Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.844
Filtrar
1.
Chemosphere ; 358: 142242, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38710409

RESUMEN

The release of polycyclic aromatic hydrocarbons (PAHs) into the environment is posing a threat to ecosystems and human health. Benzo(a)pyrene (BaP) is considered a biomarker of PAH exposure and is classified as a Group 1 carcinogen. However, it was not known whether BaP is mutagenic, i.e. induces inherited germline mutations. In this study, we used a recently established method, which combines short-term mutation accumulation lines (MAL) with whole genome sequencing (WGS) to assess mutagenicity in the non-biting midge Chironomus riparius. The mutagenicity analysis was supplemented by an evaluation of the development of population fitness in three successive generations in the case of chronic exposure to BaP at a high concentration (100 µg/L). In addition, the level of ROS-induced oxidative stress was examined in vivo. Exposure to the higher BaP concentration led to an increase in germline mutations relative to the control, while the lower concentration showed no mentionable effect. Against expectations, BaP exposure decreased ROS-level compared to the control and is thus probably not responsible for the increased mutation rate. Likewise, the higher BaP concentration decreased fitness measured as population growth rate per day (PGR) significantly over all generations, without signs of rapid evolutionary adaptations. Our results thus highlighted that high BaP exposure may influence the evolutionary trajectory of organisms.


Asunto(s)
Benzo(a)pireno , Chironomidae , Estrés Oxidativo , Animales , Benzo(a)pireno/toxicidad , Chironomidae/efectos de los fármacos , Chironomidae/genética , Estrés Oxidativo/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Secuenciación Completa del Genoma , Mutágenos/toxicidad , Hidrocarburos Policíclicos Aromáticos/toxicidad , Pruebas de Mutagenicidad
2.
World J Microbiol Biotechnol ; 40(6): 180, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38668960

RESUMEN

DNA adduction in the model yeast Saccharomyces cerevisiae was investigated after exposure to the fungicide penconazole and the reference genotoxic compound benzo(a)pyrene, for validating yeasts as a tool for molecular toxicity studies, particularly of environmental pollution. The effect of the toxicants on the yeast's growth kinetics was determined as an indicator of cytotoxicity. Fermentative cultures of S. cerevisiae were exposed to 2 ppm of Penconazole during different phases of growth; while 0.2 and 2 ppm of benzo(a)pyrene were applied to the culture medium before inoculation and on exponential cultures. Exponential respiratory cultures were also exposed to 0.2 ppm of B(a)P for comparison of both metabolisms. Penconazole induced DNA adducts formation in the exponential phase test; DNA adducts showed a peak of 54.93 adducts/109 nucleotides. Benzo(a)pyrene induced the formation of DNA adducts in all the tests carried out; the highest amount of 46.7 adducts/109 nucleotides was obtained in the fermentative cultures after the exponential phase exposure to 0.2 ppm; whereas in the respiratory cultures, 14.6 adducts/109 nucleotides were detected. No cytotoxicity was obtained in any experiment. Our study showed that yeast could be used to analyse DNA adducts as biomarkers of exposure to environmental toxicants.


Asunto(s)
Benzo(a)pireno , Aductos de ADN , Contaminantes Ambientales , Saccharomyces cerevisiae , Aductos de ADN/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Benzo(a)pireno/toxicidad , Benzo(a)pireno/metabolismo , Contaminantes Ambientales/toxicidad , Contaminantes Ambientales/metabolismo , Mutágenos/toxicidad , Mutágenos/metabolismo , ADN de Hongos/genética , Fungicidas Industriales/toxicidad , Fungicidas Industriales/metabolismo
3.
Int Immunopharmacol ; 133: 111958, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38608441

RESUMEN

The composition, quantity, and function of peripheral blood mononuclear cells (PBMCs) are closely correlated with tumorigenesis. However, the mechanisms of PBMCs in lung cancer are not clear. Mitochondria are energy factories of cells, and almost all cellular functions rely on their energy metabolism level. The present study aimed to test whether the mitochondrial function of PBMCs directly determines their tumor immune monitoring function. We recruited 211 subjects, including 105 healthy controls and 106 patients with recently diagnosed with lung cancer. The model of lung carcinogenesis induced by BaP was used in animal experiment, and the Bap carcinogenic metabolite, Benzo(a)pyren-7,8-dihydrodiol-9,10-epoxide (BPDE), was used in cell experiment. We found that mitochondrial function of PBMCs decreased significantly in patients with new lung cancer, regardless of age. In vivo, BaP caused PBMC mitochondrial dysfunction in mice before the appearance of visible malignant tissue. Moreover, mitochondrial function decreased significantly in mice with lung cancers induced by BaP compared to those without lung cancer after BaP intervention. In vitro, BPDE also induced mitochondrial dysfunction and reduced the aggressiveness of PBMCs toward cancer cells. Furthermore, the changes in mitochondrial energy metabolism gene expression caused by BPDE are involved in this process. Thus, the mitochondrial function of PBMCs is a potential prognostic biomarker or therapeutic target to improve clinical outcomes in patients with lung cancer.


Asunto(s)
Leucocitos Mononucleares , Neoplasias Pulmonares , Mitocondrias , Humanos , Neoplasias Pulmonares/patología , Leucocitos Mononucleares/metabolismo , Animales , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Masculino , Femenino , Ratones , Persona de Mediana Edad , Carcinogénesis , Benzo(a)pireno/toxicidad , Metabolismo Energético , Anciano , Ratones Endogámicos C57BL
4.
Ecotoxicol Environ Saf ; 276: 116287, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38579532

RESUMEN

Benzo(a)pyrene (BaP) can be detected in the human placenta. However, little is known about the effects of BaP exposure on different placental cells under various conditions. In this study, we aimed to investigate the effects of BaP on mitochondrial function, pyrin domain-containing protein 3 (NLRP3) inflammasome, and apoptosis in three human trophoblast cell lines under normoxia, hypoxia, and inflammatory conditions. JEG-3, BeWo, and HTR-8/SVneo cell lines were exposed to BaP under normoxia, hypoxia, or inflammatory conditions for 24 h. After treatment, we evaluated cell viability, apoptosis, aryl hydrocarbon receptor (AhR) protein and cytochrome P450 (CYP) gene expression, mitochondrial function, including mitochondrial DNA copy number (mtDNAcn), mitochondrial membrane potential (ΔΨm), intracellular adenosine triphosphate (iATP), and extracellular ATP (eATP), nitric oxide (NO), NLPR3 inflammasome proteins, and interleukin (IL)-1ß. We found that BaP upregulated the expression of AhR or CYP genes to varying degrees in all three cell lines. Exposure to BaP alone increased ΔΨm in all cell lines but decreased NO in BeWo and HTR-8/SVneo, iATP in HTR-8/SVneo, and cell viability in JEG-3, without affecting apoptosis. Under hypoxic conditions, BaP did not increase the expression of AhR and CYP genes in JEG-3 cells but increased CYP gene expression in two others. Pro-inflammatory conditions did not affect the response of the 3 cell lines to BaP with respect to the expression of CYP genes and changes in the mitochondrial function and NLRP3 inflammasome proteins. In addition, in HTR-8/SVneo cells, BaP increased IL-1ß secretion in the presence of hypoxia and poly(I:C). In conclusion, our results showed that BaP affected mitochondrial function in trophoblast cell lines by increasing ΔΨm. This increased ΔΨm may have rescued the trophoblast cells from activation of the NLRP3 inflammasome and apoptosis after BaP treatment. We also observed that different human trophoblast cell lines had cell type-dependent responses to BaP exposure under normoxia, hypoxia, or pro-inflammatory conditions.


Asunto(s)
Apoptosis , Benzo(a)pireno , Supervivencia Celular , Proteína con Dominio Pirina 3 de la Familia NLR , Placenta , Receptores de Hidrocarburo de Aril , Trofoblastos , Humanos , Benzo(a)pireno/toxicidad , Placenta/efectos de los fármacos , Placenta/citología , Línea Celular , Femenino , Embarazo , Apoptosis/efectos de los fármacos , Trofoblastos/efectos de los fármacos , Trofoblastos/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Supervivencia Celular/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/efectos de los fármacos , Inflamasomas/metabolismo , Mitocondrias/efectos de los fármacos , Inflamación/inducido químicamente , Hipoxia de la Célula/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Sistema Enzimático del Citocromo P-450/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética
5.
Ecotoxicol Environ Saf ; 277: 116330, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38636406

RESUMEN

PIWI-interacting RNAs (piRNAs) is an emerging class of small non-coding RNAs that has been recently reported to have functions in infertility, tumorigenesis, and multiple diseases in humans. Previously, 5 toxicity pathways were proposed from hundreds of toxicological studies that underlie BaP-induced lung injuries, and a "Bottom-up" approach was established to identify small non-coding RNAs that drive BaP-induced pulmonary effects by investigating the activation of these pathways in vitro, and the expression of the candidate microRNAs were validated in tissues of patients with lung diseases from publications. Here in this study, we employed the "Bottom-up" approach to identifying the roles of piRNAs and further validated the mechanisms in vivo using mouse acute lung injury model. Specifically, by non-coding RNA profiling in in vitro BaP exposure, a total of 3 suppressed piRNAs that regulate 5 toxicity pathways were proposed, including piR-004153 targeting CYP1A1, FGFR1, ITGA5, IL6R, NGRF, and SDHA, piR-020326 targeting CDK6, and piR-020388 targeting RASD1. Animal experiments demonstrated that tail vein injection of respective formulated agomir-piRNAs prior to BaP exposure could all alleviate acute lung injury that was shown by histopathological and biochemical evidences. Immunohistochemical evaluation focusing on NF-kB and Bcl-2 levels showed that exogenous piRNAs protect against BaP-induced inflammation and apoptosis, which further support that the inhibition of the 3 piRNAs had an important impact on BaP-induced lung injuries. This mechanism-driven, endpoint-supported result once again confirmed the plausibility and efficiency of the approach integrating in silico, in vitro, and in vivo evidences for the purpose of identifying key molecules.


Asunto(s)
Benzo(a)pireno , ARN Interferente Pequeño , Animales , Ratones , Benzo(a)pireno/toxicidad , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/patología , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/patología , Masculino , Ratones Endogámicos C57BL , Humanos , ARN de Interacción con Piwi
6.
Mutat Res ; 828: 111855, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38569440

RESUMEN

Environmental and occupational exposure to polycyclic aromatic hydrocarbons (PAHs) is associated with adverse health effects in humans. Uncertainty exists regarding the causation of urinary bladder cancer by benzo[a]pyrene (B[a]P) due to a lack of sufficient data. In this work, we focused on in-vitro DNA damage and the formation of micronuclei and chromosomal aberrations as predictors of cancer risk, applying a wide range of dosages and time periods to quantify the onset, intensity, and duration of the response. We chose two urothelial cell types to compare susceptibility and the ability to increase the malignity of a pre-existing bladder cancer: a cancer cell line (T24) and a pooled sample of primary urinary bladder epithelia cells (PUBEC) from pigs. The highest level of DNA damage assessed by comet assay was observed following 24-h treatment in both cell types, whereas PUBEC cells were clearly more susceptible. Even 4-h treatment induced DNA damage in PUBEC cells with benchmark doses of 0.0027 µM B[a]P and 0.00023 µM after 4-h and 24-h exposure, respectively. Nearly no effect was observed for periods of 48 h. The frequency of micronucleus formation increased more markedly in T24 cells, particularly with 24-h treatment. In PUBEC cells, 48-h exposure notably induced the formation of nucleoplasmic bridges and nuclear buds. Even though only one biological replicate was studied due to the sophisticated study design, our results give a strong indication of the potential of B[a]P to induce and increase malignity in human-relevant cell types.


Asunto(s)
Benzo(a)pireno , Inestabilidad Cromosómica , Daño del ADN , Urotelio , Benzo(a)pireno/toxicidad , Daño del ADN/efectos de los fármacos , Proyectos Piloto , Animales , Urotelio/efectos de los fármacos , Urotelio/patología , Inestabilidad Cromosómica/efectos de los fármacos , Humanos , Porcinos , Pruebas de Micronúcleos , Relación Dosis-Respuesta a Droga , Aberraciones Cromosómicas , Neoplasias de la Vejiga Urinaria/inducido químicamente , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/genética , Factores de Tiempo , Ensayo Cometa , Línea Celular Tumoral , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/patología
7.
Reprod Toxicol ; 125: 108572, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38453095

RESUMEN

E-cigarettes use constitutes a source of thirdhand nicotine exposure. The increasing use of electronic cigarettes in homes and public places increases the risk of exposure of pregnant women to thirdhand nicotine. The effects of exposure of pregnant women to very low levels of nicotine have not been studied in humans but detrimental in experimental animals. The objective of this study is to investigate the effect of nanomolar concentrations of nicotine and its metabolite cotinine on the proliferation of JEG-3, a human trophoblast cell line. We also studied the proliferative effect of nanomolar concentrations of benzo[a]pyrene (B[a]P), a polycyclic hydrocarbon in tobacco smoke, for comparison. We treated JEG-3 cells in culture with nanomolar concentrations of nicotine, cotinine, and B[a]P. Their effect on cell proliferation was determined, relative to untreated cells, by MTT assay. Western blotting was used to assess the mitogenic signaling pathways affected by nicotine and cotinine. In contrast to the inhibitory effects reported with higher concentrations, we showed that nanomolar concentrations of nicotine and cotinine resulted in significant JEG-3 cell proliferation and a rapid but transient increase in levels of phosphorylated ERK and AKT, but not STAT3. Biphasic, non-monotonic effect on cell growth is characteristic of endocrine disruptive chemicals like nicotine. The mitogenic effects of nicotine and cotinine potentially contribute to increased villous epithelial thickness, seen in placentas of some smoking mothers. This increases the diffusion distance for oxygen and nutrients between mother and fetus, contributing to intrauterine growth restriction in infants of smoking mothers.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Contaminación por Humo de Tabaco , Lactante , Animales , Humanos , Femenino , Embarazo , Nicotina/toxicidad , Cotinina , Benzo(a)pireno/toxicidad , Línea Celular Tumoral , Proliferación Celular , Trofoblastos
8.
Carcinogenesis ; 45(5): 288-299, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38466106

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental carcinogens accountable to developing skin cancers. Recently, we reported that exposure to benzo[a]pyrene (B[a]P), a common PAH, causes epigenetic and metabolic alterations in the initiation, promotion and progression of non-melanoma skin cancer (NMSC). As a follow-up investigation, this study examines how dietary triterpenoid ursolic acid (UA) regulates B[a]P-driven epigenetic and metabolic pathways in SKH-1 hairless mice. Our results show UA intercepts against B[a]P-induced tumorigenesis at different stages of NMSC. Epigenomic cytosines followed by guanine residues (CpG) methyl-seq data showed UA diminished B[a]P-mediated differentially methylated regions (DMRs) profiles. Transcriptomic RNA-seq revealed UA revoked B[a]P-induced differentially expressed genes (DEGs) of skin cancer-related genes, such as leucine-rich repeat LGI family member 2 (Lgi2) and kallikrein-related peptidase 13 (Klk13), indicating UA plays a vital role in B[a]P-mediated gene regulation and its potential consequences in NMSC interception. Association analysis of DEGs and DMRs found that the mRNA expression of KLK13 gene was correlated with the promoter CpG methylation status in the early-stage comparison group, indicating UA could regulate the KLK13 by modulating its promoter methylation at an early stage of NMSC. The metabolomic study showed UA alters B[a]P-regulated cancer-associated metabolisms like thiamin metabolism, ascorbate and aldarate metabolism during the initiation phase; pyruvate, citrate and thiamin metabolism during the promotion phase; and beta-alanine and pathothenate coenzyme A (CoA) biosynthesis during the late progression phase. Taken together, UA reverses B[a]P-driven epigenetic, transcriptomic and metabolic reprogramming, potentially contributing to the overall cancer interception against B[a]P-mediated NMSC.


Asunto(s)
Benzo(a)pireno , Metilación de ADN , Epigénesis Genética , Ratones Pelados , Neoplasias Cutáneas , Triterpenos , Ácido Ursólico , Animales , Neoplasias Cutáneas/inducido químicamente , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/metabolismo , Benzo(a)pireno/toxicidad , Triterpenos/farmacología , Ratones , Epigénesis Genética/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Carcinógenos Ambientales/toxicidad , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Carcinogénesis/inducido químicamente
9.
Environ Toxicol Pharmacol ; 107: 104424, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38522766

RESUMEN

The role of benzo[a]pyrene (BaP), a prominent genotoxic carcinogen and aryl hydrocarbon receptor (AhR) ligand, in tumor progression remains poorly characterized. We investigated the impact of BaP on the process of epithelial-mesenchymal transition (EMT) in normal human bronchial epithelial HBEC-12KT cells. Early morphological changes after 2-week exposure were accompanied with induction of SERPINB2, IL1, CDKN1A/p21 (linked with cell cycle delay) and chemokine CXCL5. After 8-week exposure, induction of cell migration and EMT-related pattern of markers/regulators led to induction of further pro-inflammatory cytokines or non-canonical Wnt pathway ligand WNT5A. This trend of up-regulation of pro-inflammatory genes and non-canonical Wnt pathway constituents was observed also in the BaP-transformed HBEC-12KT-B1 cells. In general, transcriptional effects of BaP differed from those of TGFß1, a prototypical EMT inducer, or a model non-genotoxic AhR ligand, TCDD. Carcinogenic polycyclic aromatic hydrocarbons could thus induce a unique set of molecular changes linked with EMT and cancer progression.


Asunto(s)
Benzo(a)pireno , Células Epiteliales , Humanos , Benzo(a)pireno/toxicidad , Ligandos , Células Epiteliales/metabolismo , Daño del ADN , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo
10.
Exp Dermatol ; 33(3): e15044, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38465766

RESUMEN

Polycyclic aromatic hydrocarbons with the key substance benzo[a]pyrene (B[a]P) are widespread pollutants in the environment and at working places. Nonetheless, the exact underlying mechanisms of toxicological effects caused by B[a]P especially in absence and presence of UV irradiation remain uncertain. This study examines variations in exposure conditions: low B[a]P (4 nM), low B[a]P + UV and high B[a]P (4 µM), selected based on pertinent cytotoxicity assessments. Following cell viability evaluations post-treatment with varied B[a]P concentrations and UV irradiation, the identified concentrations underwent detailed metabolomic analysis via gas chromatography-mass spectrometry. Subsequently, resulting changes in metabolic profiles across these distinct exposure groups are comprehensively compared. Chemometric analyses showed modest regulation of metabolites after low B[a]P exposure compared to control conditions. High B[a]P and low B[a]P + UV exposure significantly increased regulation of metabolic pathways, indicating that additional UV irradiation plus low B[a]P is as demanding for the cells as higher B[a]P treatment alone. Further analysis revealed exposure-dependent regulation of glutathione-important for oxidative defence-and purine metabolism-important for DNA base synthesis. Only after low B[a]P, oxidative defence appeared to be able to compensate for B[a]P-induced perturbations of the oxidative homeostasis. In contrast, purine metabolism already responded towards adversity at low B[a]P. The metabolomic results give an insight into the mechanisms leading to the toxic response and confirm the strong effects of co-exposure on oxidative defence and DNA repair in the model studied.


Asunto(s)
Benzo(a)pireno , Hidrocarburos Policíclicos Aromáticos , Benzo(a)pireno/toxicidad , Benzo(a)pireno/metabolismo , Queratinocitos/metabolismo , Rayos Ultravioleta , Glutatión/metabolismo , Purinas/farmacología
11.
Chemosphere ; 353: 141637, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38462177

RESUMEN

Polyaromatic benzo[a]pyrene (B[a]P) is a toxic carcinogenic environmental pollutant, and the use of microorganisms to remediate B[a]P contamination is considered to be one of the most effective strategies. However, there is still a gap in studying the metabolic remodeling of microorganisms under B[a]P stress. In this study, our systematically investigated the effects of B[a]P on the metabolism of Bacillus subtilis MSC4 based on transcriptomic, molecular and biochemical analyses. The results showed that in response to B[a]P stress, MSC4 formed more biofilm matrix and endospores, the structure of the endospores also was changed, which led to a reduction in their resistance and made them more difficult to germinate. In addition to an increase in glycolysis activity, the activities of tricarboxylic acid cycle, pentose phosphate pathway and the electron transport chain were decreased. B[a]P stress forced MSC4 to strengthen arginine synthesis, urea cycle, and urea decomposition, meanwhile, synthesize more ribonucleotides. The activity of DNA replication, transcription activities and the expression of multiple ribosomal protein genes were reduced. Moreover, all of the reported enzymes involved in B[a]P degradation showed decreased transcript abundance, and the degradation of B[a]P caused significant up-regulation of the gene expression of the acid inducible enzyme OxdC and the synthesis of acetoin. In addition, the cytotoxicity of B[a]P to bacteria was directly displayed in four aspects: increased intracellular level of reactive oxygen species (ROS), elevated cell membrane permeability, up-regulation of the cell envelope stress-sensing two-component system LiaRS, and downregulation of siderophores biosynthesis. Finally, B[a]P also caused morphological changes in the cells, with some cells exhibiting significant deformation and concavity. These findings provide effective research directions for targeted improvement the cellular activity of B[a]P-degrading strains, and is beneficial for further application of microorganisms to remediate B[a]P -contaminated soils.


Asunto(s)
Bacillus subtilis , Benzo(a)pireno , Benzo(a)pireno/toxicidad , Benzo(a)pireno/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Glucólisis , Perfilación de la Expresión Génica , Urea/metabolismo
12.
Environ Res ; 250: 118539, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38401684

RESUMEN

The relationship of exposure to benzo[a]pyrene (BaP) with lung cancer risk has been firmly established, but whether this association could be modified by other environmental or genetic factors remains to be explored. To investigate whether and how zinc (Zn) and genetic predisposition modify the association between BaP and lung cancer, we performed a case-cohort study with a 5.4-year median follow-up duration, comprising a representative subcohort of 1399 participants and 359 incident lung cancer cases. The baseline concentrations of benzo[a]pyrene diol epoxide-albumin adduct (BPDE-Alb) and Zn were quantified. We also genotyped the participants and computed the polygenic risk score (PRS) for lung cancer. Our findings indicated that elevated BPDE-Alb and PRS were linked to increased lung cancer risk, with the HR (95%CI) of 1.54 (1.36, 1.74) per SD increment in ln-transformed BPDE-Alb and 1.27 (1.14, 1.41) per SD increment in PRS, but high plasma Zn level was linked to a lower lung cancer risk [HR (95%CI)=0.77 (0.66, 0.91) per SD increment in ln-transformed Zn]. There was evidence of effect modification by Zn on BaP-lung cancer association (P for multiplicative interaction = 0.008). As Zn concentrations increased from the lowest to the highest tertile, the lung cancer risk per SD increment in ln-transformed BPDE-Alb decreased from 2.07 (1.48, 2.89) to 1.33 (0.90, 1.95). Additionally, we observed a significant synergistic interaction of BPDE-Alb and PRS [RERI (95%CI) = 0.85 (0.03, 1.67)], with 42% of the incident lung cancer cases among individuals with high BPDE-Alb and high PRS attributable to their additive effect [AP (95%CI) = 0.42 (0.14, 0.69)]. This study provided the first prospective epidemiological evidence that Zn has protective effect against BaP-induced lung tumorigenesis, whereas high genetic risk can enhance the harmful effect of BaP. These findings may provide novel insight into the environment-environment and environment-gene interaction underlying lung cancer development, which may help to develop prevention and intervention strategies to manage BaP-induced lung cancer.


Asunto(s)
Benzo(a)pireno , Neoplasias Pulmonares , Zinc , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/epidemiología , Benzo(a)pireno/toxicidad , Zinc/sangre , Persona de Mediana Edad , Masculino , China/epidemiología , Femenino , Estudios Prospectivos , Anciano , Exposición a Riesgos Ambientales/efectos adversos , Predisposición Genética a la Enfermedad , Factores de Riesgo , Estudios de Casos y Controles , Adulto , Puntuación de Riesgo Genético , Pueblos del Este de Asia
13.
Int Ophthalmol ; 44(1): 12, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38319442

RESUMEN

PURPOSE: This study aims to investigate the role of Resveratrol (RES) and quercetin (QR) treatments against Benzo(a)pyrene (B(a)p)-induced autophagy in retinal pigment epithelial cells. METHODS: The IC50 doses of B(a)p, RES and QR in retinal pigment epithelial cells were determined by MTT assay and the relevant agents were administered singly or in combinations to ARPE-19 cells for 24 h. Occurrence of autophagy in the cells was verified by detection of autophagosomes using fluorescence microscope. Also, the mRNA expression levels of LC3 and Beclin 1 genes were analyzed by RT-PCR to collect further data on autophagy. Caspase-3 and IL-1ß levels in lysed cells were analyzed by ELISA. RESULTS: Autophagosomes were detected in B(a)p-treated ARPE-19 cell lines, as well as a 1.787-fold increase in LC3 mRNA expression levels. No autophagosome occurred in RES and QR treatments, and a significant decrease in their percentage amounts were observed in B(a)p + RES and B(a)p + QR. The mRNA expression levels of LC3 and Beclin 1 also supported these findings. B(a)p had no effect on Caspase-3 levels in ARPE-19 cells, but combined with RES and QR, it increased Caspase-3 levels significantly.IL-1ß levels were higher in B(a)p, B(a)p + QR, B(a)p + RES, RES and QR than control group. This rise in IL-1ß levels was correlated with suppression of mRNA expression levels of Beclin 1. CONCLUSION: B(a)p exposure caused autophagy in ARPE-19 cells, but did not induce apoptosis. RES and QR treatments prevented B(a)p-induced autophagy. Therefore, RES and QR treatments showed protective effect against potential degenerative diseases caused by chronic exposure to B(a)p.


Asunto(s)
Benzo(a)pireno , Quercetina , Humanos , Benzo(a)pireno/toxicidad , Caspasa 3 , Quercetina/farmacología , Resveratrol/farmacología , Beclina-1 , Autofagia , Células Epiteliales , Pigmentos Retinianos , ARN Mensajero/genética
14.
Ecotoxicol Environ Saf ; 272: 116094, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38364759

RESUMEN

Exposure to benzo[a]pyrene (B[a]P) has been linked to lung injury and carcinogenesis. Airway epithelial cells express the B[a]P receptor AHR, so B[a]P is considered to mainly target airway epithelial cells, whereas its potential impact on alveolar cells remains inadequately explored. Metformin, a first-line drug for diabetes, has been shown to exert anti-inflammatory and tissue repair-promoting effects under various injurious conditions. Here, we explored the effect of chronic B[a]P exposure on alveolar cells and the impact of metformin on B[a]P-induced lung injury by examining the various parameters including lung histopathology, inflammation, fibrosis, and related signal pathway activation. MLKL knockout (Mlkl-/-) and AT2-lineage tracing mice (SftpcCre-ERT2;LSL-tdTomatoflox+/-) were used to delineate the role of necroptosis in B[a]P-induced alveolar epithelial injury and repair. Mice receiving weekly administration of B[a]P for 6 weeks developed a significant alveolar damaging phenotype associated with pulmonary inflammation, fibrosis, and activation of the necroptotic cell death pathway. These effects were significantly relieved in MLKL null mice. Furthermore, metformin treatment, which were found to promote AMPK phosphorylation and inhibit RIPK3, as well as MLKL phosphorylation, also significantly alleviated B[a]P-induced necroptosis and lung injury phenotype. However, the protective efficacy of metformin was rendered much less effective in Mlkl null mice or by blocking the necroptotic pathway with RIPK3 inhibitor. Our findings unravel a potential protective efficacy of metformin in mitigating the detrimental effects of B[a]P exposure on lung health by inhibiting necroptosis and protecting AT2 cells.


Asunto(s)
Benzo(a)pireno , Lesión Pulmonar , Proteína Fluorescente Roja , Ratones , Animales , Benzo(a)pireno/toxicidad , Proteínas Quinasas/metabolismo , Necroptosis , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/prevención & control , Fibrosis
15.
Environ Pollut ; 346: 123564, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38367693

RESUMEN

Histone modifications maintain genomic stability and orchestrate gene expression at the chromatin level. Benzo [a]pyrene (BaP) is the ubiquitous carcinogen widely spread in the environment, but the role and regulatory mechanism of histone modification in its toxic effects remain largely undefined. In this study, we found a dose-dependent reduction of histone H3 methylations at lysine4, lysine9, lysine27, lysine36 in HBE cells treated with BaP. We observed that inhibiting H3K27 and H3K36 methylation impaired cell proliferation, whereas the loss of H3K4, H3K9, H3K27, and H3K36 methylation led to increased genomic instability and delayed DNA repair. H3K36 mutation at both H3.1 and H3.3 exhibited the most significant impacts. In addition, we found that the expression of SET domain containing 2 (SETD2), the unique methyltransferase catalyzed H3K36me3, was downregulated by BaP dose-dependently in vitro and in vivo. Knockdown of SETD2 aggravated DNA damage of BaP exposure, which was consistent with the effects of H3K36 mutation. With the aid of chromatin immunoprecipitation (ChIP) -seq and RNA-seq, we found that H3K36me3 was responsible for transcriptional regulation of genes involved in pathways related to cell survival, lung cancer, metabolism and inflammation. The enhanced enrichment of H3K36me3 in genes (CYP1A1, ALDH1A3, ACOXL, WNT5A, WNT7A, RUNX2, IL1R2) was positively correlated with their expression levels, while the reduction of H3K36me3 distribution in genes (PPARGC1A, PDE4D, GAS1, RNF19A, KSR1) were in accordance with the downregulation of gene expression. Taken together, our findings emphasize the critical roles and mechanisms of histone lysine methylation in mediating cellular homeostasis during BaP exposure.


Asunto(s)
Benzo(a)pireno , Histonas , Humanos , Histonas/metabolismo , Benzo(a)pireno/toxicidad , Metilación , Inestabilidad Genómica , Células Epiteliales/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
16.
Analyst ; 149(6): 1921-1928, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38375539

RESUMEN

The electrochemical detection method of cytotoxicity using intracellular purines as biomarkers has shown great potential for in vitro drug toxicity evaluation. However, no electrochemical detection system based on an in vitro drug metabolism mechanism has been devised. In this paper, electrochemical voltammetry was used to investigate the effect of the S9 system on the electrochemical behavior of HepG2 cells, and benzo[a]pyrene, fluoranthene, and pyrene were employed to investigate the sensitivity of electrochemical signals of cells to the cytotoxicity of drugs metabolized by the S9 system. The results showed that, within 8 h of exposure to the S9 system, the electrochemical signal of HepG2 cells at 0.7 V did not alter noticeably. The levels of xanthine, guanine, hypoxanthine, and adenine in the cells were not significantly altered. Compared with the absence of S9 system metabolism, benzo[a]pyrene and fluoranthene processed by the S9 system decreased the electrochemical signal of the cells in a dose-dependent manner, while pyrene did not change it appreciably. HPLC also revealed that benzo[a]pyrene and fluoranthene metabolized by the S9 system decreased the intracellular purine levels, whereas pyrene had no effect on them before and after S9 system metabolism. The cytotoxicity results of the three drugs examined by electrochemical voltammetry and MTT assay showed a strong correlation and good agreement. The S9 system had no effect on the intracellular purine levels or the electrochemical signal of cells. When the drug was metabolized by the S9 system, variations in cytotoxicity could be precisely detected by electrochemical voltammetry.


Asunto(s)
Benzo(a)pireno , Fenómenos Bioquímicos , Benzo(a)pireno/metabolismo , Benzo(a)pireno/toxicidad , Fluorenos/toxicidad , Guanina , Mutágenos
17.
Food Chem Toxicol ; 186: 114511, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38360389

RESUMEN

This article explores the impact of environmental chemicals on CCR5 expression and related inflammatory responses based on curated data from the Comparative Toxicogenomics Database (CTD). A total of 143 CCR5-interacting chemicals was found, with 229 chemical interactions. Of note, 67 (29.3%) out of 229 interactions resulted in "increased expression" of CCR5 mRNA or CCR5 protein, and 42 (18.3%) chemical interactions resulted in "decreased expression". The top-5 CCR5-interacting chemicals were "Tetrachlorodibenzodioxin", "Lipopolysaccharides", "Benzo(a)pyrene", "Drugs, Chinese Herbal", and "Ethinyl Estradiol". Based on the number of interactions and importance as environmental contaminant, we then focused our analysis on Tetrachlorodibenzodioxin and Benzo(a)pyrene. There is some consistency in the data supporting an increase in CCR5 expression triggered by Tetrachlorodibenzodioxin; although data concerning CCR5-Benzo(a)pyrene interactions is limited. Considering the high linkage disequilibrium between CCR5 and CCR2 genes, we also search for chemicals that interact with both genes, which resulted in 72 interacting chemicals, representing 50.3% of the 143 CCR5-interacting chemicals and 37.5% of the 192 CCR2-interacting chemicals. In conclusion, CTD data showed that environmental contaminants indeed affect CCR5 expression, with a tendency towards increased expression. The interaction of environmental contaminants with other chemokine receptor genes may potentialize their toxic effects on the chemokine system, favoring inflammation.


Asunto(s)
Dibenzodioxinas Policloradas , Toxicogenética , Humanos , Benzo(a)pireno/toxicidad , Inflamación/inducido químicamente , Inflamación/genética , Quimiocinas , Receptores CCR5/genética
18.
Toxicol Sci ; 198(2): 221-232, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38310363

RESUMEN

Increasing environmental genotoxic chemicals have been shown to induce epigenetic alterations. However, the interaction between genetics and epigenetics in chemical carcinogenesis is still not fully understood. Here, we constructed an in vitro human lung carcinogenesis model (16HBE-T) by treating human bronchial epithelial cells with a typical significant carcinogen benzo(a)pyrene (BaP). We identified a novel circular RNA, circ0087385, which was overexpressed in 16HBE-T and human lung cancer cell lines, as well as in lung cancer tissues and serum exosomes from lung cancer patients. The upregulated circ0087385 after exposure to BaP promoted DNA damage in the early stage of chemical carcinogenesis and affected the cell cycle, proliferation, and apoptosis of the malignantly transformed cells. Overexpression of circ0087385 enhanced the expression of cytochrome P450 1A1 (CYP1A1), which is crucial for metabolically activating BaP. Interfering with circ0087385 or CYP1A1 reduced the levels of ultimate carcinogen benzo(a)pyrene diol epoxide (BPDE) and BPDE-DNA adducts. Interfering with CYP1A1 partially reversed the DNA damage induced by high expression of circ0087385, as well as decreased the level of BPDE and BPDE-DNA adducts. These findings provide novel insights into the interaction between epigenetics and genetics in chemical carcinogenesis which are crucial for understanding the epigenetic and genetic toxicity of chemicals.


Asunto(s)
Citocromo P-450 CYP1A1 , Neoplasias Pulmonares , Humanos , Citocromo P-450 CYP1A1/metabolismo , Aductos de ADN , 7,8-Dihidro-7,8-dihidroxibenzo(a)pireno 9,10-óxido/toxicidad , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Benzo(a)pireno/toxicidad , Daño del ADN , Carcinógenos/toxicidad , Carcinogénesis/inducido químicamente , Carcinogénesis/genética
19.
Gen Physiol Biophys ; 43(1): 57-71, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38312035

RESUMEN

The most prevalent cause of lung cancer is smoking tobacco, but exposure to second hand smoke, air pollution, and certain chemicals and substances at work can also raise the risk of disease. In this study, we scrutinized the chemoprotective effect of the metformin and atorvastatin combination against benzo[a]pyrene (BaP)-induced lung cancer in mice of Swiss albino. BaP (50 mg/kg) was used for induction of lung cancer and mice were treated with metformin, atorvastatin or their combination. Metformin + atorvastatin combination significantly (p< 0.001) improved the body weight, liver weight, suppressed the lung weight and tumor incidence and altered the levels of immunocompetent cells, polyamines, lung tumor markers, lung parameters and antioxidant parameters, respectively. Metformin + atorvastatin combination also suppressed cytokines levels, inflammatory parameters and caspase parameters. On the basis of the results, we can conclude that metformin + atorvastatin combination remarkably suppressed lung cancer via the inflammatory pathway.


Asunto(s)
Neoplasias Pulmonares , Metformina , Ratones , Animales , Metformina/efectos adversos , Metformina/metabolismo , Atorvastatina/efectos adversos , Atorvastatina/metabolismo , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Benzo(a)pireno/toxicidad , Benzo(a)pireno/metabolismo , Transducción de Señal , Pulmón/patología
20.
Toxicology ; 502: 153737, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38311099

RESUMEN

Aryl hydrocarbon receptor (AHR) is one of the main mediators of the toxic effects of benzo[a]pyrene (BaP) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, a vast number of BaP- and TCDD-affected genes may suggest a more complex transcriptional regulatory network driving common adverse effects of these two chemicals. Unlike TCDD, BaP is rapidly metabolized in the liver, yielding products with a questionable ability to bind and activate AHR. In this study, we used transcriptomics data from the BaP- and TCCD-exposed human liver cell line HepG2, and performed differential eigengene network analysis to understand the correlation among genes and to untangle the common regulatory mechanism in the action of BaP and TCDD. The genes were grouped into 11 meta-modules with an overall preservation of 0.72 and were also segregated into three consensus time clusters: 12, 24, and 48 h. The analysis showed that the consensus genes in each time cluster were either directly regulated by the AHR or the AHR-TF interactions. Some TFs form a direct physical interaction with AHR such as ESR1, FOXA1, and E2F1, whereas others, including CTCF, RXRA, FOXO1, CEBPA, CEBPB, and TP53 show an indirect interaction with AHR. The analysis of biological processes (BPs) identified unique and common BPs in BaP and TCDD samples, with DNA damage response detected in all three time points. In summary, we identified a consensus transcriptional regulatory network common for BaP and TCDD consisting of direct AHR targets and AHR-TF targets. This analysis sheds new light on the common mechanism of action of a genotoxic (BaP) and non-genotoxic (TCDD) chemical in liver cells.


Asunto(s)
Benzo(a)pireno , Dibenzodioxinas Policloradas , Humanos , Benzo(a)pireno/toxicidad , Dibenzodioxinas Policloradas/toxicidad , Consenso , Hígado/metabolismo , Línea Celular Tumoral , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA