Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros













Intervalo de año de publicación
1.
PLoS Pathog ; 19(4): e1011319, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37027442

RESUMEN

Geminiviruses constitute the largest group of known plant viruses and cause devastating diseases and economic losses in many crops worldwide. Due to limited naturally occurring resistance genes, understanding plant antiviral defense against geminiviruses is critical for finding host factors of geminiviruses and development of strategies for geminivirus control. Here we identified NbWRKY1 as a positive regulator of plant defense against geminivirus infection. Using tomato yellow leaf curl China virus/tomato yellow leaf curl China betasatellite (TYLCCNV/TYLCCNB) as a representative geminivirus, we found that NbWRKY1 was upregulated in response to TYLCCNV/TYLCCNB infection. Overexpression of NbWRKY1 attenuated TYLCCNV/TYLCCNB infection, whereas knockdown of NbWRKY1 enhanced plant susceptibility to TYLCCNV/TYLCCNB. We further revealed that NbWRKY1 bound to the promoter of the NbWHIRLY1 (NbWhy1) transcription factor and inhibited the transcription of NbWhy1. Consistently, NbWhy1 negatively regulates plant response against TYLCCNV/TYLCCNB. Overexpression of NbWhy1 significantly accelerated TYLCCNV/TYLCCNB infection. Conversely, knockdown of NbWhy1 led to impaired geminivirus infection. Furthermore, we demonstrated that NbWhy1 interfered with the antiviral RNAi defense and disrupted the interaction between calmodulin 3 and calmodulin-binding transcription activator-3. Moreover, the NbWRKY1-NbWhy1 also confers plant antiviral response toward tomato yellow leaf curl virus infection. Taken together, our findings suggest that NbWRKY1 positively regulates plant defense to geminivirus infection by repressing NbWhy1. We propose that the NbWRKY1-NbWhy1 cascade could be further employed to control geminiviruses.


Asunto(s)
Begomovirus , Geminiviridae , Geminiviridae/genética , Geminiviridae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Calmodulina/metabolismo , Nicotiana , Begomovirus/metabolismo , Regulación de la Expresión Génica , Enfermedades de las Plantas/genética
2.
Plant J ; 114(4): 934-950, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36919198

RESUMEN

Chloroplast is the site for transforming light energy to chemical energy. It also acts as a production unit for a variety of defense-related molecules. These defense moieties are necessary to mount a successful counter defense against pathogens, including viruses. Previous studies indicated disruption of chloroplast homeostasis as a basic strategy of Begomovirus for its successful infection leading to the production of vein-clearing, mosaic, and chlorotic symptoms in infected plants. Although begomoviral pathogenicity determinant protein Beta C1 (ßC1) was implicated for pathogenicity, the underlying mechanism was unclear. Here we show that, begomoviral ßC1 directly interferes with the host plastid homeostasis. ßC1 induced DPD1, an organelle-specific nuclease, implicated in nutrient salvage and senescence, as well as modulated the function of a major plastid genome maintainer protein RecA1, to subvert plastid genome. We show that ßC1 was able to physically interact with bacterial RecA and its plant homolog RecA1, resulting in its altered activity. We observed that knocking-down DPD1 during virus infection significantly reduced virus-induced necrosis. These results indicate the presence of a strategy in which a viral protein alters host defense by targeting modulators of chloroplast DNA. We predict that the mechanism identified here might have similarities in other plant-pathogen interactions.


Asunto(s)
Begomovirus , Virosis , Begomovirus/genética , Begomovirus/metabolismo , Cloroplastos/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virulencia , Virosis/metabolismo , Enfermedades de las Plantas/genética , Nicotiana/genética
3.
Theory Biosci ; 142(1): 47-60, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36607541

RESUMEN

Chilli leaf curl Ahmedabad virus (ChiLCAV), a begomovirus belonging to the family Geminiviridae, has been reported for its occurrence in India, infecting chilli and tomato plants. The viral proteins associated with ChiLCAV involves in the primary pathogenesis and transmission of the virus by whitefly. Viral protein interactions with host proteins show the dynamics of structural binding and interaction in their infection cycle. At the same time, plants have multiple defence mechanisms against bacterial and viral infections. Secondary metabolites play a significant role in the inborne defence mechanism of plants. Host proteins are also the prime producers of secondary metabolites. In the present study, we evaluated the host protein SnRK1 interaction with all six viral proteins (V1, V2, C1, C2, C3 and C4). Apart from C4, all the other viral proteins showed appreciable binding and interaction with SnRK1. SnRK1 has the regulation mechanism for the accumulation of diterpenoids, secondary metabolites. Flavonoids are secondary metabolites produced by the plant under stress conditions. Further, we studied the binding and interaction of six selected flavonoids produced by Solanaceae family members with all the ChiLCAV proteins. All six selected flavonoids showed considerable binding energy with all viral proteins. Each flavonoid showed high binding energy with different viral proteins. Molecular docking is carried out for both flavonoids and the host protein SnRK1. These in silico interactions and docking studies could be useful for understanding the plants defence mechanism against viral infections at the molecular level.


Asunto(s)
Begomovirus , Proteínas Virales , Proteínas Virales/química , Proteínas Virales/metabolismo , Begomovirus/metabolismo , Simulación del Acoplamiento Molecular
4.
J Integr Plant Biol ; 65(5): 1328-1343, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36639894

RESUMEN

Autophagy is a conserved intracellular degradation process that plays an active role in plant response to virus infections. Here we report that geminiviruses counteract activated autophagy-mediated antiviral defense in plant cells through the C2 proteins they encode. We found that, in Nicotiana benthamiana plants, tomato leaf curl Yunnan virus (TLCYnV) infection upregulated the transcription levels of autophagy-related genes (ATGs). Overexpression of NbATG5, NbATG7, or NbATG8a in N. benthamiana plants decreased TLCYnV accumulation and attenuated viral symptoms. Interestingly, transgenic overexpression of NbATG7 promoted the growth of N. benthamiana plants and enhanced plant resistance to TLCYnV. We further revealed that the C2 protein encoded by TLCYnV directly interacted with the ubiquitin-activating domain of ATG7. This interaction competitively disrupted the ATG7-ATG8 binding in N. benthamiana and Solanum lycopersicum plants, thereby inhibiting autophagy activity. Furthermore, we uncovered that the C2-mediated autophagy inhibition mechanism was conserved in three other geminiviruses. In summary, we discovered a novel counter-defensive strategy employed by geminiviruses that enlists their C2 proteins as disrupters of ATG7-ATG8 interactions to defeat antiviral autophagy.


Asunto(s)
Begomovirus , Geminiviridae , Virosis , Proteínas de Plantas/metabolismo , China , Geminiviridae/metabolismo , Plantas/metabolismo , Begomovirus/genética , Begomovirus/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Autofagia/genética , Antivirales/metabolismo , Enfermedades de las Plantas/genética
5.
Insect Mol Biol ; 32(3): 240-250, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36571165

RESUMEN

Begomoviruses are a group of ssDNA viruses exclusively transmitted by the whitefly Bemisia tabaci and constrain vegetable production in the old and new worlds. Although multiple molecular determinants governing the transmission of begomoviruses by whiteflies have been unravelled, factors critical for transmission majorly remain unknown. In this study, a whitefly C2H2 zinc finger (ZF) protein, 100% identical to the vascular endothelial ZF-like gene (vezf) protein was confirmed to interact with the CP of both old- and new-world begomoviruses. This was achieved by a yeast two-hybrid (Y2H) system screening of a whitefly cDNA library using capsid protein (CP) of TYLCV as a bait. In silico annotation of vezf protein revealed that it contains a N-terminal ZF-associated domain (ZAD) alongside multiple C2H2 ZF domains on the C-terminal end. ZAD-ZF proteins form the most abundant class of transcription factors within insects. Herein, we validated the interaction of vezf with four diverse begomoviruses and its functional role in begomovirus transmission. Silencing of the vezf gene of B. tabaci led to increased retention of three diverse begomoviruses tested. Vezf is the first insect transcription factor identified to interact with plant viruses and can be crucial to understand the possible mechanisms by which plant viruses modulate transcription of their insect vectors during transmission.


Asunto(s)
Begomovirus , Dedos de Zinc CYS2-HIS2 , Hemípteros , Animales , Begomovirus/genética , Begomovirus/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Hemípteros/genética , Hemípteros/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Enfermedades de las Plantas
6.
Viruses ; 14(12)2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36560808

RESUMEN

Viruses are strict intracellular parasites that rely on the proteins encoded in their genomes for the effective manipulation of the infected cell that ultimately enables a successful infection. Viral proteins have to be produced during the cell invasion and takeover in sufficient amounts and in a timely manner. Silencing suppressor proteins evolved by plant viruses can boost the production of viral proteins; although, additional mechanisms for the regulation of viral protein production likely exist. The strongest silencing suppressor encoded by the geminivirus tomato yellow leaf curl virus (TYLCV) is V2: V2 suppresses both post-transcriptional and transcriptional gene silencing (PTGS and TGS), activities that are associated with its localization in punctate cytoplasmic structures and in the nucleus, respectively. However, V2 has been previously described to largely localize in the endoplasmic reticulum (ER), although the biological relevance of this distribution remains mysterious. Here, we confirm the association of V2 to the ER in Nicotiana benthamiana and assess the silencing suppression activity-independent impact of V2 on protein accumulation. Our results indicate that V2 has no obvious influence on the localization of ER-synthesized receptor-like kinases (RLKs) or ER quality control (ERQC)/ER-associated degradation (ERAD), but dramatically enhances the accumulation of the viral C4 protein, which is co-translationally myristoylated, possibly in proximity to the ER. By using the previously described V2C84S/86S mutant, in which the silencing suppression activity is abolished, we uncouple RNA silencing from the observed effect. Therefore, this work uncovers a novel function of V2, independent of its capacity to suppress silencing, in the promotion of the accumulation of another crucial viral protein.


Asunto(s)
Begomovirus , Geminiviridae , Proteínas Virales/metabolismo , Geminiviridae/genética , Geminiviridae/metabolismo , Begomovirus/genética , Begomovirus/metabolismo , Retículo Endoplásmico/metabolismo , Enfermedades de las Plantas , Nicotiana
7.
PLoS Pathog ; 18(10): e1010909, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36256684

RESUMEN

Viruses manipulate the cells they infect in order to replicate and spread. Due to strict size restrictions, viral genomes have reduced genetic space; how the action of the limited number of viral proteins results in the cell reprogramming observed during the infection is a long-standing question. Here, we explore the hypothesis that combinatorial interactions may expand the functional landscape of the viral proteome. We show that the proteins encoded by a plant-infecting DNA virus, the geminivirus tomato yellow leaf curl virus (TYLCV), physically associate with one another in an intricate network, as detected by a number of protein-protein interaction techniques. Importantly, our results indicate that intra-viral protein-protein interactions can modify the subcellular localization of the proteins involved. Using one particular pairwise interaction, that between the virus-encoded C2 and CP proteins, as proof-of-concept, we demonstrate that the combination of viral proteins leads to novel transcriptional effects on the host cell. Taken together, our results underscore the importance of studying viral protein function in the context of the infection. We propose a model in which viral proteins might have evolved to extensively interact with other elements within the viral proteome, enlarging the potential functional landscape available to the pathogen.


Asunto(s)
Begomovirus , Virus de Plantas , Solanum lycopersicum , Proteínas Virales/genética , Proteínas Virales/metabolismo , Proteoma/metabolismo , Enfermedades de las Plantas , Begomovirus/metabolismo , Virus de Plantas/metabolismo
8.
Int J Biol Macromol ; 205: 316-328, 2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35192905

RESUMEN

Conserved and multifunctional Geminivirus Replication-associated Protein (Rep) specifically recognizes the replication origin and initiates viral DNA replication. We report the X-ray crystallography-based structures of two complexes containing the N-terminal domain (5-117aa) of Tomato yellow leaf curl virus (TYLCV) Rep: the catalytically-dead Rep in complex with nonanucleotide ssDNA (Rep5-117 Y101F-ssDNA) as well as the catalytically-active phosphotyrosine covalent adduct (Rep5-117-ssDNA). These structures provide functional insight into the role of Rep in viral replication. Metal ions stabilize the DNA conformation by interacting with the phosphate group of adenine and thus promote formation of the catalytic center. Furthermore, we identified a compound that inhibits the binding of Rep to ssDNA and dsDNA and found that the addition of metal ions compromises the inhibitory effectiveness of this compound. This study demonstrates the mechanism of DNA recognition and cleavage process of viral Rep, emphasizing the role of metal ions.


Asunto(s)
Begomovirus , Solanum lycopersicum , Begomovirus/genética , Begomovirus/metabolismo , Replicación del ADN , ADN Viral/genética , ADN Viral/metabolismo , Solanum lycopersicum/genética , Replicación Viral/genética
9.
Plant Biotechnol J ; 20(6): 1069-1084, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35113475

RESUMEN

Artificial microRNA (amiRNA) technology has allowed researchers to direct efficient silencing of specific transcripts using as few as 21 nucleotides (nt). However, not all the artificially designed amiRNA constructs result in selection of the intended ~21-nt guide strand amiRNA. Selection of the miRNA guide strand from the mature miRNA duplex has been studied in detail in human and insect systems, but not so much for plants. Here, we compared a nuclear-replicating DNA viral vector (tomato mottle virus, ToMoV, based), a cytoplasmic-replicating RNA viral vector (tobacco mosaic virus, TMV, based), and a non-viral binary vector to express amiRNAs in plants. We then used deep sequencing and mutational analysis and show that when the structural factors caused by base mismatches in the mature amiRNA duplex were excluded, the nucleotide composition of the mature amiRNA region determined the guide strand selection. We found that the strand with excess purines was preferentially selected as the guide strand and the artificial miRNAs that had no mismatches in the amiRNA duplex were predominantly loaded into AGO2 instead of loading into AGO1 like the majority of the plant endogenous miRNAs. By performing assays for target effects, we also showed that only when the intended strand was selected as the guide strand and showed AGO loading, the amiRNA could provide the expected RNAi effects. Thus, by removing mismatches in the mature amiRNA duplex and designing the intended guide strand to contain excess purines provide better control of the guide strand selection of amiRNAs for functional RNAi effects.


Asunto(s)
Begomovirus , MicroARNs , Begomovirus/genética , Begomovirus/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Plantas Modificadas Genéticamente/genética , Purinas , Interferencia de ARN
10.
Viruses ; 14(2)2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35215816

RESUMEN

Alphasatellites, which encode only a replication-associated protein (alpha-Rep), are frequently found to be non-essential satellite components associated with begomovirus/betasatellite complexes, and their presence can modulate disease symptoms and/or viral DNA accumulation during infection. Our previous study has shown that there are three types of alphasatellites associated with begomovirus/betasatellite complexes in Yunnan province in China and they encode three corresponding types of alpha-Rep proteins. However, the biological functions of alpha-Reps remain poorly understood. In this study, we investigated the biological functions of alpha-Reps in post-transcriptional gene silencing (PTGS) and transcriptional gene silencing (TGS) using 16c and 16-TGS transgenic Nicotiana benthamiana plants. Results showed that all the three types of alpha-Rep proteins were capable of suppressing the PTGS and reversing the TGS. Among them, the alpha-Rep of Y10DNA1 has the strongest PTGS and TGS suppressor activities. We also found that the alpha-Rep proteins were able to increase the accumulation of their helper virus during coinfection. These results suggest that the alpha-Reps may have a role in overcoming host defense, which provides a possible explanation for the selective advantage provided by the association of alphasatellites with begomovirus/betasatellite complexes.


Asunto(s)
Begomovirus/metabolismo , Enfermedades de las Plantas/virología , Virus Satélites/metabolismo , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Begomovirus/química , Begomovirus/genética , China , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/virología , Virus Satélites/química , Virus Satélites/genética , Alineación de Secuencia , Nicotiana/genética , Nicotiana/virología , Proteínas Virales/química , Proteínas Virales/genética
11.
PLoS Pathog ; 17(9): e1009956, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34570833

RESUMEN

Autophagy is an evolutionarily conserved, lysosomal/vacuolar degradation mechanism that targets cell organelles and macromolecules. Autophagy and autophagy-related genes have been studied for their antiviral and pro-viral roles in virus-infected plants. Here, we demonstrate the pro-viral role of a selective autophagic receptor NbNBR1 in geminivirus-infected Nicotiana benthamiana plants. The ßC1 protein encoded by tomato yellow leaf curl China betasatellite (TYLCCNB) that is associated with tomato yellow leaf curl China virus (TYLCCNV) enhanced the expression level of NbNBR1. Then NbNBR1 interacted with ßC1 to form cytoplasmic granules. Interaction of NbNBR1 with ßC1 could prevent degradation of ßC1 by the NbRFP1, an E3 ligase. Overexpression of NbNBR1 in N. benthamiana plants increased ßC1 accumulation and promoted virus infection. In contrast, silencing or knocking out NbNBR1 expression in N. benthamiana suppressed ßC1 accumulation and inhibited virus infection. A single amino acid substitution in ßC1 (ßC1K4A) abolished its interaction with NbNBR1, leading to a reduced level of ßC1K4A. The TYLCCNV/TYLCCNBK4A mutant virus caused milder disease symptoms and accumulated much less viral genomic DNAs in the infected plants. Collectively, the results presented here show how a viral satellite-encoded protein hijacks host autophagic receptor NbNBR1 to form cytoplasmic granules to protect itself from NbRFP1-mediated degradation and facilitate viral infection.


Asunto(s)
Autofagia/fisiología , Begomovirus/metabolismo , Nicotiana/virología , Inmunidad de la Planta/fisiología , Proteínas Virales/metabolismo , Enfermedades de las Plantas/virología
12.
Cells ; 10(7)2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34359841

RESUMEN

Seed transmission is an important factor in the epidemiology of plant pathogens. Geminiviruses are serious pests spread in tropical and subtropical regions. They are transmitted by hemipteran insects, but a few cases of transmission through seeds were recently reported. Here, we investigated the tomato seed transmissibility of the begomovirus tomato yellow leaf curl Sardinia virus (TYLCSV), one of the agents inducing the tomato yellow leaf curl disease, heavily affecting tomato crops in the Mediterranean area. None of the 180 seedlings originating from TYLCSV-infected plants showed any phenotypic alteration typical of virus infection. Moreover, whole viral genomic molecules could not be detected in their cotyledons and true leaves, neither by membrane hybridization nor by rolling-circle amplification followed by PCR, indicating that TYLCSV is not a seed-transmissible pathogen for tomato. Examining the localization of TYLCSV DNA in progenitor plants, we detected the virus genome by PCR in all vegetative and reproductive tissues, but viral genomic and replicative forms were found only in leaves, flowers and fruit flesh, not in seeds and embryos. Closer investigations allowed us to discover for the first time that these embryos were superficially contaminated by TYLCSV DNA but whole genomic molecules were not detectable. Therefore, the inability of TYLCSV genomic molecules to colonize tomato embryos during infection justifies the lack of seed transmissibility observed in this host.


Asunto(s)
Begomovirus/genética , ADN Viral/genética , Flores/virología , Frutas/virología , Genoma Viral , Hojas de la Planta/virología , Solanum lycopersicum/virología , Begomovirus/metabolismo , Begomovirus/patogenicidad , ADN Viral/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Enfermedades de las Plantas/virología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Plantones/virología , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo
13.
Virology ; 562: 158-175, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34339930

RESUMEN

The Abutilon mosaic virus (AbMV) encodes a nuclear shuttle protein (NSP), and a movement protein (MP) which cooperatively accomplish viral DNA transport through the plant. Subcellular distribution patterns of fluorescent protein-tagged NSP and MP were tracked in Nicotiana benthamiana leaves in presence or absence of an AbMV infection using light microscopy. NSP was located within the nucleus and associated with early endosomes in the presence of MP. MP appeared at the plasma membrane, plasmodesmata and in motile vesicles, trafficking along the endoplasmic reticulum in an actin-dependent manner. MP and NSP did not co-localize and employed separate cellular pathways. Correspondingly, Förster resonance energy transfer analysis did not support physical interaction between NSP and MP. Time lapse movies illustrate the cellular dynamics of both proteins on their way around the nucleus and to the cell periphery and provide a first hint for the nuclear egress of NSP complexes.


Asunto(s)
Begomovirus/metabolismo , Proteínas de Movimiento Viral en Plantas/metabolismo , Proteínas Virales/metabolismo , Actinas/metabolismo , Membrana Celular/metabolismo , ADN Viral/metabolismo , Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Microscopía , Hojas de la Planta/virología , Plasmodesmos/metabolismo , Imagen de Lapso de Tiempo , Nicotiana/virología
14.
Arch Virol ; 166(6): 1691-1709, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33852083

RESUMEN

Geminiviruses have genomes composed of single-stranded DNA molecules and encode a rolling-circle replication (RCR) initiation protein ("Rep"), which has multiple functions. Rep binds to specific repeated DNA motifs ("iterons"), which are major determinants of virus-specific replication. The particular amino acid (aa) residues that determine the preference of a geminivirus Rep for specific iterons (i.e., the trans-acting replication "specificity determinants", or SPDs) are largely unknown, but diverse lines of evidence indicate that most of them are closely associated with the so-called RCR motif I (FLTYP), located in the first 12-19 aa residues of the protein. In this work, we characterized two strains of a novel begomovirus, rhynchosia golden mosaic Sinaloa virus (RhGMSV), that were incompatible in replication in pseudorecombination experiments. Systematic comparisons of the Rep proteins of both RhGMSV strains in the DNA-binding domain allowed the aa residues at positions 71 and 74 to be identified as the residues most likely to be responsible for differences in replication specificity. Residue 71 is part of the ß-5 strand structural element, which was predicted in previous studies to contain Rep SPDs. Since the Rep proteins encoded by both RhGMSV strains are identical in their first 24 aa residues, where other studies have mapped potential SPDs, this is the first study lending direct support to the notion that geminivirus Rep proteins contain separate SPDs in their N-terminal domain.


Asunto(s)
Begomovirus/clasificación , Begomovirus/metabolismo , Proteínas Virales/metabolismo , Replicación Viral/fisiología , Secuencia de Aminoácidos , Begomovirus/genética , Clonación Molecular , Fabaceae/virología , Genoma Viral , Filogenia , Hojas de la Planta/virología , Conformación Proteica , Virus Reordenados , Nicotiana/virología , Proteínas Virales/genética , Replicación Viral/genética
15.
Int J Mol Sci ; 22(4)2021 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-33668636

RESUMEN

Tomato is one of the major vegetable crops consumed worldwide. Tomato yellow leaf curl virus (TYLCV) and fungal Oidium sp. are devastating pathogens causing yellow leaf curl disease and powdery mildew. Such viral and fungal pathogens reduce tomato crop yields and cause substantial economic losses every year. Several commercial tomato varieties include Ty-5 (SlPelo) and Mildew resistance locus o 1 (SlMlo1) locus that carries the susceptibility (S-gene) factors for TYLCV and powdery mildew, respectively. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) is a valuable genome editing tool to develop disease-resistant crop varieties. In this regard, targeting susceptibility factors encoded by the host plant genome instead of the viral genome is a promising approach to achieve pathogen resistance without the need for stable inheritance of CRISPR components. In this study, the CRISPR/Cas9 system was employed to target the SlPelo and SlMlo1 for trait introgression in elite tomato cultivar BN-86 to confer host-mediated immunity against pathogens. SlPelo-knockout lines were successfully generated, carrying the biallelic indel mutations. The pathogen resistance assays in SlPelo mutant lines confirmed the suppressed accumulation of TYLCV and restricted the spread to non-inoculated plant parts. Generated knockout lines for the SlMlo1 showed complete resistance to powdery mildew fungus. Overall, our results demonstrate the efficiency of the CRISPR/Cas9 system to introduce targeted mutagenesis for the rapid development of pathogen-resistant varieties in tomato.


Asunto(s)
Begomovirus/metabolismo , Sistemas CRISPR-Cas , Resistencia a la Enfermedad/genética , Edición Génica , Enfermedades de las Plantas , Plantas Modificadas Genéticamente , Solanum lycopersicum , Genoma de Planta , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/microbiología , Solanum lycopersicum/virología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/virología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/microbiología , Plantas Modificadas Genéticamente/virología
16.
PLoS Pathog ; 16(12): e1009053, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33270808

RESUMEN

Many circulative plant viruses transmitted by insect vectors are devastating to agriculture worldwide. The midgut wall of vector insects represents a major barrier and at the same time the key gate a circulative plant virus must cross for productive transmission. However, how these viruses enter insect midgut cells remains poorly understood. Here, we identified an endocytic receptor complex for begomoviruses in the midgut cells of their whitefly vector. Our results show that two whitefly proteins, BtCUBN and BtAMN, compose a receptor complex BtCubam, for which BtCUBN contributes a viral-binding region and BtAMN contributes to membrane anchorage. Begomoviruses appear to be internalized together with BtCubam via its interaction with the 12-19 CUB domains of BtCUBN via clathrin-dependent endocytosis. Functional analysis indicates that interruption of BtCUBN and BtAMN lead to reduction of virus acquisition and transmission by whitefly. In contrast, CUBN-begomovirus interaction was not observed in two non-competent whitefly-begomovirus combinations. These observations suggest a major role of the specific endocytic receptor in facilitating viral entry into vector midgut cells.


Asunto(s)
Begomovirus/metabolismo , Hemípteros/virología , Animales , Begomovirus/patogenicidad , Proteínas de la Cápside/metabolismo , Sistema Digestivo/metabolismo , Sistema Digestivo/virología , Proteínas de Drosophila/metabolismo , Endocitosis/fisiología , Hemípteros/metabolismo , Insectos Vectores/metabolismo , Insectos Vectores/virología , Neuropéptidos/metabolismo , Enfermedades de las Plantas/virología , Virus de Plantas , Receptores de Superficie Celular/metabolismo , Virión/metabolismo
17.
J Virol ; 94(20)2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32759325

RESUMEN

Geminiviruses induce severe developmental abnormalities in plants. The C4/AC4 protein encoded by geminiviruses, especially those not associated with betasatellites, functions as a symptom determinant by hijacking a shaggy-related protein kinase (SKη) and interfering with its functions. Here, we report that the symptom determinant capabilities of C4 proteins encoded by different geminiviruses are divergent and tightly correlated with their abilities to interact with SKη from Nicotiana benthamiana (NbSKη). Swap of the minidomain of tomato leaf curl Yunnan virus (TLCYnV) C4 critical for the interaction with NbSKη increases the capacities of the C4 proteins encoded by tomato yellow leaf curl China virus (TYLCCNV) or tobacco curly shoot virus (TbCSV) to induce symptoms. The severity of symptoms induced by recombinant TYLCCNV C4 or TbCSV C4 correlates with the amount of NbSKη tethered to the plasma membrane by the viral protein. Moreover, a recombinant TYLCCNV harboring the minidomain of TLCYnV C4 induces more-severe symptoms than wild-type TYLCCNV. Thus, this study provides new insights into the mechanism by which different geminivirus-encoded C4 proteins possess divergent symptom determinant capabilities.IMPORTANCE Geminiviruses constitute the largest group of known plant viruses and cause devastating diseases in many economically important crops worldwide. Geminivirus-encoded C4 protein is a multifunctional protein. In this study, we found that the C4 proteins from different geminiviruses showed differential abilities to interact with NbSKη, which correlated with their symptom determinant capabilities. Moreover, a minidomain of tomato leaf curl Yunnan virus (TLCYnV) C4 that is indispensable for interacting with NbSKη and tethering it to the plasma membrane, thus leading to symptom induction, was determined. Supporting these findings, a recombinant geminivirus carrying the minidomain of TLCYnV C4 induced more-severe symptoms than the wild type. Therefore, these findings expand the scope of the interaction of NbSKη and C4-mediated symptom induction and thus contribute to further understanding of the multiple roles of C4.


Asunto(s)
Begomovirus/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Nicotiana/metabolismo , Nicotiana/virología , Proteínas de Plantas/metabolismo , Proteínas Virales/metabolismo , Begomovirus/genética , Glucógeno Sintasa Quinasa 3/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Proteínas de Plantas/genética , Unión Proteica , Nicotiana/genética , Proteínas Virales/genética
18.
Virus Res ; 286: 198069, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32574679

RESUMEN

Mixed virus infection in host plants can differentially alter the plant phenotype, influence vector fitness, and affect virus acquisition and inoculation by vectors than single-virus infection. Vector acquisition of multiple viruses from multiple host plants could also differentially affect vector fitness and virus inoculation than acquisition of one virus. Whitefly-virus pathosystems in the southern United States include both the above-stated facets. For the first facet, this study examined the effects of single and mixed infection of cucurbit leaf crumple virus (CuLCrV, a begomovirus) and cucurbit yellow stunting disorder virus (CYSDV, a crinivirus) infecting squash on whitefly (Bemisia tabaci Gennadius MEAM1) host preference and fitness. Mixed infection of CuLCrV and CYSDV in squash plants severely altered their phenotype than single infection. The CYSDV load was reduced in mixed-infected squash plants than in singly-infected plants. Consequently, whiteflies acquired reduced amounts of CYSDV from mixed-infected plants than singly-infected plants. No differences in CuLCrV load were found between singly- and mixed-infected squash plants, and acquisition of CuLCrV by whiteflies did not vary between singly- and mixed-infected squash plants. Both singly- and mixed-infected plants similarly affected whitefly preference, wherein non-viruliferous and viruliferous (CuLCrV and/or CYSDV) whiteflies preferred non-infected plants over infected plants. The fitness study involving viruliferous and non-viruliferous whiteflies revealed no differences in developmental time and fecundity. For the second facet, this study evaluated the effects of individual or combined acquisition of tomato-infecting tomato yellow leaf curl virus (TYLCV, a begomovirus) and squash-infecting CuLCrV on whitefly host preference and fitness. Whiteflies that acquired both CuLCrV and TYLCV had significantly lower CuLCrV load than whiteflies that acquired CuLCrV alone, whereas TYLCV load remained unaltered when acquired individually or in conjunction with CuLCrV. Whitefly preference was not affected following individual or combined virus acquisition. Viruliferous (CuLCrV and/or TYLCV) whiteflies preferred to settle on non-infected tomato and squash plants. The mere presence of CuLCrV and/or TYLCV in whiteflies did not affect their fitness. Taken together, these results indicate that mixed infection of viruses in host plants and acquisition of multiple viruses by the vector could have implications for virus accumulation, virus acquisition, vector preference, and epidemics that sometimes are different from single-virus infection or acquisition.


Asunto(s)
Aptitud Genética , Insectos Vectores/genética , Insectos Vectores/virología , Interacciones Microbianas , Virus de Plantas/metabolismo , Animales , Begomovirus/genética , Begomovirus/metabolismo , Coinfección/virología , Crinivirus/genética , Crinivirus/metabolismo , Femenino , Hemípteros/virología , Masculino , Virus de Plantas/clasificación
19.
J Vis Exp ; (156)2020 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-32090987

RESUMEN

Begomoviruses (genus Begomovirus, family Geminiviridae) are transmitted by whiteflies of the Bemisia tabaci complex in a persistent, circulative manner. Considering the extensive damage caused by begomoviruses to crop production worldwide, it is imperative to understand the interaction between begomoviruses and their whitefly vector. To do so, localization and quantification of the virus in the vector tissues is crucial. Here, using tomato yellow leaf curl virus (TYLCV) as an example, we describe a detailed protocol to localize begomoviruses in whitefly midguts, primary salivary glands, and ovaries by immunofluorescence. The method is based on the use of specific antibodies against a virus coat protein, dye-labeled secondary antibodies, and a confocal microscope. The protocol can also be used to colocalize begomoviral and whitefly proteins. We further describe a protocol for the quantification of TYLCV in whitefly midguts, primary salivary glands, hemolymph, and ovaries by quantitative PCR (qPCR). Using primers specifically designed for TYLCV, the protocols for quantification allow the comparison of the amount of TYLCV in different tissues of the whitefly. The described protocol is potentially useful for the quantification of begomoviruses in the body of a whitefly and a virus-infected plant. These protocols can be used to analyze the circulation pathway of begomoviruses in the whitefly or as a complement to other methods to study whitefly-begomovirus interactions.


Asunto(s)
Begomovirus , Hemípteros/virología , Animales , Begomovirus/genética , Begomovirus/metabolismo , Proteínas de la Cápside/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente , Tracto Gastrointestinal/virología , Hemolinfa/virología , Ovario/virología , Reacción en Cadena en Tiempo Real de la Polimerasa , Glándulas Salivales/virología
20.
Mol Plant Pathol ; 21(4): 571-588, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32078762

RESUMEN

Begomoviruses of the Geminiviridae are usually transmitted by whiteflies and rarely by mechanical inoculation. We used tomato leaf curl New Delhi virus (ToLCNDV), a bipartite begomovirus, to address this issue. Most ToLCNDV isolates are not mechanically transmissible to their natural hosts. The ToLCNDV-OM isolate, originally identified from a diseased oriental melon plant, is mechanically transmissible, while the ToLCNDV-CB isolate, from a diseased cucumber plant, is not. Genetic swapping and pathological tests were performed to identify the molecular determinants involved in mechanical transmission. Various viral infectious clones were constructed and successfully introduced into Nicotiana benthamiana, oriental melon, and cucumber plants by Agrobacterium-mediated inoculation. Mechanical transmissibility was assessed via direct rub inoculation with sap prepared from infected N. benthamiana. The presence or absence of viral DNA in plants was validated by PCR, Southern blotting, and in situ hybridization. The results reveal that mechanical transmissibility is associated with the movement protein (MP) of viral DNA-B in ToLCNDV-OM. However, the nuclear shuttle protein of DNA-B plays no role in mechanical transmission. Analyses of infectious clones carrying a single amino acid substitution reveal that the glutamate at amino acid position 19 of MP in ToLCNDV-OM is critical for mechanical transmissibility. The substitution of glutamate with glycine at this position in the MP of ToLCNDV-OM abolishes mechanical transmissibility. In contrast, the substitution of glycine with glutamate at the 19th amino acid position in the MP of ToLCNDV-CB enables mechanical transmission. This is the first time that a specific geminiviral movement protein has been identified as a determinant of mechanical transmissibility.


Asunto(s)
Begomovirus/metabolismo , Begomovirus/patogenicidad , Geminiviridae/metabolismo , Geminiviridae/patogenicidad , Southern Blotting , Cucumis sativus/virología , Cucurbitaceae/virología , Hibridación in Situ , Enfermedades de las Plantas/virología , Nicotiana/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA