RESUMEN
Benzene, toluene, ethylbenzene, and xylene (BTEX) pollution poses a serious threat to public health and the environment because of its respiratory and neurological effects, carcinogenic properties, and adverse effects on air quality. BTEX exposure is a matter of grave concern in India owing to the growing vehicular and development activities, necessitating the assessment of atmospheric concentrations and their spatial variation. This paper presents a comprehensive assessment of ambient concentrations and spatiotemporal variations of BTEX in India. The study investigates the correlation of BTEX with other criteria pollutants and meteorological parameters, aiming to identify interrelationships and diagnostic indicators for the source characterization of BTEX emissions. Additionally, the paper categorizes various regions in India according to the Air Quality Index (AQI) based on BTEX pollution levels. The results reveal that the northern zone of India exhibits the highest levels of BTEX pollution compared to central, eastern, and western regions. In contrast, the southern zone experiences the least pollution with BTEX. Seasonal analysis indicates that winter and post-monsoon periods, characterized by lower temperatures, are associated with higher BTEX levels due to the accumulation of localized emissions. When comparing the different zones in India, high traffic emissions and localized activities, such as solvent use and solvent evaporation, are found to be the primary sources of BTEX. The findings of the current study aid in source characterization and identification, and better understanding of the region's air quality problems, which helps in the development of focused BTEX pollution reduction and control strategies.
Asunto(s)
Contaminantes Atmosféricos , Derivados del Benceno , Benceno , Monitoreo del Ambiente , Tolueno , Xilenos , India , Contaminantes Atmosféricos/análisis , Xilenos/análisis , Derivados del Benceno/análisis , Tolueno/análisis , Benceno/análisis , Contaminación del Aire/estadística & datos numéricos , Contaminación del Aire/análisis , Estaciones del Año , Atmósfera/químicaRESUMEN
The chemical components of the e-liquids and aerosols contained in electronic nicotine delivery systems (ENDSs), better known as vapes, were evaluated. The analytical technique used was gas chromatography-mass spectrometry, where the extraction and injection methods were established in this study. The work consisted of the analysis of twenty samples of disposable electronic cigarettes prefilled with new e-liquid, of a known brand, flavor, volume, and, in some of them, the percentage of nicotine and the number of puffs per device were indicated on the label. We detected the presence of many substances (at a qualitative and semi-quantitative level), and we achieved the quantification of benzene, toluene, and xylenes (BTX), dangerous substances that cause severe damage to health. Several of the e-liquids and aerosols present BTX concentrations above the permissible exposure limit (PEL), recommended by the Occupational Safety and Health Administration (OSHA): benzene in aerosol samples 80% > PEL, and toluene in aerosol samples 45% > PEL. The number of chemical compounds found in the samples increases from 13 to 167, the average being 52 compounds for the water extraction method, 42 compounds for the methanol extraction method of e-liquids, and 107 compounds for the direct aerosol analysis. It is a fact that many of those compounds, especially BTX, can cause serious effects on human health, affecting the respiratory, digestive, cardiovascular, pulmonary, and immune systems, as well as the brain. Therefore, the use of these devices should be considered with caution, since the substances and their chemical nature may pose significant health risks to both users and those exposed to secondhand emissions.
Asunto(s)
Aerosoles , Benceno , Sistemas Electrónicos de Liberación de Nicotina , Cromatografía de Gases y Espectrometría de Masas , Tolueno , Xilenos , Cromatografía de Gases y Espectrometría de Masas/métodos , Aerosoles/análisis , México , Xilenos/análisis , Tolueno/análisis , Benceno/análisisRESUMEN
There are many pollutants in the air that can be harmful to human health. Their impact varies based on factors such as the kind of pollutant, duration of exposure, and concentration levels. Volatile organic compounds are particularly significant carcinogens among the various pollutants present in the air. Consequently, people who are exposed to these harmful airborne pollutants suffer permanent consequences. This study examines the properties of BTEX compounds-benzene, toluene, ethylbenzene, and xylene-as well as their sources and risk assessments throughout a one-year period from March 21, 2019, to March 20, 2020, in Karaj, Iran's largest industrialized city. First, utilizing a geographical information system that covered the entire city, 17 locations within Karaj were chosen for this purpose. Then, samplings were carried out in the spring, summer, autumn, and winter months with the NIOSH 1501 method. During the research period, 68 samples of BTEX compounds were collected. The adsorption of these contaminants on the activated carbon adsorbents was performed using an environmental sampling pump with a flow rate of 0.2 L/min for 1 h. The samples were subsequently prepared using a carbon disulfide solution and injected into a GC-FID for analysis. In this research, the average annual concentration of BTEX compounds in the air of Karaj city was obtained at 33.01 µg/m3. Autumn and spring had the highest and lowest average concentrations of BTEX compounds, respectively. In addition, sites 5 and 8 had the highest average annual concentrations of these pollutants. The sourcing conducted in this study showed that transportation and fuel consumption, as well as industries, were the primary sources of pollution in the city. In addition, the excess lifetime cancer risk was higher than the guideline value in some sites and lower in others. Furthermore, the Hazard Quotients were lower than 1, but in general, the citizens of Karaj were at serious risk from exposure to this group of pollutants.
Asunto(s)
Contaminantes Atmosféricos , Derivados del Benceno , Ciudades , Estaciones del Año , Tolueno , Compuestos Orgánicos Volátiles , Medición de Riesgo , Humanos , Contaminantes Atmosféricos/análisis , Derivados del Benceno/análisis , Tolueno/análisis , Compuestos Orgánicos Volátiles/análisis , Monitoreo del Ambiente/métodos , Irán , Benceno/análisis , Xilenos/análisis , IndustriasRESUMEN
The presence of BTEX (Benzene, Toluene, Ethylbenzene, and Xylene) compounds in beauty salons has raised concerns about potential health risks. This study aimed to measure the levels of BTEX compounds in the air of beauty salons in Lahijan, Iran and assess the associated health risks. Air samples were collected from 15 beauty salons, and the concentrations of BTEX compounds were measured according to 1501 NIOSH standard method. The results showed that the mean concentrations of benzene (20.62 µg/m3), toluene (18.3 µg/m3), ethylbenzene (38.36 µg/m3), and O and P-xylene (27.35, 23.6 µg/m3) were above the recommended levels. The indoor to outdoor ratios for benzene, toluene, ethylbenzene, O and P-xylene were 3.04, 2.36, 3.75, 4.89, and 6.54, respectively. Also, the toluene/benzene (T/B) ratio in indoor and outdoor was 20.9 and 2.68 respectively. Almost half of the technicians (49.12%) reported adverse health effects, including joint pain, itchy eyes and nose, and respiratory allergies. The IARC guideline suggests that there is a potential risk of cancer development for individuals in all salons with LCR values exceeding 10-6, but the HQ index values indicate no non-carcinogenic risk. The findings suggest that beauty salon workers and customers are at risk of developing health problems from exposure to BTEX compounds. Effective risk management strategies, such as proper ventilation, use of personal protective equipment, and substitution of harmful chemicals with safer alternatives, to minimize exposure and protect the health of salon workers and customers recommended.
Asunto(s)
Derivados del Benceno , Exposición Profesional , Tolueno , Xilenos , Humanos , Derivados del Benceno/análisis , Derivados del Benceno/efectos adversos , Medición de Riesgo , Tolueno/análisis , Tolueno/efectos adversos , Xilenos/análisis , Xilenos/toxicidad , Xilenos/efectos adversos , Exposición Profesional/efectos adversos , Exposición Profesional/análisis , Irán , Benceno/análisis , Benceno/toxicidad , Benceno/efectos adversos , Femenino , Adulto , Contaminación del Aire Interior/análisis , Contaminación del Aire Interior/efectos adversos , Monitoreo del Ambiente , Masculino , Belleza , Persona de Mediana Edad , Contaminantes Ocupacionales del Aire/análisis , Contaminantes Ocupacionales del Aire/efectos adversos , Contaminantes Ocupacionales del Aire/toxicidadRESUMEN
Benzene, toluene, ethylbenzene, and the xylene isomers (m, p, and o-xylene) (BTEX) are known for their harmful effects on human health and have been extensively studied across various environmental matrices. However, quantifying BTEX in exhaust gases poses challenges due to the complexity of the matrices. In this study, we investigated a method development strategy involving solid-phase microextraction (SPME) and gas chromatography coupled with a dielectric barrier discharge ionization Detector (BID) for quantifying BTEX emitted from internal combustion engines operating at idle. Sampling was conducted using 1.0 L Tedlar bags, followed by withdrawal of aliquots and dilution with atmospheric air using a novel device (graduated vial) designed for gaseous samples. The SPME-GC-BID method was developed and validated for the conditions: BTEX extraction in CAR/PDMS 75 µm fiber at a contact time of 5.0 min at a temperature of 27 °C, followed by GC-BID analysis. Method validation to ensure the reliability of quantitative results used the merit figures e.g., limits of detection (LOD) and quantification (LOQ), precision, and accuracy (recovery). LOD varied from 0.194 to 0.340 mg m-3, LOQ varied from 0.587 to 1.03 mg m-3, precision ranged from 1.47 to 7.14 %, and recovery varied from 82.34 to 109.5 %. BTEX concentration in vehicle exhaust varied from 3.40 to 16.4 mg m-3. The results showed, concerning the figures of merit analyzed, that the SPME-GC-BID method provides good sensibility, precision, and accuracy for evaluating the presence of BTEX in the exhaust of internal combustion engines, contributing to the understanding of health risks associated with vehicle emissions.
Asunto(s)
Contaminantes Atmosféricos , Derivados del Benceno , Benceno , Límite de Detección , Microextracción en Fase Sólida , Emisiones de Vehículos , Xilenos , Derivados del Benceno/análisis , Emisiones de Vehículos/análisis , Microextracción en Fase Sólida/métodos , Xilenos/análisis , Contaminantes Atmosféricos/análisis , Benceno/análisis , Cromatografía de Gases/métodos , Reproducibilidad de los Resultados , Tolueno/análisisRESUMEN
BACKGROUND: Chemicals emitted from industrial facilities include known or suspected mammary carcinogens and endocrine disruptors, but epidemiologic studies are limited. We evaluated associations between air emissions of multiple carcinogenic chemicals and postmenopausal breast cancer risk in a large prospective U.S. METHODS: We used the U.S. Environmental Protection Agency's Toxics Release Inventory to estimate historical airborne emissions (1987-1995) of 19 known and probable carcinogens for participants enrolled (1995-1996) in the NIH-AARP Diet and Health Study. Among 170,402 women, 15,124 breast cancers were diagnosed through 2018. We constructed inverse distance- and wind-weighted average emissions metrics within 1, 2, 5, and 10 km of the enrollment address for each chemical. We estimated multivariable adjusted HRs and 95 % CIs for categories (quartiles, tertiles, medians) of each chemical in association with breast cancer overall and separately by type (invasive, ductal carcinoma in situ) and estrogen receptor (ER) status. RESULTS: We observed an association between benzene emissions and breast cancer risk that was strongest at 1 km (HRQ4 vs. non-exposed = 2.06, 95 %CI: 1.34-3.17; p-trend = 0.001). The magnitude of the association weakened with increasing distance (2 km HRQ4 vs. non-exposed = 1.17, 95 %CI=0.92-1.49; p-trend = 0.19; 5 km HRQ4 vs. non-exposed = 1.05, 95 %CI=0.94-1.16; p-trend = 0.37; 10 km HRQ4 vs. non-exposed = 0.95, 95 %CI=0.89-1.02; p-trend = 0.19) and appeared to be most relevant for invasive rather than intraductal disease. Overall risk was also elevated for vinyl chloride at 5 km (HR≥median vs. non-exposed = 1.20, 95 %CI=1.01-1.43; p-trend = 0.04), but not 2 km or 10 km. We observed suggestive associations for asbestos, trichloroethylene, and styrene in different subgroup analyses, but risk patterns were not clear across distances. Associations with other chemicals were generally null, with limited evidence of heterogeneity by disease type or ER status. CONCLUSIONS: An increased risk of breast cancer associated with relatively high levels of industrial benzene emissions warrants additional study, particularly among participants with diverse sociodemographic characteristics that live in areas with higher density of industrial facilities.
Asunto(s)
Contaminación del Aire , Neoplasias de la Mama , Posmenopausia , Humanos , Femenino , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/inducido químicamente , Persona de Mediana Edad , Estados Unidos/epidemiología , Anciano , Contaminación del Aire/estadística & datos numéricos , Contaminantes Atmosféricos/análisis , Estudios Prospectivos , Carcinógenos/análisis , Factores de Riesgo , National Institutes of Health (U.S.) , Exposición a Riesgos Ambientales/estadística & datos numéricos , Benceno/análisisRESUMEN
The ubiquitous use of mosquito repellents in homes across Asia, Africa, and South America is related with human exposure to indoor volatile organic compounds (VOCs). There are three primary types of mosquito repellents: those in the form of coils, mats, and liquids. The repellent mechanisms of these products are distinct, resulting in the generation of varying types of VOCs during the repellent process. In this study, the emission characteristics of commercial coil-, mat-, and liquid-type mosquito repellents were observed in a laboratory chamber using real-time measurement. A previously developed personal passive sampler, ePTFE PS, was used to quantify personal exposure to indoor VOCs while 86 volunteers habitually used those three representative types for 3 h in their residence. Notable increase of indoor benzene was observed for coil- and mat-type mosquito repellents, while α-pinene concentration increased significantly following the use of liquid-type mosquito repellent. The average incremental cancer risks for benzene were 10-6 to 10-4 for adults following the use of coil- and mat-type mosquito repellents. The average non-cancer risks for all chemicals were <1 after the use of three types of mosquito repellents. Considering the potential human health risks associated with byproducts (e.g., particulate matter or carbon monoxide from incomplete combustion) emitted after mosquito coil use, further research on this topic is warranted.
Asunto(s)
Contaminación del Aire Interior , Repelentes de Insectos , Compuestos Orgánicos Volátiles , Repelentes de Insectos/análisis , Compuestos Orgánicos Volátiles/análisis , Humanos , Contaminación del Aire Interior/análisis , Contaminación del Aire Interior/estadística & datos numéricos , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis , Vivienda , Exposición a Riesgos Ambientales/análisis , Exposición a Riesgos Ambientales/estadística & datos numéricos , Medición de Riesgo , Adulto , Benceno/análisis , Culicidae/efectos de los fármacosRESUMEN
This study aims to identify sources of groundwater contamination in a refinery area using integrated compound-specific stable isotope analysis (CSIA), oil fingerprinting techniques, hydrogeological data, and distillation analysis. The investigations focused on determination of the origin of benzene, toluene, ethylbenzene, and xylenes (BTEX), and aliphatic hydrocarbons as well. Groundwater and floating oil samples were collected from extraction wells for analysis. Results indicate presence of active leaks in both the northern and southern zones. In the northern zone, toluene was found to primarily originate from oil products like aviation turbine kerosene (ATK or aviation fuel), kerosene, regular gasoline, and diesel fuel. Additionally, stable isotope ratios of carbon and hydrogen for ethylbenzene, o-xylene (ortho xylene) and p-xylene (para xylene) in zone A suggested the pollution originated from gasoline within the northern zone. The origin of super gasoline (with higher octane) identified in southern zone using δ13C and δ2H values of toluene in the floating oil and groundwater samples. Further, biodegradation of toluene likely occurred in southern zone according to δ13C and δ2H. The findings underscore the critical importance of integrating CSIA and fingerprinting techniques to effectively address the challenges of source identification and relying solely on each method independently is insufficient. Accordingly, comparing the GC-MS results of floating oil samples with ATK and jet fuel (JP4) standards can be effectively utilized for source differentiation. However, this method showed no practical application to distinguish different types of diesel or gasoline. The accuracy and reliability of source identification of BTEX compounds may significantly improve when hydrogeological data incorporates with stable isotopes analysis. Additionally, the results of this study will elevate the procedures for fuel-related contaminants source identification of the polluted groundwater that is crucial to develop effective remediation strategies.
Asunto(s)
Benceno , Agua Subterránea , Tolueno , Contaminantes Químicos del Agua , Xilenos , Agua Subterránea/química , Xilenos/análisis , Benceno/análisis , Tolueno/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Derivados del Benceno/análisisRESUMEN
Initial volatile concentration (Cs0) is a crucial parameter for the migration and diffusion of volatile organic pollutants (VOCs) from the soil to the atmosphere. The acquisition of Cs0 is, however, time-consuming and labor-intensive. This study developed a prediction model for Cs0 based on theoretical analysis and experimental simulations. The model was established by correlating the molecular kinetic and sorption potential energy. The pore structure and pore size distribution of the soil were analyzed based on the fractal theory of porous media, followed by calculating the sorption potential energy corresponding to each pore size. It was observed that the pore size distribution of soil influenced BTEX (benzene, toluene, ethylbenzene, and xylene) volatilization by impacting sorption potential energy. The soil parameters, such as organic matter and soil moisture content, and the initial concentration and physical properties of BTEX were coupled to the prediction model to ensure its practicability. Red soil was finally used to verify the accuracy and applicability of the model. The experimental and predicted values' maximum relative and root-mean-square errors were determined to be 24.2% and 11.7%, respectively. The model provides a simple, rapid, and accurate assessment of soil vapor emission content due to BTEX contamination. This study offers an economical and practical method for quantifying the amount of volatile BTEX in contaminated sites, providing a reference for its monitoring, control, and subsequent remediation.
Asunto(s)
Derivados del Benceno , Benceno , Contaminantes del Suelo , Suelo , Tolueno , Compuestos Orgánicos Volátiles , Xilenos , Contaminantes del Suelo/análisis , Contaminantes del Suelo/química , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química , Tolueno/química , Tolueno/análisis , Volatilización , Benceno/química , Benceno/análisis , Derivados del Benceno/química , Derivados del Benceno/análisis , Suelo/química , Xilenos/química , Xilenos/análisis , Adsorción , Modelos Químicos , Monitoreo del Ambiente/métodosRESUMEN
BACKGROUND: In the regeneration of waste oil, a strategical technological process for the European Union circular economy action plan, exhausted oils are regenerated to produce high performing oil bases. Aim of this work was to assess the exposure to benzene in plant workers during ordinary activities. METHODS: 59 workers, potentially exposed to benzene, and 9 administrative workers from an Italian plant were monitored for the whole work shift with personal air samplers; urinary benzene (BEN-U) and S-phenyl mercapturic acid (SPMA) were measured by mass spectrometry methods in end-shift urine samples. Different job tasks were identified among workers. RESULTS: Median (minimum-maximum) airborne exposures to benzene were <0.9 (<0.9-6.3) and <0.9 (<0.9-0.9) µg/m3, BEN-U and SPMA levels were 0.094 (<0.015-3.095) µg/L and 0.15 (<0.10-9.67) µg/g crt and 0.086 (0.034-0.712) µg/L and <0.10 (<0.10-3.19) µg/g creatinine in workers and administrative workers, respectively. No differences were found among job tasks and between workers and administrative workers, while higher levels were found in smokers than in non-smokers. For all job tasks, the exposure to benzene was always below occupational limit values. CONCLUSIONS: This study has investigated for the first time the exposure to benzene of workers employed in the re-refining of exhaust oil. The results showed that normal production activities in regenerating used oils do not pose a risk of exposure to benzene in workers.
Asunto(s)
Contaminantes Ocupacionales del Aire , Benceno , Monitoreo Biológico , Exposición Profesional , Humanos , Benceno/análisis , Exposición Profesional/análisis , Adulto , Masculino , Persona de Mediana Edad , Contaminantes Ocupacionales del Aire/análisis , Italia , Femenino , Industria del Petróleo y Gas , Acetilcisteína/orina , Acetilcisteína/análogos & derivadosRESUMEN
Despite demonstrated disparities in environmental chemical exposures by racial identity, no Canadian study has systematically assessed the feasibility of using a nationally representative dataset to examine differences in chemical concentrations by race. We assessed the feasibility and constraints of analysing chemical exposures in racial populations, including visible minorities and populations of Indigenous identity, using biomonitoring data collected through the Canadian Health Measures Survey (CHMS). Our primary objectives were to assess the ability to 1) generate geometric means and percentiles of chemical concentrations for racial populations by age or sex, 2) statistically compare concentrations among racial populations, and 3) calculate time trends of concentrations by race. We conducted these analyses for several priority chemicals: lead, cadmium, benzene, bisphenol A (BPA), and di(2-ethylhexyl) phthalate (DEHP). Survey participants self-identified as one of the following: White, Black, East and Southeast Asian, South Asian, Middle Eastern, Latin American, First Nations, Metis, and Inuit. Analyses were conducted for individual and combined cycles of the CHMS. Using data from the latest CHMS cycle in which each chemical was measured, we observed that sample sizes were sufficient to report geometric mean concentrations for all races except Inuit. Due to privacy considerations associated with small sample sizes, the 5th and 95th percentile concentrations could not be consistently reported for all racial populations in this analysis. While we were able to statistically compare concentrations among racial populations, the analysis was constrained by the limited number of statistical degrees of freedom available in a single CHMS cycle. Both of these constraints were alleviated by combining multiple cycles of data. The analysis of time trends was less subject to privacy and statistical limitations; we were able to calculate time trends of chemical concentrations for all racial populations. Our findings provide an important baseline for follow-up investigations of descriptive and etiological analyses of environmental chemical exposures and race in the CHMS.
Asunto(s)
Exposición a Riesgos Ambientales , Contaminantes Ambientales , Fenoles , Humanos , Canadá , Adulto , Femenino , Masculino , Persona de Mediana Edad , Exposición a Riesgos Ambientales/análisis , Adulto Joven , Adolescente , Anciano , Fenoles/análisis , Compuestos de Bencidrilo , Niño , Encuestas Epidemiológicas , Cadmio , Benceno/análisis , Dietilhexil Ftalato , Plomo/sangre , Grupos Raciales/estadística & datos numéricos , Preescolar , Lactante , Monitoreo BiológicoRESUMEN
Benzene is associated with diverse occupational and public health hazards. It exhibits an ability to rapidly permeate the skin and contaminate water and food sources, leading to dermal and ingestion exposures. Despite numerous studies examining the associations between benzene and various indicators of harm, the findings have yielded inconsistent results. Furthermore, relying solely on air concentration as a measure of benzene exposure is limited, as it fails to account for internal exposure dose and individual susceptibility. This study aimed to conduct a comprehensive review in order to present current knowledge on benzene biomarkers and their significance in evaluating exposure levels and associated health hazards. The search methodology adhered to the PRISMA guidelines and involved the application of specific inclusion and exclusion criteria across multiple databases including PubMed, Embase, and Web of Science. Two researchers independently extracted and evaluated the relevant data based on predetermined criteria. Following the screening process, a total of 80 articles were considered eligible out of the initially retrieved 1053 articles after undergoing screening and assessment for inclusion. As the level of exposure decreased, specific biomarkers demonstrated a gradual increase in limitations, including heightened background concentrations and vulnerability to confounding factors. The advancement of sampling and analysis techniques will yield new biomarkers. Additionally, when conducting practical work, it is crucial to employ a comprehensive utilization of diverse biomarkers while excluding individual metabolic variations and combined exposure factors.
Asunto(s)
Benceno , Biomarcadores , Exposición Profesional , Benceno/análisis , Benceno/toxicidad , Humanos , Exposición Profesional/análisis , Exposición Profesional/efectos adversos , Biomarcadores/análisisRESUMEN
The fate of volatile organic compounds (VOC) vapors in the unsaturated zone is the basis for evaluating the natural attenuation potential and vapor intrusion risk. Microcosm and column experiments were conducted to study the effects chemical speciation and soil types/properties on the fate of petroleum VOCs in unsaturated zone. The biodegradation and total attenuation rates of the seven VOCs obtained by microcosm experiments in black soil and yellow earth were also generally higher than those in floodplain soil, lateritic red earth, and quartz sand. The VOC vapors in floodplain soil, lateritic red earth, and quartz sand showed slow total attenuation rates (<0.3 d-1). N-pentane, methylcyclopentane, and methylcyclohexane showed lower biodegradation rates than octane and three monoaromatic hydrocarbons. Volatilization into the atmosphere and biodegradation are two important natural attenuation paths for VOCs in unsaturated soil columns. The volatilization loss fractions of different volatile hydrocarbons in all five unsaturated soils were generally in the order: n-pentane (93.5%-97.8%) > methylcyclopentane (77.2%-85.5%) > methylcyclohexane (53.5%-69.2%) > benzene (17.1%-73.3%) > toluene (0-45.7%) > octane (1.9%-34.2%) > m-xylene (0-5.7%). The fractions by volatilization into the atmosphere of all seven hydrocarbons in quartz sand, lateritic red earth, and floodplain soil were close and higher compared to the yellow earth and black soil. Overall, this study illustrated the important roles chemical speciation and soil properties in determining the vapor-phase transport and natural attenuation of VOCs in the unsaturated zone.
Asunto(s)
Biodegradación Ambiental , Petróleo , Contaminantes del Suelo , Suelo , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química , Petróleo/análisis , Suelo/química , Contaminantes del Suelo/análisis , Contaminantes del Suelo/química , Adsorción , Volatilización , Pentanos/química , Pentanos/análisis , Octanos/química , Tolueno/química , Tolueno/análisis , Benceno/análisis , Benceno/químicaRESUMEN
Benzene, as a common volatile organic compound, represents serious risk to human health and environment even at low level concentration. There is an urgent concern on visualized, sensitive and real time detection of benzene gases. Herein, by doping Fe3+ and graphene quantum dots (GQDs), a cellulose nanocrystal (CNC) chiral nematic film was designed with dual response of photonic colors and fluorescence to benzene gas. The chiral nematic CNC/Fe/GQDs film could respond to benzene gas changes by reversible motion. Moreover, chiral nematic film also displays reversible responsive to humidity changes. The resulting CNC/Fe/GQDs chiral nematic film showed excellent response performance at benzene gas concentrations of 0-250 mg/m3. The maximal reflection wavelength film red shifted from 576 to 625 nm. Furthermore, structural color of CNC/Fe/GQDs chiral nematic film change at 44 %, 54 %, 76 %, 87 %, and 99 % relative humidity. Interestingly, due to the stability of GQDs to water molecules, CNC/Fe/GQDs chiral nematic film exhibit fluorescence response to benzene gas even in high humidity (RH = 99 %) environment. Besides, we further developed a smartphone-based response network system for quantitively determinization and signal transformation. This work provides a promising routine to realize a new benzene gas response regime and promotes the development of real-time benzene gas detection.
Asunto(s)
Benceno , Celulosa , Nanopartículas , Celulosa/química , Benceno/química , Benceno/análisis , Nanopartículas/química , Puntos Cuánticos/química , Grafito/química , Fluorescencia , Gases/análisis , Gases/química , Color , FotonesRESUMEN
Burning incenses and scented candles may provide harmful chemicals. Although many studies have evaluated volatile organic chemicals emitted by their use and related health risks, extension of our understanding for guiding appropriate use under various use conditions is necessary. In this study, emission characteristics of commercial incenses and scented candles were evaluated in a laboratory chamber using real-time measurement and the time-weighted average exposure concentrations of monoaromatic compounds and monoterpenes were assessed using passive samplers while volunteers living in a studio apartment use them. After burning incense, the average levels of benzene increased from 1.4 to 100 µg m-3. The presence of a wood core in commercial incense products was the main cause of high benzene emission by burning them although the increase in benzene was also influenced by factors such as the brand of the products, the number of incense sticks burned, the duration of each burning session, and ventilation period. Electrical warming of scented candles increased the levels of monoterpenes by factors of 16-30 on average. Considering the emission characteristics found in this study, exposure to benzene and monoterpenes could be mitigated by cautious use of those products in residential areas.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Benceno , Monitoreo del Ambiente , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , Contaminación del Aire Interior/análisis , Contaminación del Aire Interior/estadística & datos numéricos , Monitoreo del Ambiente/métodos , Benceno/análisis , Contaminantes Atmosféricos/análisis , Vivienda , Humanos , Monoterpenos/análisis , Odorantes/análisisRESUMEN
As a carcinogenic and highly neurotoxic hazardous gas, benzene vapor is particularly difficult to be distinguished in BTEX (benzene, toluene, ethylbenzene, xylene) atmosphere and be detected in low concentrations due to its chemical inertness. Herein, we develop a depth-related pore structure in Cu-TCPP-Cu to thermodynamically and kinetically enhance the adsorption of benzene vapor and realize the detection of ultralow-temperature benzene gas. We find that the in-plane π electronic nature and proper pore sizes in Cu-TCPP-Cu can selectively induce the adsorption and diffusion of BTEX. Interestingly, the theoretical calculations (including density functional theory (DFT) and grand canonical Monte Carlo (GCMC) simulations) exhibit that benzene molecules are preferred to adsorb and array as a consecutive arrangement mode in the Cu-TCPP-Cu pore, while the TEX (toluene, ethylbenzene, xylene) dominate the jumping arrangement model. The differences in distribution behaviors can allow adsorption and diffusion of more benzene molecules within limited room. Furthermore, the optimal pore-depth range (60-65 nm) of Cu-TCPP-Cu allows more exposure of active sites and hinders the gas-blocking process. The optimized sensor exhibits ultrahigh sensitivity to benzene vapor (155 Hz/µg@1 ppm), fast response time (less than 10 s), extremely low limit of detection (65 ppb), and excellent selectivity (83%). Our research thus provides a fundamental understanding to design and optimize two-dimensional metal-organic framework (MOF)-based gas sensors.
Asunto(s)
Benceno , Cobre , Límite de Detección , Estructuras Metalorgánicas , Termodinámica , Benceno/análisis , Benceno/química , Cobre/química , Estructuras Metalorgánicas/química , Adsorción , Cinética , Teoría Funcional de la Densidad , Gases/análisis , Gases/químicaRESUMEN
Structural firefighters are exposed to a complex set of contaminants and combustion byproducts, including volatile organic compounds (VOCs). Additionally, recent studies have found structural firefighters' skin may be exposed to multiple chemical compounds via permeation or penetration of chemical byproducts through or around personal protective equipment (PPE). This mannequin-based study evaluated the effectiveness of four different PPE conditions with varying contamination control measures (incorporating PPE interface design features and particulate blocking materials) to protect against ingress of several VOCs in a smoke exposure chamber. We also investigated the effectiveness of long-sleeve base layer clothing to provide additional protection against skin contamination. Outside gear air concentrations were measured from within the smoke exposure chamber at the breathing zone, abdomen, and thigh heights. Personal air concentrations were collected from mannequins under PPE at the same general heights and under the base layer at abdomen and thigh heights. Sampled contaminants included benzene, toluene, styrene, and naphthalene. Results suggest that VOCs can readily penetrate the ensembles. Workplace protection factors (WPFs) were near one for benzene and toluene and increased with increasing molecular weight of the contaminants. WPFs were generally lower under hoods and jackets compared to under pants. For all PPE conditions, the pants appeared to provide the greatest overall protection against ingress of VOCs, but this may be due in part to the lower air concentrations toward the floor (and cuffs of pants) relative to the thigh-height outside gear concentrations used in calculating the WPFs. Providing added interface control measures and adding particulate-blocking materials appeared to provide a protective benefit against less-volatile chemicals, like naphthalene and styrene.
Asunto(s)
Contaminantes Ocupacionales del Aire , Bomberos , Naftalenos , Exposición Profesional , Ropa de Protección , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , Exposición Profesional/prevención & control , Exposición Profesional/análisis , Contaminantes Ocupacionales del Aire/análisis , Humanos , Benceno/análisis , Tolueno/análisis , Equipo de Protección Personal , Estireno/análisis , Maniquíes , Humo/análisis , Lugar de TrabajoRESUMEN
Introduction: In Nigeria, because of increasing population, urbanization, industrialization, and auto-mobilization, petrol is the most everyday non-edible commodity, and it is the leading petroleum product traded at the proliferating Nigeria's petrol stations (NPSs). However, because of inadequate occupational health and safety (OHS) regulatory measures, working at NPSs exposes petrol station workers (PSWs) to a large amount of hazardous benzene, toluene, ethylbenzene, and xylene (BTEX) compounds. Methods: Studies on BTEX exposures among Nigerian PSWs are scarce. Thus, constraints in quantifying the health risks of BTEX limit stakeholders' ability to design practical risk assessment and risk control strategies. This paper reviews studies on the OHS of Nigerian PSWs at the NPSs. Results: Although knowledge, attitude, and practices on OHS in NPSs vary from one Nigeria's study setting to another, generally, safety practices, awareness about hazards and personal protective equipment (PPE), and the use of PPE among PSWs fell below expectations. Additionally, air quality at NPSs was poor, with a high content of BTEX and levels of carbon monoxide, hydrogen sulfide, particulate matter, and formaldehyde higher than the World Health Organization guideline limits. Discussion: Currently, regulatory bodies' effectiveness and accountability in safeguarding OHS at NPSs leave much to be desired. Understanding the OHS of NPSs would inform future initiatives, policies, and regulations that would promote the health and safety of workers at NPSs. However, further studies need to be conducted to describe the vulnerability of PSWs and other Nigerians who are occupationally exposed to BTEX pollution. More importantly, controlling air pollution from hazardous air pollutants like BTEX is an essential component of OHS and integral to attaining the Sustainable Development Goals (SDG) 3, 7, and 11.
Asunto(s)
Derivados del Benceno , Benceno , Exposición Profesional , Pueblo de África Occidental , Humanos , Benceno/análisis , Xilenos/análisis , Tolueno/análisis , Nigeria , Exposición Profesional/análisis , Monitoreo del AmbienteRESUMEN
Gasoline station attendants are exposed to numerous chemicals that might have genotoxic and carcinogenic potential, such as benzene in fuel vapor and particulate matter and polycyclic aromatic hydrocarbons in vehicle exhaust emission. According to IARC, benzene and diesel particulates are Group 1 human carcinogens, and gasoline has been classified as Group 2A "possibly carcinogenic to humans." At gas stations, self-service is not implemented in Turkey; fuel-filling service is provided entirely by employees, and therefore they are exposed to those chemicals in the workplace during all working hours. Genetic monitoring of workers with occupational exposure to possible genotoxic agents allows early detection of cancer. We aimed to investigate the genotoxic damage due to exposures in gasoline station attendants in Turkey. Genotoxicity was evaluated by the Comet, chromosomal aberration, and cytokinesis-block micronucleus assays in peripheral blood lymphocytes. Gasoline station attendants (n = 53) had higher tail length, tail intensity, and tail moment values than controls (n = 61). In gasoline station attendants (n = 46), the frequencies of chromatid gaps, chromosome gaps, and total aberrations were higher compared with controls (n = 59). Increased frequencies of micronuclei and nucleoplasmic bridges were determined in gasoline station attendants (n = 47) compared with controls (n = 40). Factors such as age, duration of working, and smoking did not have any significant impact on genotoxic endpoints. Only exposure increased genotoxic damage in gasoline station attendants independently from demographic and clinical characteristics. Occupational exposure-related genotoxicity risk may increase in gasoline station attendants who are chronically exposed to gasoline and various chemicals in vehicle exhaust emissions.