs to concentrate Wnt ligands near cell junctions and promote maturation of their barrier properties in vitro Thus, Fgfbp1 is a crucial extracellular matrix protein during BBB maturation that regulates cell-cell interactions and Wnt/ß-catenin activity.


Asunto(s)
Barrera Hematoencefálica/embriología , Colágeno Tipo IV/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismo , Animales , Colágeno Tipo IV/genética , Células Endoteliales/citología , Células Endoteliales/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Ratones , Ratones Transgénicos , Pericitos/citología , Pericitos/metabolismo , beta Catenina/genética
5.
J Clin Invest ; 130(8): 4081-4093, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32369449

RESUMEN

Several missense mutations in the orphan transporter FLVCR2 have been reported in Fowler syndrome. Affected subjects exhibit signs of severe neurological defects. We identified the mouse ortholog Mfsd7c as a gene expressed in the blood-brain barrier. Here, we report the characterizations of Mfsd7c-KO mice and compare these characterizations to phenotypic findings in humans with biallelic FLVCR2 mutations. Global KO of Mfsd7c in mice resulted in late-gestation lethality, likely due to CNS phenotypes. We found that the angiogenic growth of CNS blood vessels in the brain of Mfsd7c-KO embryos was inhibited in cortical ventricular zones and ganglionic eminences. Vascular tips were dilated and fused, resulting in glomeruloid vessels. Nonetheless, CNS blood vessels were intact, without hemorrhage. Both embryos and humans with biallelic FLVCR2 mutations exhibited reduced cerebral cortical layers, enlargement of the cerebral ventricles, and microcephaly. Transcriptomic analysis of Mfsd7cK-KO embryonic brains revealed upregulation of genes involved in glycolysis and angiogenesis. The Mfsd7c-KO brain exhibited hypoxia and neuronal cell death. Our results indicate that MFSD7c is required for the normal growth of CNS blood vessels and that ablation of this gene results in microcephaly-associated vasculopathy in mice and humans.


Asunto(s)
Barrera Hematoencefálica , Corteza Cerebral , Regulación del Desarrollo de la Expresión Génica , Proteínas de la Membrana/deficiencia , Microcefalia , Neovascularización Fisiológica/genética , Animales , Barrera Hematoencefálica/embriología , Barrera Hematoencefálica/patología , Corteza Cerebral/irrigación sanguínea , Corteza Cerebral/embriología , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Glucólisis/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Microcefalia/embriología , Microcefalia/genética , Microcefalia/patología , Síndrome
6.
J Clin Invest ; 130(8): 4055-4068, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32369453

RESUMEN

Fowler syndrome is a rare autosomal recessive brain vascular disorder caused by mutation in FLVCR2 in humans. The disease occurs during a critical period of brain vascular development, is characterized by glomeruloid vasculopathy and hydrocephalus, and is almost invariably prenatally fatal. Here, we sought to gain insights into the process of brain vascularization and the pathogenesis of Fowler syndrome by inactivating Flvcr2 in mice. We showed that Flvcr2 was necessary for angiogenic sprouting in the brain, but surprisingly dispensable for maintaining the blood-brain barrier. Endothelial cells lacking Flvcr2 had altered expression of angiogenic factors, failed to adopt tip cell properties, and displayed reduced sprouting, leading to vascular malformations similar to those seen in humans with Fowler syndrome. Brain hypovascularization was associated with hypoxia and tissue infarction, ultimately causing hydrocephalus and death of mutant animals. Strikingly, despite severe vascular anomalies and brain tissue infarction, the blood-brain barrier was maintained in Flvcr2 mutant mice. Our Fowler syndrome model therefore defined the pathobiology of this disease and provided new insights into brain angiogenesis by showing uncoupling of vessel morphogenesis and blood-brain barrier formation.


Asunto(s)
Barrera Hematoencefálica , Malformaciones Vasculares del Sistema Nervioso Central , Células Endoteliales , Proteínas de Transporte de Membrana/deficiencia , Neovascularización Fisiológica , Animales , Barrera Hematoencefálica/embriología , Barrera Hematoencefálica/patología , Malformaciones Vasculares del Sistema Nervioso Central/embriología , Malformaciones Vasculares del Sistema Nervioso Central/genética , Malformaciones Vasculares del Sistema Nervioso Central/patología , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/patología , Proteínas de Transporte de Membrana/metabolismo , Ratones , Ratones Noqueados
7.
Dev Biol ; 457(2): 181-190, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30862465

RESUMEN

To ensure tissue homeostasis the brain needs to be protected from blood-derived fluctuations or pathogens that could affect its function. Therefore, the brain capillaries develop tissue-specific properties to form a selective blood-brain barrier (BBB), allowing the passage of essential molecules to the brain and blocking the penetration of potentially harmful compounds or cells. Previous studies reported the presence of this barrier in zebrafish. The intrinsic features of the zebrafish embryos and larvae in combination with optical techniques, make them suitable for the study of barrier establishment and maturation. In this review, we discuss the most recent contributions to the development and formation of a functional zebrafish BBB. Moreover, we compare the molecular and cellular characteristic of the zebrafish and the mammalian BBB.


Asunto(s)
Barrera Hematoencefálica/embriología , Encéfalo/irrigación sanguínea , Sistema Cardiovascular/embriología , Neovascularización Fisiológica/fisiología , Pez Cebra/embriología , Animales , Encéfalo/embriología , Células Endoteliales/fisiología , Endotelio Vascular/embriología , Endotelio Vascular/fisiología , Uniones Estrechas/fisiología
8.
J Vis Exp ; (151)2019 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-31609343

RESUMEN

Proper nervous system development includes the formation of the blood-brain barrier, the diffusion barrier that tightly regulates access to the nervous system and protects neural tissue from toxins and pathogens. Defects in the formation of this barrier have been correlated with neuropathies, and the breakdown of this barrier has been observed in many neurodegenerative diseases. Therefore, it is critical to identify the genes that regulate the formation and maintenance of the blood-brain barrier to identify potential therapeutic targets. In order to understand the exact roles these genes play in neural development, it is necessary to assay the effects of altered gene expression on the integrity of the blood-brain barrier. Many of the molecules that function in the establishment of the blood-brain barrier have been found to be conserved across eukaryotic species, including the fruit fly, Drosophila melanogaster. Fruit flies have proven to be an excellent model system for examining the molecular mechanisms regulating nervous system development and function. This protocol describes a step-by-step procedure to assay for blood-brain barrier integrity during the embryonic and larval stages of D. melanogaster development.


Asunto(s)
Técnicas Citológicas , Drosophila melanogaster/anatomía & histología , Animales , Barrera Hematoencefálica/anatomía & histología , Barrera Hematoencefálica/embriología , Drosophila melanogaster/embriología , Femenino , Larva/anatomía & histología , Masculino
9.
Elife ; 82019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31429822

RESUMEN

As an optically transparent model organism with an endothelial blood-brain barrier (BBB), zebrafish offer a powerful tool to study the vertebrate BBB. However, the precise developmental profile of functional zebrafish BBB acquisition and the subcellular and molecular mechanisms governing the zebrafish BBB remain poorly characterized. Here, we capture the dynamics of developmental BBB leakage using live imaging, revealing a combination of steady accumulation in the parenchyma and sporadic bursts of tracer leakage. Electron microscopy studies further reveal high levels of transcytosis in brain endothelium early in development that are suppressed later. The timing of this suppression of transcytosis coincides with the establishment of BBB function. Finally, we demonstrate a key mammalian BBB regulator Mfsd2a, which inhibits transcytosis, plays a conserved role in zebrafish, as mfsd2aa mutants display increased BBB permeability due to increased transcytosis. Our findings indicate a conserved developmental program of barrier acquisition between zebrafish and mice.


Asunto(s)
Barrera Hematoencefálica/embriología , Barrera Hematoencefálica/fisiología , Células Endoteliales/fisiología , Transcitosis , Pez Cebra , Animales , Microscopía Intravital , Microscopía Electrónica
10.
Expert Opin Ther Targets ; 23(4): 327-339, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30764678

RESUMEN

INTRODUCTION: Present antidepressant treatments are only helpful in a quarter of patients with bipolar depression, and new strategies are warranted. Increasing evidence suggests that accelerated polyamine metabolism is associated with the pathophysiology of depression. Polyamines regulate stress responses, inflammation, and neuronal signaling in the central and enteric nervous system. Agmatine is a promising target of altered polyamine metabolism considering its unique ability to regulate intracellular polyamine content and neuroprotective effects. Areas covered: This review discusses the polyamine system and its relationship to the central and enteric nervous system, focusing on results from preclinical studies supporting the relationship between agmatine and the pathophysiology of depression. We also discussed the main mechanisms underlying the antidepressant and neuroprotective effects of agmatine. Expert opinion: Our review points out the possible relationship between polyamines and the pathophysiology of depression. It discusses the efficacy of agmatine in several models of depressive-like behaviour, and suggests that it may prove to be an efficacious adjunctive treatment in bipolar depression. Furthermore, it discusses a proposed pathway linking systemic inflammation, observed in a subset of bipolar disorder patients, to abnormal polyamine metabolism and associated changes in the epithelial gut barrier and blood-brain barrier.


Asunto(s)
Agmatina/farmacología , Antidepresivos/farmacología , Trastorno Bipolar/tratamiento farmacológico , Animales , Trastorno Bipolar/fisiopatología , Barrera Hematoencefálica/embriología , Humanos , Fármacos Neuroprotectores/farmacología , Poliaminas/metabolismo
11.
Am J Physiol Cell Physiol ; 316(2): C252-C263, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30462535

RESUMEN

Ischemicstroke is a leading cause of death and disability in the United States, but recent advances in treatments [i.e., endovascular thrombectomy and tissue plasminogen activator (t-PA)] that target the stroke-causing blood clot, while improving overall stroke mortality rates, have had much less of an impact on overall stroke morbidity. This may in part be attributed to the lack of therapeutics targeting reperfusion-induced injury after the blood clot has been removed, which, if left unchecked, can expand injury from its core into the surrounding at risk tissue (penumbra). This occurs in two phases of increased permeability of the blood-brain barrier, a physical barrier that under physiologic conditions regulates brain influx and efflux of substances and consists of tight junction forming endothelial cells (and transporter proteins), astrocytes, pericytes, extracellular matrix, and their integrin cellular receptors. During, embryonic development, maturity, and following stroke reperfusion, cerebral vasculature undergoes significant changes including changes in expression of integrins and degradation of surrounding extracellular matrix. Integrins, heterodimers with α and ß subunits, and their extracellular matrix ligands, a collection of proteoglycans, glycoproteins, and collagens, have been modestly studied in the context of stroke compared with other diseases (e.g., cancer). In this review, we describe the effect that various integrins and extracellular matrix components have in embryonic brain development, and how this changes in both maturity and in the poststroke environment. Particular focus will be on how these changes in integrins and the extracellular matrix affect blood-brain barrier components and their potential as diagnostic and therapeutic targets for ischemic stroke.


Asunto(s)
Barrera Hematoencefálica/embriología , Barrera Hematoencefálica/metabolismo , Matriz Extracelular/metabolismo , Integrinas/metabolismo , Accidente Cerebrovascular/metabolismo , Animales , Astrocitos/metabolismo , Astrocitos/patología , Barrera Hematoencefálica/patología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Matriz Extracelular/patología , Humanos , Permeabilidad , Accidente Cerebrovascular/patología , Uniones Estrechas/metabolismo , Uniones Estrechas/patología
12.
Development ; 145(15)2018 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-30002129

RESUMEN

During development, tissue growth is mediated by either cell proliferation or cell growth, coupled with polyploidy. Both strategies are employed by the cell types that make up the Drosophila blood-brain barrier. During larval growth, the perineurial glia proliferate, whereas the subperineurial glia expand enormously and become polyploid. Here, we show that the level of ploidy in the subperineurial glia is controlled by the N-terminal asparagine amidohydrolase homolog Öbek, and high Öbek levels are required to limit replication. In contrast, perineurial glia express moderate levels of Öbek, and increased Öbek expression blocks their proliferation. Interestingly, other dividing cells are not affected by alteration of Öbek expression. In glia, Öbek counteracts fibroblast growth factor and Hippo signaling to differentially affect cell growth and number. We propose a mechanism by which growth signals are integrated differentially in a glia-specific manner through different levels of Öbek protein to adjust cell proliferation versus endoreplication in the blood-brain barrier.


Asunto(s)
Asparaginasa/genética , Barrera Hematoencefálica/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Ploidias , Amidohidrolasas/metabolismo , Animales , Asparaginasa/metabolismo , Barrera Hematoencefálica/citología , Barrera Hematoencefálica/embriología , Núcleo Celular/metabolismo , Proliferación Celular , Supervivencia Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/embriología , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Endorreduplicación , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Genes de Insecto , Modelos Biológicos , Neuroglía/citología , Neuroglía/metabolismo , Transducción de Señal
13.
PLoS Genet ; 14(1): e1007180, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29360820

RESUMEN

Drosophila melanogaster head development represents a valuable process to study the developmental control of various organs, such as the antennae, the dorsal ocelli and the compound eyes from a common precursor, the eye-antennal imaginal disc. While the gene regulatory network underlying compound eye development has been extensively studied, the key transcription factors regulating the formation of other head structures from the same imaginal disc are largely unknown. We obtained the developmental transcriptome of the eye-antennal discs covering late patterning processes at the late 2nd larval instar stage to the onset and progression of differentiation at the end of larval development. We revealed the expression profiles of all genes expressed during eye-antennal disc development and we determined temporally co-expressed genes by hierarchical clustering. Since co-expressed genes may be regulated by common transcriptional regulators, we combined our transcriptome dataset with publicly available ChIP-seq data to identify central transcription factors that co-regulate genes during head development. Besides the identification of already known and well-described transcription factors, we show that the transcription factor Hunchback (Hb) regulates a significant number of genes that are expressed during late differentiation stages. We confirm that hb is expressed in two polyploid subperineurial glia cells (carpet cells) and a thorough functional analysis shows that loss of Hb function results in a loss of carpet cells in the eye-antennal disc. Additionally, we provide for the first time functional data indicating that carpet cells are an integral part of the blood-brain barrier. Eventually, we combined our expression data with a de novo Hb motif search to reveal stage specific putative target genes of which we find a significant number indeed expressed in carpet cells.


Asunto(s)
Barrera Hematoencefálica/fisiología , Proteínas de Unión al ADN/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Cabeza/embriología , Neuroglía/metabolismo , Retina/embriología , Factores de Transcripción/fisiología , Animales , Animales Modificados Genéticamente , Barrera Hematoencefálica/embriología , Barrera Hematoencefálica/metabolismo , Diferenciación Celular/genética , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Embrión no Mamífero , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Neuroglía/fisiología , Organogénesis/genética , Retina/citología , Retina/metabolismo , Factores de Transcripción/genética
14.
J Anat ; 232(4): 540-553, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29280147

RESUMEN

The circumventricular organs (CVOs) are specialised neuroepithelial structures found in the midline of the brain, grouped around the third and fourth ventricles. They mediate the communication between the brain and the periphery by performing sensory and secretory roles, facilitated by increased vascularisation and the absence of a blood-brain barrier. Surprisingly little is known about the origins of the CVOs (both developmental and evolutionary), but their functional and organisational similarities raise the question of the extent of their relationship. Here, I review our current knowledge of the embryonic development of the seven major CVOs (area postrema, median eminence, neurohypophysis, organum vasculosum of the lamina terminalis, pineal organ, subcommissural organ, subfornical organ) in embryos of different vertebrate species. Although there are conspicuous similarities between subsets of CVOs, no unifying feature characteristic of their development has been identified. Cross-species comparisons suggest that CVOs also display a high degree of evolutionary flexibility. Thus, the term 'CVO' is merely a functional definition, and features shared by multiple CVOs may be the result of homoplasy rather than ontogenetic or phylogenetic relationships.


Asunto(s)
Barrera Hematoencefálica/embriología , Órganos Circunventriculares/embriología , Animales , Área Postrema/anatomía & histología , Área Postrema/fisiología , Órganos Circunventriculares/anatomía & histología , Humanos , Hipotálamo/embriología , Filogenia , Glándula Pineal/anatomía & histología , Glándula Pineal/embriología , Neurohipófisis/embriología , Órgano Subcomisural/anatomía & histología , Órgano Subcomisural/fisiología , Órgano Subfornical/embriología
15.
Microvasc Res ; 117: 16-21, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29247719

RESUMEN

l-Arginine is required for regulating synapse formation/patterning and angiogenesis in the developing brain. We hypothesized that this requirement would be met by increased transporter-mediated supply across the blood-brain barrier (BBB). Thus, the purpose of this work was to test the idea that elevation of blood-to-brain l-arginine transport across the BBB in the postnatal period coincides with up-regulation of cationic acid transporter 1 (CAT1) expression in developing brain capillaries. We found that the apparent brain-to-plasma concentration ratio (Kp, app) of l-arginine after intravenous administration during the first and second postnatal weeks was 2-fold greater than that at the adult stage. Kp, app of l-serine was also increased at the first postnatal week. In contrast, Kp, app of d-mannitol, a passively BBB-permeable molecule, did not change, indicating that increased transport of l-arginine and l-serine is not due to BBB immaturity. Double immunohistochemical staining of CAT1 and a marker protein, glucose transporter 1, revealed that CAT1 was localized on both luminal and abluminal membranes of brain capillary endothelial cells during the developmental and adult stages. A dramatic increase in CAT1 expression in the brain was seen at postnatal day 7 (P7) and day 14 (P14) and the expression subsequently decreased as the brain matured. In accordance with this, intense immunostaining of CAT1 was observed in brain capillaries at P7 and P14. These findings strongly support our hypothesis and suggest that the supply of blood-born l-arginine to the brain via CAT1 at the BBB plays a key role in meeting the elevated demand for l-arginine in postnatal brain.


Asunto(s)
Arginina/metabolismo , Barrera Hematoencefálica/metabolismo , Capilares/metabolismo , Transportador de Aminoácidos Catiónicos 1/metabolismo , Células Endoteliales/metabolismo , Factores de Edad , Animales , Arginina/administración & dosificación , Arginina/sangre , Transporte Biológico , Barrera Hematoencefálica/embriología , Capilares/embriología , Transportador de Aminoácidos Catiónicos 1/genética , Regulación del Desarrollo de la Expresión Génica , Edad Gestacional , Inyecciones Intravenosas , Masculino , Ratas Wistar , Regulación hacia Arriba
16.
Curr Mol Med ; 17(4): 298-303, 2017 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-29110609

RESUMEN

BACKGROUND: The compromise of blood brain barrier (BBB) integrity is often associated with human hemorrhage stroke and neurodegeneration diseases, including retina diseases, such as age-related macular degeneration and diabetic retinopathy. Brain pericytes play pivotal roles in regulation and maintenance of BBB integrity. However, the mechanisms underlying brain pericyte development to establish BBB integrity remain unclear. METHODS: Zebrafish transgenic lines Tg(flk1:GFP; gata1:dsRed), Tg(flk1:GFP), Tg(fli1:GFP) and Tg(BRE:GFP) were used in this work. The functional studies of bmp3 were performed by mopholino oligonucleotide (MO) injection, dye-based permeability assay, RT-PCR, in vivo imaging, immunofluorescence staining and statics analysis. RESULTS: Here we report that bmp3 regulates BBB integrity in zebrafish brain by promoting pericyte development. Knockdown of bmp3 with injection of bmp3-MO causes intracerebral hemorrhage in zebrafish embryos. Meanwhile, disruption of bmp3 function by bmp3-MO injection impairs cerebral pericyte coverage in zebrafish embryos. Mechanistically, knockdown of bmp3 disrupts the pattern and activities of BMP signaling in zebrafish brain, thus probably disrupting the balance of TGFß/BMP signaling in zebrafish embryos. CONCLUSION: In summary, our data shows that bmp3 regulates BBB integrity potentially by promoting pericyte development.


Asunto(s)
Barrera Hematoencefálica/embriología , Proteína Morfogenética Ósea 3/metabolismo , Embrión no Mamífero/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Proteína Morfogenética Ósea 3/genética , Humanos , Pez Cebra/genética , Proteínas de Pez Cebra/genética
17.
Neurotoxicology ; 62: 24-29, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28495520

RESUMEN

Pyrethroids, including permethrin and deltamethrin (DLM), are very widely used of insecticides. It was hypothesized that lower plasma binding and increased blood-brain barrier (BBB) penetration of DLM in immature rats contribute to the higher brain concentrations of DLM and more pronounced neurotoxicity reported in this age group. The left brain of anesthetized adult rats was perfused for 2min via a carotid artery with 1µM 14C-DLM in: 2-5% human serum albumin (HSA); plasma from adult and 15- and 21-d-old rats; and plasma from human donors of: birth-1 week, 1-4 weeks, 4 weeks-1 year, 1-3 years and adults. The fraction of DLM bound and brain uptake of DLM did not vary significantly with the HSA concentration nor with the age of rat or human plasma donors. One, 10 and 50µM 14C-DLM were perfused into the left-brain of anesthetized adult, 15- and 21-d-old rats. DLM deposition in the brain was linear over this range of concentrations and inversely related to age. The results of this investigation indicate that increased BBB permeability in the youngest rats enhances brain deposition of the insecticide. Plasma protein binding of DLM in immature rats and humans is not sufficiently diminished to impact its brain uptake.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Barrera Hematoencefálica , Encéfalo , Insecticidas/metabolismo , Nitrilos/metabolismo , Piretrinas/metabolismo , Factores de Edad , Albúminas/farmacología , Animales , Animales Recién Nacidos , Barrera Hematoencefálica/embriología , Barrera Hematoencefálica/crecimiento & desarrollo , Barrera Hematoencefálica/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/embriología , Encéfalo/enzimología , Encéfalo/metabolismo , Preescolar , Relación Dosis-Respuesta a Droga , Embrión de Mamíferos , Femenino , Feto , Humanos , Lactante , Recién Nacido , Insecticidas/farmacocinética , Masculino , Nitrilos/farmacocinética , Embarazo , Unión Proteica/efectos de los fármacos , Piretrinas/farmacocinética , Ratas , Ratas Sprague-Dawley
18.
J Neurosci ; 37(18): 4790-4807, 2017 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-28389474

RESUMEN

Precisely orchestrated interactions between spinal motor axons and their ensheathing glia are vital for forming and maintaining functional spinal motor nerves. Following perturbations to peripheral myelinating glial cells, centrally derived oligodendrocyte progenitor cells (OPCs) ectopically exit the spinal cord and myelinate peripheral nerves in myelin with CNS characteristics. However, whether remaining peripheral ensheathing glia, such as perineurial glia, properly encase the motor nerve despite this change in glial cell and myelin composition, remains unknown. Using zebrafish mutants in which OPCs migrate out of the spinal cord and myelinate peripheral motor axons, we assayed perineurial glial development, maturation, and response to injury. Surprisingly, in the presence of OPCs, perineurial glia exited the CNS normally. However, aspects of their development, response to injury, and function were altered compared with wildtype larvae. In an effort to better understand the plasticity of perineurial glia in response to myelin perturbations, we identified transforming growth factor-ß1 as a partial mediator of perineurial glial development. Together, these results demonstrate the incredible plasticity of perineurial glia in the presence of myelin perturbations.SIGNIFICANCE STATEMENT Peripheral neuropathies can result from damage or dysregulation of the insulating myelin sheath surrounding spinal motor axons, causing pain, inefficient nerve conduction, and the ectopic migration of oligodendrocyte progenitor cells (OPCs), the resident myelinating glial cell of the CNS, into the periphery. How perineurial glia, the ensheathing cells that form the protective blood-nerve barrier, are impacted by this myelin composition change is unknown. Here, we report that certain aspects of perineurial glial development and injury responses are mostly unaffected in the presence of ectopic OPCs. However, perineurial glial function is disrupted along nerves containing centrally derived myelin, demonstrating that, although perineurial glial cells display plasticity despite myelin perturbations, the blood-nerve barrier is compromised in the presence of ectopic OPCs.


Asunto(s)
Barrera Hematoencefálica/embriología , Neuroglía/fisiología , Plasticidad Neuronal/fisiología , Nervios Periféricos/embriología , Nervios Periféricos/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Animales Modificados Genéticamente , Barrera Hematoencefálica/citología , Barrera Hematoencefálica/fisiología , Neurogénesis/fisiología , Neuroglía/citología , Nervios Periféricos/citología , Pez Cebra , Proteínas de Pez Cebra
19.
Physiol Rep ; 4(16)2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27796269

RESUMEN

Brain endothelial cells (BECs) form a major component of the blood-brain barrier (BBB). In late gestation, these cells express high levels of the multidrug transporter p-glycoprotein (P-gp; encoded by Abcb1), which prevents the passage of an array of endogenous factors and xenobiotics into the fetal brain. P-gp levels in the BECs increase dramatically in late gestation, coincident with astrocyte differentiation. However, the role of astrocytes in modulating P-gp in the developing BBB is unknown. We hypothesized that factors produced by astrocytes positively regulate P-gp in BECs. Astrocytes and BECs were isolated from fetal and postnatal guinea pigs. Levels of Abcb1 mRNA and P-gp were increased in BECs co-cultured with astrocytes compared to BECs in monoculture. Moreover, postnatal astrocytes enhanced P-gp function in fetal BECs but fetal astrocytes had no effect on postnatal BECs. These effects were dependent on secreted proteins with a molecular weight in the range of 3-100 kDa. LC/MS-MS revealed significant differences in proteins secreted by fetal and postnatal astrocytes. We propose that astrocytes are critical modulators of P-gp at the developing BBB. As such, aberrations in astrocyte maturation, observed in neurodevelopmental disorders, will likely decrease P-gp at the BBB. This would allow increased transfer of P-gp endogenous and exogenous substrates into the brain, many of which have neurodevelopmental consequences.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Astrocitos/metabolismo , Barrera Hematoencefálica/embriología , Barrera Hematoencefálica/metabolismo , Encéfalo/citología , Células Endoteliales/metabolismo , Desarrollo Fetal/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Animales , Astrocitos/fisiología , Barrera Hematoencefálica/efectos de los fármacos , Encéfalo/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Cobayas , Modelos Animales , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Neuroglía/metabolismo , ARN Mensajero/metabolismo
20.
Development ; 143(22): 4127-4136, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27729407

RESUMEN

Zika virus (ZIKV) infection of pregnant women can result in fetal brain abnormalities. It has been established that ZIKV disrupts neural progenitor cells (NPCs) and leads to embryonic microcephaly. However, the fate of other cell types in the developing brain and their contributions to ZIKV-associated brain abnormalities remain largely unknown. Using intracerebral inoculation of embryonic mouse brains, we found that ZIKV infection leads to postnatal growth restriction including microcephaly. In addition to cell cycle arrest and apoptosis of NPCs, ZIKV infection causes massive neuronal death and axonal rarefaction, which phenocopy fetal brain abnormalities in humans. Importantly, ZIKV infection leads to abnormal vascular density and diameter in the developing brain, resulting in a leaky blood-brain barrier (BBB). Massive neuronal death and BBB leakage indicate brain damage, which is further supported by extensive microglial activation and astrogliosis in virally infected brains. Global gene analyses reveal dysregulation of genes associated with immune responses in virus-infected brains. Thus, our data suggest that ZIKV triggers a strong immune response and disrupts neurovascular development, resulting in postnatal microcephaly with extensive brain damage.


Asunto(s)
Encéfalo/irrigación sanguínea , Encéfalo/embriología , Microcefalia/virología , Neovascularización Fisiológica , Neurogénesis , Infección por el Virus Zika/embriología , Aedes , Animales , Barrera Hematoencefálica/embriología , Barrera Hematoencefálica/virología , Encéfalo/virología , Malformaciones Vasculares del Sistema Nervioso Central/embriología , Malformaciones Vasculares del Sistema Nervioso Central/virología , Chlorocebus aethiops , Modelos Animales de Enfermedad , Femenino , Retardo del Crecimiento Fetal/virología , Ratones , Ratones Endogámicos C57BL , Microcefalia/embriología , Malformaciones del Sistema Nervioso/embriología , Malformaciones del Sistema Nervioso/virología , Células-Madre Neurales/fisiología , Células-Madre Neurales/virología , Neurogénesis/fisiología , Embarazo , Células Vero , Virus Zika/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA