RESUMEN
From a perspective focused on phyto-nutraceuticals, alkaloids are considered to be the most significant metabolites, as they exhibit a broad range of pharmacological applications. Therefore, it is essential, to conduct a thorough investigation of the extraction techniques employed and to optimize the overall process. Considering this, we delved into tailor-made natural deep eutectic solvents coupled with ultrasonic-assisted extraction and macroporous resins aided recovery of therapeutics alkaloids from Thalictrum foliolosum DC. The extraction parameters including duty cycle (X1), extraction time (X2), water content (X3), and liquid-to-solid ratio (X4) were optimized through response surface methodology. Under the optimal extraction conditions [duty cycle- 61 %, ultrasonication extraction time- 10.35 min, water content- 30.51 %, and liquid-to-solid ratio- 30 mL/g], the yield of berberine (11.91 ± 0.12 mg/g DW), berbamine (11.85 ± 0.16 mg/g DW), magnoflorine (6.06 ± 0.05 mg/g DW), and palmatine (2.53 ± 0.015 mg/g DW) were found to be near the model prediction. Further, adsorption/desorption characteristics were investigated, and the results highlight AB-8 resin as most effective for the recovery of berberine and palmatine, while, XAD-7HP resin is best suited for berbamine and magnoflorine. FT-IR analysis shows similar spectra among the purified extracts with significantly (p < 0.05) higher antioxidant and anti-glycemic activities. In conclusion, the developed method complies with the criteria of green extraction which can be harnessed as a natural antioxidant in pharmaceutical and nutraceutical industries.
Asunto(s)
Alcaloides , Bencilisoquinolinas , Extractos Vegetales , Bencilisoquinolinas/química , Bencilisoquinolinas/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Alcaloides/química , Alcaloides/aislamiento & purificación , Suplementos Dietéticos/análisis , Solventes/química , Fraccionamiento Químico/métodosRESUMEN
Daurisoline, a bisbenzylisoquinoline alkaloid extracted from the rhizomes of Menispermum dauricum, exhibits diverse biological activities, encompassing antiplatelet, anti-inflammatory, neuroprotective, and antitumor properties. However, previous investigations have not comprehensively elucidated the metabolic profile and pathways of daurisoline in vivo. Using Ultra-High-Performance Liquid Chromatography with Q-Exactive Orbitrap Mass Spectrometry technology, we comprehensively investigated the metabolites of daurisoline in Sprague-Dawley rats, following intragastric administration. Data collection and analysis were enhanced through Full Scan MS/dd-MS2, in conjunction with parallel reaction monitoring, extracted ion chromatography, and diagnostic fragment ions. Sixty-three metabolites were detected and characterized, including sixty-two novel metabolites and coclaurine. This investigation elucidated the cleavage patterns and tissue distribution characteristics of the metabolism of daurisoline. Furthermore, in vivo reactions, including dehydrogenation, hydroxylation, methylation, sulfation and glucuronidation, were thoroughly examined. Investigating the metabolites of daurisoline in rats has deepened our understanding of its metabolism in vivo, aiding in elucidating its metabolic and pharmacological actions. This provides a valuable foundation for further research into its therapeutic efficacy.
Asunto(s)
Ratas Sprague-Dawley , Espectrometría de Masas en Tándem , Animales , Cromatografía Líquida de Alta Presión/métodos , Ratas , Masculino , Espectrometría de Masas en Tándem/métodos , Distribución Tisular , Bencilisoquinolinas/química , Bencilisoquinolinas/metabolismo , Bencilisoquinolinas/análisis , Rizoma/químicaRESUMEN
The aim of this study was to develop a sufficiently robust tetrandrine (Tet) nano-delivery system using acoustic resonance (AR) technology and freeze-drying technology. This system can effectively improve the solubility and dissolution properties of Tet, along with high stability and scale-up adaptability. Firstly, 54 stabilizers were screened simultaneously in a high-throughput manner with the help of AR technology to fully explore the optimal prescription space of tetrandrine nanosuspension (Tet-NS). The Plackett-Burman design was used to screen for critical variables severely affecting the quality of Tet-NS. The Box-Behnken design was used to investigate and optimize critical variables to obtain optimal nanosuspensions. The optimal prescription was successfully scaled up by 100 times, which was the initial exploration of its commercial scale production. Solidification studies have shown that formulations with 2.44% fructose as the cryoprotectant have excellent redispersibility. Compared with pure Tet, Tet in Tet-NS showed a significant increase in solubility and dissolution rate in water. Fourier transform infrared (FT-IR) demonstrated that no significant interactions occurred between the drug and excipients in Tet-NS. Powder x-ray diffraction analysis (PXRD) indicated that some of the Tet transformed into amorphous state during the preparation process. In short-term stability study, Tet-NS successfully maintained its physical stability. In summary, under the guidance of the QbD concept, this study rapidly developed Tet-NS using acoustic resonance technology, which can effectively improve the solubility and dissolution properties of Tet. During the development of Tet-NS, AR technology has demonstrated high particle size reduction capability, the ability to process multiple sets of formulations in parallel, and excellent scale-up capability. Meanwhile, the method and concept of this study are not limited to Tet, but also applicable to other poorly water-soluble drugs.
Asunto(s)
Bencilisoquinolinas , Liofilización , Solubilidad , Bencilisoquinolinas/química , Bencilisoquinolinas/administración & dosificación , Liofilización/métodos , Nanopartículas/química , Tamaño de la Partícula , Estabilidad de Medicamentos , Composición de Medicamentos/métodos , Acústica , Tecnología Farmacéutica/métodos , Liberación de Fármacos , Química Farmacéutica/métodos , Sistema de Administración de Fármacos con Nanopartículas/química , Excipientes/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Sistemas de Liberación de Medicamentos/métodos , Suspensiones , Difracción de Rayos X/métodosRESUMEN
Background: Dauricine is an important natural organic compound in Menispermum dauricum, which often has significant biological activity. Purpose: The purpose of this review is to systemically summarize and discuss the pharmacological activity and underlying mechanisms of dauricine in recent years. Methods: Web of Science (121 articles) and PubMed databases (97 articles) were used to search for articles related to "dauricine" published from 2000 to 2024. Meanwhile, we classified the pharmacological activity of dauricine by screening these articles. Results: Emerging evidence suggests that dauricine possesses numerous pharmacological activities, including neuroprotection, anti-cancer, anti-arrhythmia, anti-inflammatory and anti-diabetes. Conclusion: Dauricine has a potential value in the treatment of many diseases. We hope that this review will contribute to therapeutic development and future studies of dauricine.
Asunto(s)
Bencilisoquinolinas , Tetrahidroisoquinolinas , Humanos , Bencilisoquinolinas/farmacología , Bencilisoquinolinas/química , Tetrahidroisoquinolinas/farmacología , Tetrahidroisoquinolinas/química , Animales , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Antiarrítmicos/farmacología , Antiarrítmicos/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antineoplásicos/farmacología , Antineoplásicos/químicaRESUMEN
Several proteins from plant pathogenesis-related family 10 (PR10) are highly abundant in the latex of opium poppy and have recently been shown to play diverse and important roles in the biosynthesis of benzylisoquinoline alkaloids (BIAs). The recent determination of the first crystal structures of PR10-10 showed how large conformational changes in a surface loop and adjacent ß-strand are coupled to the binding of BIA compounds to the central hydrophobic binding pocket. A more detailed analysis of these conformational changes is now reported to further clarify how ligand binding is coupled to the formation and cleavage of an intermolecular disulfide bond that is only sterically allowed when the BIA binding pocket is empty. To decouple ligand binding from disulfide-bond formation, each of the two highly conserved cysteine residues (Cys59 and Cys155) in PR10-10 was replaced with serine using site-directed mutagenesis. Crystal structures of the Cys59Ser mutant were determined in the presence of papaverine and in the absence of exogenous BIA compounds. A crystal structure of the Cys155Ser mutant was also determined in the absence of exogenous BIA compounds. All three of these crystal structures reveal conformations similar to that of wild-type PR10-10 with bound BIA compounds. In the absence of exogenous BIA compounds, the Cys59Ser and Cys155Ser mutants appear to bind an unidentified ligand or mixture of ligands that was presumably introduced during expression of the proteins in Escherichia coli. The analysis of conformational changes triggered by the binding of BIA compounds suggests a molecular mechanism coupling ligand binding to the disruption of an intermolecular disulfide bond. This mechanism may be involved in the regulation of biosynthetic reactions in plants and possibly other organisms.
Asunto(s)
Disulfuros , Látex , Papaver , Proteínas de Plantas , Papaver/metabolismo , Papaver/química , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Disulfuros/química , Disulfuros/metabolismo , Látex/química , Látex/metabolismo , Cristalografía por Rayos X , Ligandos , Conformación Proteica , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Sitios de Unión , Bencilisoquinolinas/metabolismo , Bencilisoquinolinas/química , Unión ProteicaRESUMEN
Tetrandrine (TET) is a natural bis-benzylisoquinoline alkaloid isolated from Stephania species with a wide range of biological and pharmacologic activities; it mainly serves as an anti-inflammatory agent or antitumor adjuvant in clinical applications. However, limitations such as prominent hydrophobicity, severe off-target toxicity, and low absorption result in suboptimal therapeutic outcomes preventing its widespread adoption. Nanoparticles have proven to be efficient devices for targeted drug delivery since drug-carrying nanoparticles can be passively transported to the tumor site by the enhanced permeability and retention (EPR) effects, thus securing a niche in cancer therapies. Great progress has been made in nanocarrier construction for TET delivery due to their outstanding advantages such as increased water-solubility, improved biodistribution and blood circulation, reduced off-target irritation, and combinational therapy. Herein, we systematically reviewed the latest advancements in TET-loaded nanoparticles and their respective features with the expectation of providing perspective and guidelines for future research and potential applications of TET.
Asunto(s)
Bencilisoquinolinas , Disponibilidad Biológica , Nanopartículas , Solubilidad , Bencilisoquinolinas/química , Bencilisoquinolinas/administración & dosificación , Bencilisoquinolinas/farmacología , Bencilisoquinolinas/farmacocinética , Humanos , Nanopartículas/química , Animales , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Distribución Tisular , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/administración & dosificaciónRESUMEN
Background: Combination therapy offers superior therapeutic results compared to monotherapy. However, the outcomes of combination therapy often fall short of expectations, mainly because of increased toxicity from drug interactions and challenges in achieving the desired spatial and temporal distribution of drug delivery. Optimizing synergistic drug combination ratios to ensure uniform targeting and distribution across space and time, particularly in vivo, is a significant challenge. In this study, cRGD-coated liposomes encapsulating optimized synergistic cepharanthine (CEP; a chemotherapy drug) and IR783 (a phototherapy agent) were developed for combined chemotherapy and photothermal therapy in vitro and in vivo. Methods: An MTT assay was used to evaluate the combination index of CEP and IR783 in five cell lines. The cRGD-encapsulated liposomes were prepared via thin-film hydration, and unencapsulated liposomes served as controls for the loading of CEP and IR783. Fluorescence and photothermal imaging were used to assess the efficacy of CEP and IR783 encapsulated in liposomes at an optimal synergistic ratio, both in vitro and in vivo. Results: The combination indices of CEP and IR783 were determined in five cell lines. As a proof-of-concept, the optimal synergistic ratio (1:2) of CEP to IR783 in 4T1 cells was evaluated in vitro and in vivo. The average diameter of the liposomes was approximately 100 nm. The liposomes effectively retained the encapsulated CEP and IR783 in vitro at the optimal synergistic molar ratio for over 7 d. In vivo fluorescence imaging revealed that the fluorescence signal from cRGD-CEP-IR783-Lip was detectable at the tumor site at 4 h post-injection and peaked at 8 h. In vivo photothermal imaging of tumor-bearing mice indicated an increase in tumor temperature by 32°C within 200 s. Concurrently, cRGD-CEP-IR783-Lip demonstrated a significant therapeutic effect and robust biosafety in the in vivo antitumor experiments. Conclusion: The combination indices of CEP and IR783 were successfully determined in vitro in five cell lines. The cRGD-coated liposomes encapsulated CEP and IR783 at an optimal synergistic ratio, exhibiting enhanced antitumor effects and targeting upon application in vitro and in vivo. This study presents a novel concept and establishes a research framework for synergistic chemotherapy and phototherapy treatment.
Asunto(s)
Bencilisoquinolinas , Indoles , Liposomas , Terapia Fototérmica , Liposomas/química , Animales , Línea Celular Tumoral , Humanos , Femenino , Ratones , Indoles/química , Indoles/farmacocinética , Indoles/farmacología , Indoles/administración & dosificación , Terapia Fototérmica/métodos , Bencilisoquinolinas/química , Bencilisoquinolinas/farmacocinética , Bencilisoquinolinas/farmacología , Bencilisoquinolinas/administración & dosificación , Ratones Endogámicos BALB C , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacocinética , Sinergismo Farmacológico , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/farmacocinética , Antineoplásicos/administración & dosificación , Terapia Combinada/métodos , Supervivencia Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , BenzodioxolesRESUMEN
Benzylisoquinoline alkaloids are the major bioactive components in Chelidonium majus, a plant that has a long usage history for the treatment of gastrointestinal ailments in European and Asian phytomedicine. This study reports on the development and application of a supercritical fluid chromatography technique for the simultaneous qualitative and quantitative determination of seven benzylisoquinoline alkaloids in under six minutes using a Viridis BEH 2-EP column and a modifier comprising methanol with 30% acetonitrile and 20 mM ammonium formate. The method was fully validated according to ICH guidelines showing, e.g., excellent linearity (≥ 0.9997) and maximum deviations for intraday and inter-day precision of 2.99 and 2.76%, respectively. The new supercritical fluid chromatography assay was not only employed for the analysis of several C. majus samples but was also used for the subsequent development of a fast centrifugal partition chromatography technique, whereby five benzylisoquinoline alkaloids could be isolated within approximately 2.5 h, with only two of them, protopine and chelidonine, requiring an additional purification step. To achieve this, a solvent system composed of chloroform/methanol/0.3 M hydrochloric acid was used in descending mode. By injecting 500 mg of crude extract, stylopine (1.93 mg), sanguinarine (0.57 mg), chelidonine (1.29 mg), protopine (1.95 mg), and coptisine (7.13 mg) could be obtained. The purity of compounds was confirmed by supercritical fluid chromatography and MS.
Asunto(s)
Alcaloides , Bencilisoquinolinas , Chelidonium , Chelidonium/química , Bencilisoquinolinas/aislamiento & purificación , Bencilisoquinolinas/química , Bencilisoquinolinas/análisis , Alcaloides/aislamiento & purificación , Alcaloides/química , Alcaloides/análisis , Cromatografía con Fluido Supercrítico/métodos , Extractos Vegetales/química , Benzofenantridinas/química , Benzofenantridinas/aislamiento & purificación , Chelidonium majusRESUMEN
Triple negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, for which targeted therapy regimens are lacking. The traditional Chinese medicine Menispermum dauricum DC (M. dauricum) and its compounds have been reported to have antitumor activity against various cancers; however, their anti-TNBC activity is unknown. In this work, dauricine and N-desmethyldauricine from M. dauricum were separated and identified to have anti-TNBC via a multi-component bioactivity and structure-guided method. The cell counting kit 8 assay showed that dauricine and N-desmethyldauricine inhibited the proliferation of four tested TNBC cell lines, with half maximal inhibitory concentration values ranging from 5.01 µM to 13.16 µM. Further research suggested that N-desmethyldauricine induced cell apoptosis, arrested cell cycle progression in the G0/G1 phase, and inhibited cell migration. Western blot analysis revealed that the proapoptotic protein cleaved-poly-ADP-ribose polymerase 1 was upregulated, and the G0/G1 phase-related proteins cyclin-dependent kinase 2 and cyclin D1 and the migration-related protein matrix metallopeptidase 9 were downregulated. Furthermore, N-desmethyldauricine decreased the protein expression of p65, an important subunit of nuclear factor kappa-beta (NF-κB). Moreover, an antiproliferation assay of three-dimensional (3D) tumor spheroids showed that N-desmethyldauricine diminished cellâcell adhesion and suppressed the growth of TNBC 3D spheroids. Taken together, these findings indicate that N-desmethyldauricine inhibited the proliferation of TNBC cells and decreased the expression of p65 in the NF-κB pathway.
Asunto(s)
Apoptosis , Bencilisoquinolinas , Proliferación Celular , Regulación hacia Abajo , Menispermum , FN-kappa B , Transducción de Señal , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Bencilisoquinolinas/farmacología , Bencilisoquinolinas/química , Apoptosis/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Menispermum/química , Movimiento Celular/efectos de los fármacos , Femenino , Ciclina D1/metabolismo , TetrahidroisoquinolinasRESUMEN
Photodynamic therapy (PDT) shows great potential in precision tumor treatment. However, its efficacy is inhibited by the antioxidant defense capacities of tumor cells. To address this challenge, a near-infrared light-controlled nanosystem (UCNPs@mSiO2@Azo@ZnPc&BBM, PB@UA) was developed using emission-switchable upconversion nanoparticles (UCNPs) to independently and precisely control the release of berbamine (BBM) and activation of photosensitizer for enhanced PDT in deep tissues. Firstly, BBM release was triggered by exciting PB@UA at 980 nm. The BBM could inhibit the activities of antioxidant enzymes and disrupt calcium ion regulation, making the tumor cells more susceptible to ROS-induced cell death in the following PDT treatment. The PDT was initiated by irradiating the photosensitizers of ZnPc on PB@UA at 808 nm and achieved a tumor inhibition rate of 80.91 % in vivo, which is significantly higher than that of unique PDT (31.78 %) or BBM (11.29 %) treatment and demonstrates the potential of our strategy for improved cancer treatment.
Asunto(s)
Bencilisoquinolinas , Nanopartículas , Fotoquimioterapia , Fármacos Fotosensibilizantes , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/administración & dosificación , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Nanopartículas/química , Animales , Humanos , Bencilisoquinolinas/administración & dosificación , Bencilisoquinolinas/química , Bencilisoquinolinas/farmacología , Línea Celular Tumoral , Ratones Endogámicos BALB C , Ratones , Especies Reactivas de Oxígeno/metabolismo , Neoplasias/tratamiento farmacológico , Liberación de Fármacos , Femenino , Ratones DesnudosRESUMEN
Ulcerative colitis (UC) is a chronic inflammatory bowel disease with immune dysregulation affecting colon inflammatory response. Recent studies have highlighted that neutrophil extracellular traps (NETs) play an important role in the pathogenesis of UC. Berbamine (BBM), one of the bioactive ingredients extracted from Chinese herbal medicine Berberis vulgaris L, has attracted intensive attentions due to its significant anti-inflammatory activity and a marketing drug for treating leukemia in China. However, the exact role and potential molecular mechanism of BBM against UC remains elusive. In the present study, our results showed that BBM could markedly improve the pathological phenotype and the colon inflammation in mice with dextran sulfate sodium (DSS)-induced colitis. Then, comprehensive approaches combining network pharmacology and molecular docking analyses were employed to predict the therapeutic potential of BBM in treating UC by peptidyl-arginine deiminase 4 (PAD4), a crucial molecule involved in NETs formation. The molecular docking results showed BBM had a high affinity for PAD4 with a binding energy of -9.3 kcal/mol Moreover, PAD4 expression and NETs productions, including citrullination of histone H3 (Cit-H3), neutrophil elastase (NE), myeloperoxidase (MPO) in both neutrophils and colonic tissue were reduced after BBM administration. However, in the mice with DSS-induced colitis pretreated with GSK484, a PAD4-specific inhibitor, BBM could not further reduce disease related indexes, expression of PAD4 and NETs productions. Above all, the identification of PAD4 as a potential target for BBM to inhibit NETs formation in colitis provides novel insights into the development of BBM-derived drugs for the clinical management of UC.
Asunto(s)
Bencilisoquinolinas , Sulfato de Dextran , Trampas Extracelulares , Simulación del Acoplamiento Molecular , Arginina Deiminasa Proteína-Tipo 4 , Animales , Trampas Extracelulares/efectos de los fármacos , Trampas Extracelulares/metabolismo , Arginina Deiminasa Proteína-Tipo 4/metabolismo , Arginina Deiminasa Proteína-Tipo 4/antagonistas & inhibidores , Ratones , Bencilisoquinolinas/farmacología , Bencilisoquinolinas/uso terapéutico , Bencilisoquinolinas/química , Masculino , Colitis/tratamiento farmacológico , Colitis/inducido químicamente , Colitis/patología , Colitis/metabolismo , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Neutrófilos/inmunología , Colon/efectos de los fármacos , Colon/patología , Colon/metabolismo , Ratones Endogámicos C57BL , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/química , Modelos Animales de EnfermedadRESUMEN
Menispermaceae species, as early-diverging eudicots, can synthesize valuable benzylisoquinoline alkaloids (BIAs) like bisbenzylisoquinoline alkaloids (bisBIAs) and sinomenines with a wide range of structural diversity. However, the evolutionary mechanisms responsible for their chemo-diversity are not well understood. Here, a chromosome-level genome assembly of Menispermum dauricum is presented and demonstrated the occurrence of two whole genome duplication (WGD) events that are shared by Ranunculales and specific to Menispermum, providing a model for understanding chromosomal evolution in early-diverging eudicots. The biosynthetic pathway for diverse BIAs in M. dauricum is reconstructed by analyzing the transcriptome and metabolome. Additionally, five catalytic enzymes - one norcoclaurine synthase (NCS) and four cytochrome P450 monooxygenases (CYP450s) - from M. dauricum are responsible for the formation of the skeleton, hydroxylated modification, and C-O/C-C phenol coupling of BIAs. Notably, a novel leaf-specific MdCYP80G10 enzyme that catalyzes C2'-C4a phenol coupling of (S)-reticuline into sinoacutine, the enantiomer of morphinan compounds, with predictable stereospecificity is discovered. Moreover, it is found that Menispermum-specific CYP80 gene expansion, as well as tissue-specific expression, has driven BIA diversity in Menispermaceae as compared to other Ranunculales species. This study sheds light on WGD occurrences in early-diverging eudicots and the evolution of diverse BIA biosynthesis.
Asunto(s)
Bencilisoquinolinas , Sistema Enzimático del Citocromo P-450 , Menispermaceae , Bencilisoquinolinas/metabolismo , Bencilisoquinolinas/química , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Menispermaceae/genética , Menispermaceae/metabolismo , Menispermaceae/química , Alcaloides/metabolismo , Filogenia , Evolución Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMEN
During the last five decades, there has been tremendous development in our understanding of cancer biology and the development of new and novel therapeutics to target cancer. However, despite these advances, cancer remains the second leading cause of death across the globe. Most cancer deaths are attributed to the development of resistance to current therapies. There is an urgent and unmet need to address cancer therapy resistance. Tetrandrine, a bis-benzyl iso-quinoline, has shown a promising role as an anti-cancer agent. Recent work from our laboratory and others suggests that tetrandrine and its derivatives could be an excellent adjuvant to the current arsenal of anti-cancer drugs. Herein, we provide an overview of resistance mechanisms to current therapeutics and review the existing literature on the anti-cancer effects of tetrandrine and its potential use for overcoming therapy resistance in cancer.
Asunto(s)
Bencilisoquinolinas , Resistencia a Antineoplásicos , Neoplasias , Humanos , Bencilisoquinolinas/farmacología , Bencilisoquinolinas/química , Bencilisoquinolinas/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/uso terapéuticoRESUMEN
Six undescribed and six known bisbenzylisoquinoline alkaloids were isolated from the embryo of Nelumbo nucifera seeds. Their structures were fully characterized by a combination of 1H, 13C NMR, 2D NMR, and HRESIMS analyses, as well as ECD computational calculations. The antiadipogenic activity of 11 alkaloids was observed in a dose-responsive manner, leading to the suppression of lipid accumulation in 3T3-L1 cells. Luciferase assay and Western blot analysis showed that the active alkaloids downregulated peroxisome proliferator-activated receptor gamma (PPARγ, a key antiadipogenic receptor) expression in 3T3-L1 cells. Analysis of the structure-activity relationship unveiled that a 1R,1'S configuration in bisbenzylisoquinoline alkaloids led to a notable enhancement in antiadipogenic activity. The resistance level against lipid accumulation highlighted a consistent pattern with the suppressive effect on the PPARγ expression. These activity results indicate that alkaloids from the embryo of N. nucifera seeds have a potential of antiobesity effects through PPARγ downregulation.
Asunto(s)
Células 3T3-L1 , Adipogénesis , Alcaloides , Regulación hacia Abajo , Nelumbo , PPAR gamma , Semillas , Animales , Semillas/química , Ratones , Nelumbo/química , Alcaloides/farmacología , Alcaloides/química , Estructura Molecular , Regulación hacia Abajo/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Bencilisoquinolinas/farmacología , Bencilisoquinolinas/química , Bencilisoquinolinas/aislamiento & purificación , Relación Estructura-ActividadRESUMEN
Cocculus orbiculatus (C. orbiculatus), the root of plants belonging to the Menispermaceae family, has been extensively used to treat various diseases, including malaria and rheumatism. The main chemicals in these plants are alkaloids; however, the spatial distribution of these compounds within the plant roots remains undefined. This study aimed to visualize the spatial distribution of C. orbiculatus using air flow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI). In total, the spatial distribution of four aporphine alkaloids, five benzyltetrahydroisoquinoline alkaloids, six bisbenzylisoquinoline alkaloids, and one morphinane alkaloid in the cork layer, xylem, and ray of the root of C. orbiculatus was observed; the distribution characteristics of the different compounds in C. orbiculatus were significantly different. This study provides a visualized spatial distribution analysis method for the characterization of metabolites in the root tissue of C. orbiculatus and also provides valuable information for the specificity of the root of C. orbiculatus, which is beneficial for understanding its chemical separation, biosynthesis, and pharmacological activities.
Asunto(s)
Alcaloides , Bencilisoquinolinas , Cocculus , Espectrometría de Masa por Ionización de Electrospray/métodos , Cocculus/química , Estructura Molecular , Alcaloides/química , Bencilisoquinolinas/química , Plantas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodosRESUMEN
The antitumor effects of traditional drugs have received increasing attention and active antitumor components extracted from traditional drugs have shown good efficacy with minimal adverse events. Cepharanthine(CEP for short) is an active component derived from the Stephania plants of Menispermaceae, which can regulate multiple signaling pathways alone or in combination with other therapeutic drugs to inhibit tumor cell proliferation, induce apoptosis, regulate autophagy, and inhibit angiogenesis, thereby inhibiting tumor progression. Therefore, we retrieved studies concerning CEP's antitumor effects in recent years and summarized the antitumor mechanism and targets, in order to gain new insights and establish a theoretical basis for further development and application of CEP.
Asunto(s)
Antineoplásicos , Benzodioxoles , Bencilisoquinolinas , Bencilisoquinolinas/química , Bencilisoquinolinas/farmacología , Benzodioxoles/química , Benzodioxoles/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Humanos , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Tolerancia a Radiación/efectos de los fármacos , Autofagia/efectos de los fármacos , Angiogénesis/efectos de los fármacosRESUMEN
Botanical natural products have been widely consumed for their purported usefulness against COVID-19. Here, six botanical species from multiple sources and 173 isolated natural product compounds were screened for blockade of wild-type (WT) SARS-CoV-2 infection in human 293T epithelial cells overexpressing ACE-2 and TMPRSS2 protease (293TAT). Antiviral activity was demonstrated by an extract from Stephania tetrandra. Extract fractionation, liquid chromatography-mass spectrometry (LC-MS), antiviral assays, and computational analyses revealed that the alkaloid fraction and purified alkaloids tetrandrine, fangchinoline, and cepharanthine inhibited WT SARS-CoV-2 infection. The alkaloids and alkaloid fraction also inhibited the delta variant of concern but not WT SARS-CoV-2 in VeroAT cells. Membrane permeability assays demonstrate that the alkaloids are biologically available, although fangchinoline showed lower permeability than tetrandrine. At high concentrations, the extract, alkaloid fractions, and pure alkaloids induced phospholipidosis in 293TAT cells and less so in VeroAT cells. Gene expression profiling during virus infection suggested that alkaloid fraction and tetrandrine displayed similar effects on cellular gene expression and pathways, while fangchinoline showed distinct effects on cells. Our study demonstrates a multifaceted approach to systematically investigate the diverse activities conferred by complex botanical mixtures, their cell-context specificity, and their pleiotropic effects on biological systems.
Asunto(s)
Alcaloides , Antineoplásicos , Bencilisoquinolinas , COVID-19 , Stephania tetrandra , Stephania , Humanos , Stephania tetrandra/química , SARS-CoV-2 , Bencilisoquinolinas/farmacología , Bencilisoquinolinas/química , Alcaloides/farmacología , Alcaloides/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antivirales/farmacología , Stephania/químicaRESUMEN
(±)-Yanhusuomide A (1), a novel enantiomeric pair of ornithine-fused benzylisoquinoline, were characterized from the dried tubers of Corydalis yanhusuo, along with a biogenetically related intermediate oblongine (2). Yanhusuomide A features an unprecedented skeleton based on a benzylisoquinoline coupled with an ornithine derivative to form a rare 5,6-dihydro-4H-pyrido[3,4,5-de]quinazoline motif. Plausible biosynthetic pathway of 1 was proposed, and (±)-yanhusuomide A (1) presented potential inhibitory bioactivity against acetylcholinesterase (AChE) with IC50 = 14.07 ± 2.38 µM. The simulation of molecular docking displayed that 1 generated strong interaction with Asp-74 and Trp-86 residues of AChE through attractive charge of the quaternary nitrogen.
Asunto(s)
Bencilisoquinolinas , Corydalis , Acetilcolinesterasa , Bencilisoquinolinas/química , Corydalis/química , Simulación del Acoplamiento Molecular , Tubérculos de la Planta/químicaRESUMEN
A phytochemical investigation of the whole plants of T. delavayi led to the isolation of five new dimeric benzylisoquinoline alkaloids, thalidelavines A-E (1-5), together with six known congeners (6-11). The structures and absolute configurations of new compounds were established based on analyses of spectroscopic data, ECD calculations, and single crystal X-ray crystallography. Thalidelavines A-E (1-5) were structurally complex bisbenzylisoquinoline alkaloids with various configurations. These isolated alkaloids were evaluated for their cytotoxic and immunosuppressive effects. Among them, both 9 and 10 displayed significant cytotoxicities against T98G cell lines with an IC50 value of 2.1 µM, compared with the positive CPT-11 (IC50 = 3.0 µM). In addition, 5-7 showed remarkable immunosuppressive effects. These findings not only enrich the structural diversity of bisbenzylisoquinoline alkaloids, but also provide potential candidates for the further development of the antitumor and immunosuppressive agents.
Asunto(s)
Alcaloides , Bencilisoquinolinas , Thalictrum , Bencilisoquinolinas/farmacología , Bencilisoquinolinas/química , Thalictrum/química , Estructura Molecular , Alcaloides/farmacología , Alcaloides/química , Fitoquímicos/farmacologíaRESUMEN
Aurora A kinase (Aurora A) is a serine/threonine kinase regulating control of multiple events during cell-cycle progression. Playing roles in promoting proliferation and inhibiting cell death in cancer cells leads Aurora A to become a target for cancer therapy. It is overexpressed and associated with a poor prognosis in ovarian cancer. Improving cisplatin therapy outcomes remains an important issue for advanced-stage ovarian cancer treatment, and Aurora A inhibitors may improve it. In the present study, we identified natural compounds with higher docking scores than the known Aurora A ligand through structure-based virtual screening, including the natural compound fangchinoline, which has been associated with anticancer activities but not yet investigated in ovarian cancer. The binding and inhibition of Aurora A by fangchinoline were verified using cellular thermal shift and enzyme activity assays. Fangchinoline reduced viability and proliferation in ovarian cancer cell lines. Combination fangchinoline and cisplatin treatment enhanced cisplatin-DNA adduct levels, and the combination index revealed synergistic effects on cell viability. An in vivo study showed that fangchinoline significantly enhanced cisplatin therapeutic effects in OVCAR-3 ovarian cancer-bearing mice. Fangchinoline may inhibit tumor growth and enhance cisplatin therapy in ovarian cancer. This study reveals a novel Aurora A inhibitor, fangchinoline, as a potentially viable adjuvant for ovarian cancer therapy.