Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 397
Filtrar
1.
Sci Rep ; 14(1): 20815, 2024 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242626

RESUMEN

The interaction between genotype and environment (GEI) significantly influences plant performance, crucial for breeding programs and ultimately boosting crop productivity. Alongside GEI, breeders encounter another hurdle in their quest for yield improvement, notably adverse and negative correlations among pivotal traits. This study delved into the stability of white sugar yield (WSY), root yield (RY), sugar content (SC), extraction coefficient of sugar (ECS), and the interplay among essential traits including RY, SC, alpha amino nitrogen (N), sodium (Na+), and potassium (K+) across 15 sugar beet hybrids and three control varieties. The investigation spanned two locations over two consecutive years (2022-2023), employing a randomized complete block design with four replications to comprehensively analyze these factors. The analysis of variance highlighted the significant effects of environment, genotype, and GEI at the 1% probability level. Notably, the AMMI analysis of GEI revealed the significance of the first component for WSY, RY, and SC, with the first two components proving significant for ECS. Within the linear mixed model (LMM), WSY, RY, SC, and ECS demonstrated significant effects from both genotype and GEI. In the WAASB biplot, genotypes 10, 8, 17, 6, 13, 14, 15, 7, 12, and 16 exhibited stability in WSY, while genotypes 9, 10, 6, 14, 7, 8, 13, 12, 18, and 15 displayed stability in RY. Additionally, genotypes 10, 15, 12, 13, 16, 17, 6, and 14 were stable for SC, and genotypes 8, 10, 7, 6, 13, 12, 16, 17, 15, 14, and 18 showcased stability in ECS, boasting above-average yield values. In the genotype by yield × trait (GYT) biplot, genotypes 15, 18, and 16 emerged as top performers when combining RY with SC, Na+, N, and K+, suggesting their potential for inclusion in breeding programs.


Asunto(s)
Beta vulgaris , Genotipo , Fitomejoramiento , Beta vulgaris/genética , Beta vulgaris/crecimiento & desarrollo , Beta vulgaris/metabolismo , Fitomejoramiento/métodos , Interacción Gen-Ambiente , Fenotipo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Potasio/metabolismo , Carácter Cuantitativo Heredable , Azúcares/metabolismo , Nitrógeno/metabolismo
2.
Int J Mol Sci ; 25(16)2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39201712

RESUMEN

Nitrogen (N) is essential for sugar beet (Beta vulgaris L.), a highly N-demanding sugar crop. This study investigated the morphological, subcellular, and microRNA-regulated responses of sugar beet roots to low N (LN) stress (0.5 mmol/L N) to better understand the N perception, uptake, and utilization in this species. The results showed that LN led to decreased dry weight of roots, N accumulation, and N dry matter production efficiency, along with damage to cell walls and membranes and a reduction in organelle numbers (particularly mitochondria). Meanwhile, there was an increase in root length (7.2%) and branch numbers (29.2%) and a decrease in root surface area (6.14%) and root volume (6.23%) in sugar beet after 7 d of LN exposure compared to the control (5 mmol/L N). Transcriptomics analysis was confirmed by qRT-PCR for 6 randomly selected microRNAs, and we identified 22 differentially expressed microRNAs (DEMs) in beet root under LN treatment. They were primarily enriched in functions related to binding (1125), ion binding (641), intracellular (437) and intracellular parts (428), and organelles (350) and associated with starch and sucrose metabolism, tyrosine metabolism, pyrimidine metabolism, amino sugar and nucleotide sugar metabolism, and isoquinoline alkaloid biosynthesis, as indicated by the GO and KEGG analyses. Among them, the upregulated miR156a, with conserved sequences, was identified as a key DEM that potentially targets and regulates squamosa promoter-binding-like proteins (SPLs, 104889216 and 104897537) through the microRNA-mRNA network. Overexpression of miR156a (MIR) promoted root growth in transgenic Arabidopsis, increasing the length, surface area, and volume. In contrast, silencing miR156a (STTM) had the opposite effect. Notably, the fresh root weight decreased by 45.6% in STTM lines, while it increased by 27.4% in MIR lines, compared to the wild type (WT). It can be inferred that microRNAs, especially miR156, play crucial roles in sugar beet root's development and acclimation to LN conditions. They likely facilitate active responses to N deficiency through network regulation, enabling beet roots to take up nutrients from the environment and sustain their vital life processes.


Asunto(s)
Beta vulgaris , Regulación de la Expresión Génica de las Plantas , MicroARNs , Nitrógeno , Raíces de Plantas , Beta vulgaris/genética , Beta vulgaris/crecimiento & desarrollo , Beta vulgaris/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Nitrógeno/metabolismo , Nitrógeno/deficiencia , Aclimatación/genética , Perfilación de la Expresión Génica
3.
PLoS One ; 19(7): e0306330, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38968255

RESUMEN

The efficiency of aerobic biodegradation of distillery wastewater using various microbial cultures is intricately linked to process conditions. The study aimed to examine the aerobic biodegradation by a Bacillus bacteria under controlled dissolved oxygen tension (DOT) conditions as a novel approach in the treatment of sugar beet distillery stillage. The processes were conducted in a 2-L Biostat®B stirred-tank reactor (STR), at a temperature of 36°C, with aeration of 1.0 L/(L·min), and uncontrolled pH of the medium (an initial pH of 8.0). Each experiment was performed at a different DOT setpoint: 75%, 65% and 55% saturation, controlled through stirrer rotational speed adjustments. The study showed that the DOT setpoint did not influence the process efficiency, determined by the pollutant load removal expressed as COD, BOD5 and TOC. In all three experiments, the obtained reduction values of these parameters were comparable, falling within the narrow ranges of 78.6-78.7%, 97.3-98.0% and 75.0-76.4%, respectively. However, the DOT setpoint did influence the rate of process biodegradation. The removal rate of the pollutant load expressed as COD, was the lowest when DOT was set at 55% (0.48 g O2/(L•h)), and the highest when DOT was set at 65% (0.55 g O2/(L•h)). For biogenic elements (nitrogen and phosphorus), a beneficial effect was observed at a low setpoint of controlled DOT during biodegradation. The maximum extent of removal of both total nitrogen (54%) and total phosphorus (67.8%) was achieved at the lowest DOT setpoint (55%). The findings suggest that conducting the batch aerobic process biodegradation of sugar beet stillage at a relatively low DOT setpoint in the medium might achieve high efficiency pollutant load removal and potentially lead to a reduction in the process cost.


Asunto(s)
Beta vulgaris , Biodegradación Ambiental , Oxígeno , Beta vulgaris/metabolismo , Oxígeno/metabolismo , Aerobiosis , Reactores Biológicos/microbiología , Análisis de la Demanda Biológica de Oxígeno , Bacillus/metabolismo , Aguas Residuales/microbiología , Aguas Residuales/química , Residuos Industriales
4.
Int J Biol Macromol ; 266(Pt 2): 131309, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38580019

RESUMEN

Enzymatic degradation of plant biomass requires the coordinated action of various enzymes. In this study, the production of reducing sugars from pectic substrates and sugar beet pulp (SBP) was investigated and compared using commercial enzyme preparations, including M2, pectinase (E1), Viscozyme L (V-L) and L-40. V-L, a cellulolytic enzyme mix produced by Aspergillus sp. was further evaluated as the most robust enzyme cocktail with the strongest SBP degradation ability in terms of the release of monosaccharides, methanol, and acetate from SBP. Mass-spectrometry-based proteomics analysis of V-L revealed 156 individual proteins. Of these, 101 proteins were annotated as containing a carbohydrate-active enzyme module. Notably, of the 50 most abundant proteins, ca. 44 % were predicted to be involved in pectin degradation. To reveal the role of individual putative key enzymes in pectic substrate decomposition, two abundant galacturonases (PglA and PglB), were heterologously expressed in Pichia pastoris and further characterized. PglA and PglB demonstrated maximum activity at 57 °C and 68 °C, respectively, and exhibited endo-type cleavage patterns towards polygalacturonic acid. Further studies along this line may lead to a better understanding of efficient SBP degradation and may help to design improved artificial enzyme mixtures with lower complexity for future application in biotechnology.


Asunto(s)
Pectinas , Proteómica , Pectinas/metabolismo , Proteómica/métodos , Especificidad por Sustrato , Poligalacturonasa/metabolismo , Poligalacturonasa/química , Beta vulgaris/química , Beta vulgaris/metabolismo , Aspergillus/enzimología
5.
Plant Physiol Biochem ; 210: 108651, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38653098

RESUMEN

Sugar beet (Beta vulgaris L.) is an economically important sugar crop worldwide that is susceptible to sudden waterlogging stress during seedling cultivation, which poses a major threat to sugar beet development and production. Our understanding of the physiological basis of waterlogging tolerance in sugar beet is limited. To investigate the photosynthetic adaptation strategies of sugar beet to waterlogging stress conditions, the tolerant cultivar KUHN1260 (KU) and sensitive cultivar SV1433 (SV) were grown under waterlogging stress, and their photosynthetic function and reactive oxygen species (ROS) metabolism were assessed. Our results showed that waterlogging stress significantly reduced the photosynthetic pigment content, rubisco activity, and expression level of the photosynthetic enzyme genes SvRuBP, SvGAPDH, and SvPRK, gas exchange parameters, and chlorophyll fluorescence parameters, induced damage to the ultrastructure of the chloroplast of the two sugar beet cultivars, inhibited the photosynthetic carbon assimilation capacity of sugar beet leaves, damaged the structural stability of photosystem II (PSII), and disturbed the equilibrium between electrons at the acceptor and donor sides of PSII, which was the result of stomatal and non-stomatal limiting factors. Moreover, the level of ROS, H2O2, and O2▪-, antioxidant enzyme activity, and gene expression levels in the leaves of the two sugar beet cultivars increased over time under waterlogging stress; ROS accumulation was lower and antioxidant enzyme activities and gene expression levels were higher in the waterlogging-tolerant cultivar (KU) than the waterlogging-sensitive cultivar (SV). In sum, these responses in the more tolerant cultivars are associated with their resistance to waterlogging stress. Our findings will aid the breeding of waterlogging-tolerant sugar beet cultivars.


Asunto(s)
Beta vulgaris , Fotosíntesis , Especies Reactivas de Oxígeno , Beta vulgaris/fisiología , Beta vulgaris/metabolismo , Beta vulgaris/genética , Fotosíntesis/fisiología , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico , Hojas de la Planta/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Clorofila/metabolismo , Agua/metabolismo
6.
Plant J ; 118(6): 2219-2232, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38602250

RESUMEN

Sugar beet (Beta vulgaris) is the major sugar-producing crop in Europe and Northern America, as the taproot stores sucrose at a concentration of around 20%. Genome sequence analysis together with biochemical and electrophysiological approaches led to the identification and characterization of the TST sucrose transporter driving vacuolar sugar accumulation in the taproot. However, the sugar transporters mediating sucrose uptake across the plasma membrane of taproot parenchyma cells remained unknown. As with glucose, sucrose stimulation of taproot parenchyma cells caused inward proton fluxes and plasma membrane depolarization, indicating a sugar/proton symport mechanism. To decipher the nature of the corresponding proton-driven sugar transporters, we performed taproot transcriptomic profiling and identified the cold-induced PMT5a and STP13 transporters. When expressed in Xenopus laevis oocytes, BvPMT5a was characterized as a voltage- and H+-driven low-affinity glucose transporter, which does not transport sucrose. In contrast, BvSTP13 operated as a high-affinity H+/sugar symporter, transporting glucose better than sucrose, and being more cold-tolerant than BvPMT5a. Modeling of the BvSTP13 structure with bound mono- and disaccharides suggests plasticity of the binding cleft to accommodate the different saccharides. The identification of BvPMT5a and BvSTP13 as taproot sugar transporters could improve breeding of sugar beet to provide a sustainable energy crop.


Asunto(s)
Beta vulgaris , Glucosa , Proteínas de Plantas , Raíces de Plantas , Sacarosa , Animales , Beta vulgaris/citología , Beta vulgaris/genética , Beta vulgaris/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Glucosa/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Oocitos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Protones , Sacarosa/metabolismo , Xenopus laevis
7.
Plant Physiol ; 195(3): 2456-2471, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38498597

RESUMEN

Synthetic biology provides emerging tools to produce valuable compounds in plant hosts as sustainable chemical production platforms. However, little is known about how supply and utilization of precursors is coordinated at the interface of plant primary and specialized metabolism, limiting our ability to efficiently produce high levels of target specialized metabolites in plants. L-Tyrosine is an aromatic amino acid precursor of diverse plant natural products including betalain pigments, which are used as the major natural food red colorants and more recently a visual marker for plant transformation. Here, we studied the impact of enhanced L-tyrosine supply on the production of betalain pigments by expressing arogenate dehydrogenase (TyrA) from table beet (Beta vulgaris, BvTyrAα), which has relaxed feedback inhibition by L-tyrosine. Unexpectedly, betalain levels were reduced when BvTyrAα was coexpressed with the betalain pathway genes in Nicotiana benthamiana leaves; L-tyrosine and 3,4-dihydroxy-L-phenylalanine (L-DOPA) levels were drastically elevated but not efficiently converted to betalains. An additional expression of L-DOPA 4,5-dioxygenase (DODA), but not CYP76AD1 or cyclo-DOPA 5-O-glucosyltransferase, together with BvTyrAα and the betalain pathway, drastically enhanced betalain production, indicating that DODA is a major rate-limiting step of betalain biosynthesis in this system. Learning from this initial test and further debottlenecking the DODA step maximized betalain yield to an equivalent or higher level than that in table beet. Our data suggest that balancing between enhanced supply ("push") and effective utilization ("pull") of precursor by alleviating a bottleneck step is critical in successful plant synthetic biology to produce high levels of target compounds.


Asunto(s)
Beta vulgaris , Betalaínas , Nicotiana , Plantas Modificadas Genéticamente , Tirosina , Betalaínas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Tirosina/metabolismo , Beta vulgaris/genética , Beta vulgaris/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Dioxigenasas/metabolismo , Dioxigenasas/genética , Regulación de la Expresión Génica de las Plantas , Levodopa/metabolismo
8.
J Environ Manage ; 356: 120655, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38513589

RESUMEN

High boron (B) stress degrades the soil environment and reduces plant productivity. Sugar beet has a high B demand and potential for remediation of B-toxic soils. However, the mechanism regarding the response of sugar beet plants and rhizosphere soil microbiome to high B stress is not clear. In the potted soil experiment, we set different soil effective B environments (0.5, 5, 10, 30, 50, and 100 mg kg-1) to study the growth status of sugar beets under different B concentrations, as well as the characteristics of soil enzyme activity and microbial community changes. The results showed that sugar beet growth was optimal at 5 mg kg-1 of B. Exceeding this concentration the tolerance index decreased. The injury threshold EC20 was reached at an available B concentration of 35.8 mg kg-1. Under the treatment of 100 mg kg-1, the B accumulation of sugar beet reached 0.22 mg plant-1, and the tolerance index was still higher than 60%, which had not yet reached the lethal concentration of sugar beet. The abundance of Acidobacteriota, Chloroflexi and Patescibacteria increased, which was beneficial to the resistance of sugar beet to high B stress. In summary, under high B stress sugar beet had strong tolerance, enhanced capacity for B uptake and enrichment, and changes in soil microbial community structure. This study provides a theoretical basis for clarifying the mechanism of sugar beet resistance to high B stress and soil remediation.


Asunto(s)
Beta vulgaris , Suelo , Suelo/química , Beta vulgaris/metabolismo , Beta vulgaris/microbiología , Boro , Rizosfera , Verduras , Azúcares/metabolismo
9.
Sci Rep ; 14(1): 7491, 2024 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553576

RESUMEN

The plants that we consume in our daily diet and use as a risk preventer against many diseases have many biological and pharmacological activities. In this study, the phytochemical fingerprint and biological activities of Beta vulgaris L. leaf extract, which are widely consumed in the Black Sea region, were investigated. The leaf parts of the plant were dried in an oven at 35 °C and then ground into powder. The main constituents in B. vulgaris were identified by LC-MS/MS and GC-MS analyses. Phenolic content, betaxanthin and betacyanin levels were investigated in the extracts obtained using three different solvents. The biological activity of the extract was investigated by anti-microbial, anti-mutagenic, anti-proliferative and anti-diabetic activity tests. Anti-diabetic activity was investigated by in vitro enzyme inhibition and in-silico molecular docking was performed to confirm this activity. In the LC-MS analysis of B. vulgaris extract, a major proportion of p_coumaric acid, vannilin, protecatechuic aldehyde and sesamol were detected, while the major essential oils determined by GC-MS analysis were hexahydrofarnesyl acetone and phytol. Among the solvents used, the highest extraction efficiency of 2.4% was obtained in methanol extraction, and 36.2 mg of GAE/g phenolic substance, 5.1 mg/L betacyanin and 4.05 mg/L betaxanthin were determined in the methanol extract. Beta vulgaris, which exhibited broad-spectrum anti-microbial activity by forming a zone of inhibition against all tested bacteria, exhibited anti-mutagenic activity in the range of 35.9-61.8% against various chromosomal abnormalities. Beta vulgaris extract, which did not exhibit mutagenic, sub-lethal or lethal effects, exhibited anti-proliferative activity by reducing proliferation in Allium root tip cells by 21.7%. 50 mg/mL B. vulgaris extract caused 58.9% and 55.9% inhibition of α-amylase and α-glucosidase activity, respectively. The interactions of coumaric acid, vanniline, hexahydrofarnesyl acetone and phytol, which are major compounds in phytochemical content, with α-amylase and α-glucosidase were investigated by in silico molecular docking and interactions between molecules via various amino acids were determined. Binding energies between the tested compounds and α-amylase were obtained in the range of - 4.3 kcal/mol and - 6.1 kcal/mol, while for α-glucosidase it was obtained in the range of - 3.7 kcal/mol and - 5.7 kcal/mol. The biological activities of B. vulgaris are closely related to the active compounds it contains, and therefore studies investigating the phytochemical contents of plants are very important. Safe and non-toxic plant extracts can help reduce the risk of various diseases, such as diabetes, and serve as an alternative or complement to current pharmaceutical practices.


Asunto(s)
Beta vulgaris , Diabetes Mellitus , Simulación del Acoplamiento Molecular , Cromatografía de Gases y Espectrometría de Masas , Metanol/química , Beta vulgaris/metabolismo , Cromatografía Liquida , Cromatografía Líquida con Espectrometría de Masas , Acetona/análisis , Ácidos Cumáricos/análisis , alfa-Glucosidasas/metabolismo , Betacianinas , Betaxantinas , Espectrometría de Masas en Tándem , Extractos Vegetales/farmacología , Extractos Vegetales/química , Solventes/química , alfa-Amilasas , Fitoquímicos/química , Fitol , Antioxidantes/farmacología
10.
Medicina (Kaunas) ; 60(3)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38541120

RESUMEN

Background and Objectives: Diabetes mellitus is a chronic metabolic disease associated with several complications, including that of kidney disease. Plant-based dietary products have shown promise in mitigating these effects to improve kidney function and prevent tissue damage. This study assessed the possible favorable effects of beetroot extract (BE) in improving kidney function and preventing tissue damage in diabetic rats. Materials and Methods: Type 2 diabetes mellitus (T2DM) was induced using a low dose of streptozotocin (STZ). Both control and rats with pre-established T2DM were divided into six groups (each consisting of eight rats). All treatments were given by gavage and continued for 12 weeks. Fasting blood glucose levels, serum fasting insulin levels, Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), serum triglycerides, cholesterol, low-density lipoprotein-cholesterol, serum and urinary albumin, and creatinine and urea levels were measured. Apart from this, glutathione, malondialdehyde, superoxide dismutase, tumor necrosis factor-α, and interleukine-6 in the kidney homogenates of all groups of rats were measured, and the histopathological evaluation of the kidney was also performed. Results: It was observed that treatment with BE increased body weight significantly (p ≤ 0.05) to be similar to that of control groups. Fasting glucose, insulin, HOMA-IR levels, and lipid profile in the plasma of the pre-established T2DM rats groups decreased to p ≤ 0.05 in the BE-treated rats as the BE concentration increased. Treatment with BE also improved the renal levels of oxidative stress and inflammatory markers, urinary albumin, and serum creatinine and urea levels. Unlike all other groups, only the kidney tissues of the T2DM + BE (500 mg/kg) rats group showed normal kidney tissue structure, which appears to be similar to those found in the kidney tissues of the control rats groups. Conclusion: we found that streptozotocin administration disturbed markers of kidney dysfunction. However, Beta vulgaris L. root extract reversed these changes through antioxidant, anti-inflammatory, and antiapoptotic mechanisms.


Asunto(s)
Beta vulgaris , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratas , Animales , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Beta vulgaris/metabolismo , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Metanol/farmacología , Metanol/uso terapéutico , Estreptozocina , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Glucemia , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Insulina , Estrés Oxidativo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Colesterol , Albúminas
11.
J Sci Food Agric ; 104(9): 5296-5304, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38308576

RESUMEN

BACKGROUND: Dietary fibers with varying physicochemical properties have different fermentation characteristics, which may differently impact host health. The present study aimed to determine the fermentation characteristics including gas production kinetics, short-chain fatty acids (SCFAs) production and microbial composition of different fibrous ingredients using in vitro fermentation by fecal microbiota. RESULTS: Sugar beet pule (SBP), wheat bran (WB), dried corn distillers grains with solubles (DDGS), rice bran (RB) and alfalfa meal (AM) were selected to fermentation in vitro for 36 h. The results showed that SBP had the greatest gas production. SBP had the highest in vitro dry matter fermentability (IVDMF) and production of acetate, propionate and total SCFAs, followed by WB, which were all greater than DDGS, AM and RB. The alpha-diversity was higher in the DDGS, AM and RB groups than in the WB and SBP groups. Differences in microbial community composition were observed among groups. The relative abundance of Treponema was highest in WB group. RB group showed lower Prevotella abundance than other groups but had higher Succinivibrio abundance. Interestingly, the Lactobacillus reached the highest abundances in the DDGS group. Correlation analysis indicated that the relative abundance of Treponema and Prevotella was positively associated with the gas production, IVDMF and SCFAs, whereas norank_f_Muribaculaceae, Rikenellaceae_RC9_gut_group, Lysinibacillus and Succinivibrio were the opposite. CONCLUSION: Collectively, WB and SBP were fermented rapidly by fecal microbiota compared to DDGS, AM and RB. Different fiber sources have different fiber compositions and fermentation properties that affect the microbial compositins and SCFAs production. © 2024 Society of Chemical Industry.


Asunto(s)
Alimentación Animal , Bacterias , Fibras de la Dieta , Ácidos Grasos Volátiles , Heces , Fermentación , Microbioma Gastrointestinal , Fibras de la Dieta/metabolismo , Fibras de la Dieta/análisis , Heces/microbiología , Animales , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Ácidos Grasos Volátiles/metabolismo , Porcinos , Alimentación Animal/análisis , Zea mays/química , Zea mays/metabolismo , Beta vulgaris/química , Beta vulgaris/metabolismo , Beta vulgaris/microbiología , Medicago sativa/química , Medicago sativa/metabolismo , Medicago sativa/microbiología , Oryza/metabolismo , Oryza/química , Oryza/microbiología
13.
J Environ Manage ; 353: 120159, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38310797

RESUMEN

Nicosulfuron is a common herbicide used to control weeds in maize fields. In northeast China, sugar beet is often grown as a subsequent crop after maize, and its frequently suffers from soil nicosulfuron residue damage, but the related toxicity evaluation and photosynthetic physiological mechanisms are not clear. Therefore, we experimented to evaluate the impacts of nicosulfuron residues on beet growth, photochemical properties, and antioxidant defense system. The results showed that when the nicosulfuron residue content reached 0.3 µg kg-1, it inhibited the growth of sugar beet. When it reached 36 µg kg-1 (GR50), the growth stagnated. Compared to the control group, a nicosulfuron residue of 36 µg kg-1 significantly decreased beet plant height (70.93 %), leaf area (91.85 %), dry weights of shoot (70.34 %) and root (32.70 %). It also notably reduced the potential photochemical activity (Fv/Fo) by 12.41 %, the light energy absorption performance index (PIabs) by 46.09 %, and light energy absorption (ABS/CSm) by 6.56 %. It decreased the capture (TRo/CSm) by 9.30 % and transferred energy (ETo/CSm) by 16.13 % per unit leaf cross-section while increasing the energy flux of heat dissipation (DIo/CSm) by 22.85 %. This ultimately impaired the photochemical capabilities of PSI and PSII, leading to a reduction in photosynthetic performance. Furthermore, nicosulfuron increased malondialdehyde (MDA) content while decreasing superoxide dismutase (SOD) and catalase (CAT) activities. In conclusion, this research clarified the toxicity risk level, lethal dose, and harm mechanism of the herbicide nicosulfuron residue. It provides a theoretical foundation for the rational use of herbicides in agricultural production and sugar beet planting management.


Asunto(s)
Beta vulgaris , Herbicidas , Piridinas , Compuestos de Sulfonilurea , Beta vulgaris/metabolismo , Fotosíntesis/fisiología , Antioxidantes/metabolismo , Zea mays , Herbicidas/toxicidad , Azúcares
14.
J Agric Food Chem ; 72(4): 2321-2333, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38206329

RESUMEN

The p38 mitogen-activated protein kinases (MAPKs) are associated with insect immunity, tissue repair, and the insecticidal activity of Bacillus thuringiensis (Bt). Here, a p38 MAPK family gene (Sep38ß) was identified from Spodoptera exigua. Among the developmental stages, the transcription level of Sep38ß was the highest in egg, followed by that in prepupa and pupa. Sep38ß expression peaked in Malpighian tubules and the hemolymph of fifth instar larvae. Knockdown of Sep38ß or injection of SB203580 (a p38 MAPK inhibitor) significantly downregulated the SeDUOX expression and reactive oxygen species (ROS) level in the midgut, accounting for deterioration of the midgut to scavenge pathogens and enhancement of Bt insecticidal activity. In conclusion, all the results demonstrate that Sep38ß regulates the immune-related ROS level in the insect midgut, which suppresses the insecticidal activity of Bt against S. exigua by 17-22%. Our study highlights that Sep38ß is essential for insect immunity and the insecticidal activity of Bt to S. exigua and is a potential target for pest control.


Asunto(s)
Bacillus thuringiensis , Beta vulgaris , Insecticidas , Animales , Spodoptera/metabolismo , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Insecticidas/farmacología , Insecticidas/metabolismo , Beta vulgaris/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas Bacterianas/metabolismo , Larva/genética , Larva/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Control Biológico de Vectores/métodos , Endotoxinas/metabolismo
15.
J Biochem Mol Toxicol ; 38(1): e23540, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37728183

RESUMEN

Dose-dependent heart failure is a major complication of the clinical use of doxorubicin (Dox), one of the most potent chemotherapeutic agents. Effective adjuvant therapy is required to prevent Dox-induced cardiotoxicity. Currently, plant-derived exosome-like nanovesicle (PELNV) has revealed their salubrious antioxidant and immunological regulating actions in various disease models. In this study, we isolated, purified and characterized Beta vulgaris-derived exosome-like nanovesicle (BELNV). Dox or normal saline was given to HL-1 cells (3 µM) and 8-week C57BL/6N mice (5 mg/kg bodyweight per week for 4 weeks) to establish the in vitro and in vivo model of Dox-induced cardiotoxicity. Administration of BELNV significantly alleviated chronic Dox-induced cardiotoxicity in terms of echocardiographic and histological results. A reduced malondialdehyde (MDA), increased ratio of glutathione (GSH) to oxidized glutathione (GSSG) and levels of system xc- and glutathione peroxidase 4 were observed, indicating that DOX-stimulated ferroptosis was reversed by BELNV. Besides, the safety of BELNV was also validated since no liver, spleen, and kidney toxicity induced by BELNV was observed. These findings provide evidence that BELNV may act as a novel therapeutic biomaterial for patients undergoing adverse effects of Dox, at least partly mediated by inhibiting Dox-induced ferroptosis.


Asunto(s)
Beta vulgaris , Exosomas , Ferroptosis , Humanos , Ratones , Animales , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/etiología , Cardiotoxicidad/prevención & control , Miocardio/metabolismo , Beta vulgaris/metabolismo , Exosomas/metabolismo , Ratones Endogámicos C57BL , Doxorrubicina/efectos adversos , Glutatión/metabolismo , Disulfuro de Glutatión/metabolismo , Disulfuro de Glutatión/farmacología , Disulfuro de Glutatión/uso terapéutico , Estrés Oxidativo , Miocitos Cardíacos/metabolismo
16.
J Sci Food Agric ; 104(6): 3235-3245, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38072666

RESUMEN

BACKGROUND: Sugar beet is one of the most produced industrial plants in the world, and during manufacturing it produces a large quantity of leaf waste. Because this waste is rich in protein, this study aimed to identify an efficient method for producing large-scale protein concentrate from sugar beet leaves. RESULTS: Results showed that protein extraction from fresh leaves was more effective than from dried leaves. Maximum protein extraction was achieved at pH 9, compared with pH 7 or 8. Blanching as a pretreatment reduced protein yield during isoelectric precipitation, with a yield of 2.31% compared to 20.20% without blanching. Consequently, blanching was excluded from the extraction process. After extraction, isoelectric precipitation, heat coagulation, and isoelectric-ammonium sulfate precipitation were compared. Although the latter resulted in the highest protein yield, Fourier transform infrared analysis revealed that excessive salt was not removed during dialysis, making it unsuitable for scale-up due to its additional cost and complexity. Therefore, isoelectric precipitation was selected as the appropriate method for protein precipitation from sugar beet leaves. To increase yield, extractions were assisted by ultrasound or enzyme addition. Ultrasound-assisted extraction resulted in an increased protein yield from 20.20% to 28.60%, while Pectinex Ultra SP-L-assisted extraction was the most effective, increasing protein yield from 20.20% to 38.09%. CONCLUSION: Proteins were extracted from fresh sugar beet leaves using optimum conditions (50 °C, 30 min, pH 9) and precipitated at isoelectric point, with enzymatic-assisted extraction yielding the maximum protein recovery. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Beta vulgaris , Beta vulgaris/metabolismo , Diálisis Renal , Agricultura , Azúcares/metabolismo , Hojas de la Planta/metabolismo
17.
Plant Physiol Biochem ; 206: 108239, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38113720

RESUMEN

Xyloglucan endotransglucosylase/hydrolases (XTHs) play a crucial role in plant growth and development. However, their functional response to phytohormone in sugar beet still remains obscure. In this study, we identified 30 putative BvXTH genes in the sugar beet genome. Phylogenetic and evolutionary relationship analysis revealed that they were clustered into three groups and have gone through eight tandem duplication events under purifying selection. Gene structure and motif composition analysis demonstrated that they were highly conserved and all contained one conserved glycoside hydrolase family 16 domain (Glyco_hydro_16) and one xyloglucan endotransglycosylase C-terminus (XET_C) domain. Transcriptional expression analysis exhibited that all BvXTHs were ubiquitously expressed in leaves, root hairs and tuberous roots, and most of them were up-regulated by brassinolide (BR), jasmonic acid (JA), abscisic acid (ABA) and gibberellic acid (GA3). Further mutant complementary experiment demonstrated that expression of BvXTH17 rescued the retarded growth phenotype of xth22, an Arabidopsis knock out mutant of AtXTH22. The findings in our work provide fundamental information on the structure and evolutionary relationship of the XTH family genes in sugar beet, and reveal the potential function of BvXTH17 in plant growth and hormone response.


Asunto(s)
Arabidopsis , Beta vulgaris , Reguladores del Crecimiento de las Plantas , Beta vulgaris/genética , Beta vulgaris/metabolismo , Filogenia , Glicosiltransferasas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Glicósido Hidrolasas/metabolismo , Azúcares , Regulación de la Expresión Génica de las Plantas
18.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38069011

RESUMEN

Cruciferous plants manufacture glucosinolates (GSLs) as special and important defense compounds against insects. However, how insect feeding induces glucosinolates in Brassica to mediate insect resistance, and how plants regulate the strength of anti-insect defense response during insect feeding, remains unclear. Here, mustard (Brassica juncea), a widely cultivated Brassica plant, and beet armyworm (Spodoptera exigua), an economically important polyphagous pest of many crops, were used to analyze the changes in GSLs and transcriptome of Brassica during insect feeding, thereby revealing the plant-insect interaction in Brassica plants. The results showed that the content of GSLs began to significantly increase after 48 h of herbivory by S. exigua, with sinigrin as the main component. Transcriptome analysis showed that a total of 8940 DEGs were identified in mustard challenged with beet armyworm larvae. The functional enrichment results revealed that the pathways related to the biosynthesis of glucosinolate and jasmonic acid were significantly enriched by upregulated DEGs, suggesting that mustard might provide a defense against herbivory by inducing JA biosynthesis and then promoting GSL accumulation. Surprisingly, genes regulating JA catabolism and inactivation were also activated, and both JA signaling repressors (JAZs and JAMs) and activators (MYCs and NACs) were upregulated during herbivory. Taken together, our results indicate that the accumulation of GSLs regulated by JA signaling, and the regulation of active and inactive JA compound conversion, as well as the activation of JA signaling repressors and activators, collectively control the anti-insect defense response and avoid over-stunted growth in mustard during insect feeding.


Asunto(s)
Beta vulgaris , Planta de la Mostaza , Animales , Planta de la Mostaza/genética , Planta de la Mostaza/metabolismo , Transcriptoma , Spodoptera/fisiología , Glucosinolatos/metabolismo , Beta vulgaris/genética , Beta vulgaris/metabolismo , Herbivoria/genética , Insectos/metabolismo
19.
Molecules ; 28(18)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37764365

RESUMEN

Frequent consumption of fruits and vegetables in the daily diet may alleviate the risk of developing chronic diseases. Daucus carota L. (carrot), Beta vulgaris L. (beetroot) Phyllanthus emblica L. (amla), and Lycopersicon esculentum M (tomatoes) are traditionally consumed functional foods that contain a high concentration of antioxidants, ascorbic acid, polyphenols, and numerous phytochemicals. This study assessed how three distinct preparation methods affect the phenolic, flavonoid, carotenoid, and ascorbic acid contents, antioxidant level, and cytotoxicity of the combined fruit extract. The fruit samples were taken in the ratio of carrot (6): beetroot (2): tomato (1.5): amla (0.5) and processed into a lyophilized slurry (LS) extract, lyophilized juice (LJ) extract, and hot-air oven-dried (HAO) extract samples. The sample extracts were assessed for their phytoconstituent concentrations and antioxidant and cytotoxic potential. The total phenolic content in LS, LJ, and HAO extracts was 171.20 ± 0.02, 120.73 ± 0.02, and 72.05 ± 0.01 mg gallic acid equivalent/100 g, respectively and the total flavonoid content was 23.635 ± 0.003, 20.754 ± 0.005, and 18.635 ± 0.005 mg quercetin equivalent/100 g, respectively. Similarly, total ascorbic acid content, carotenoids, and antioxidant potential were higher in the LS and LJ extracts than in HAO. Overall, the LS extract had a substantially higher concentration of phytochemicals and antioxidants, as well as higher cytotoxic potential, compared to the LJ and HAO extracts. The LS extract was tested in the MKN-45 human gastric cancer cell line to demonstrate its effective antioxidant potential and cytotoxicity. Hence, lyophilization (freezing) based techniques are more effective than heat-based techniques in preserving the phytoconstituents and their antioxidant and cytotoxic potential.


Asunto(s)
Beta vulgaris , Daucus carota , Phyllanthus emblica , Solanum lycopersicum , Neoplasias Gástricas , Humanos , Antioxidantes/análisis , Phyllanthus emblica/química , Phyllanthus emblica/metabolismo , Daucus carota/metabolismo , Beta vulgaris/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/análisis , Ácido Ascórbico/análisis , Fenoles/farmacología , Fenoles/análisis , Flavonoides/farmacología , Flavonoides/análisis , Carotenoides/farmacología , Carotenoides/análisis , Fitoquímicos/farmacología , Fitoquímicos/análisis , Frutas/química
20.
PLoS One ; 18(8): e0285430, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37552681

RESUMEN

Heteroplasmy, the coexistence of multiple mitochondrial DNA (mtDNA) sequences in a cell, is well documented in plants. Next-generation sequencing technology (NGS) has made it feasible to sequence entire genomes. Thus, NGS has the potential to detect heteroplasmy; however, the methods and pitfalls in heteroplasmy detection have not been fully investigated and identified. One obstacle for heteroplasmy detection is the sequence homology between mitochondrial-, plastid-, and nuclear DNA, of which the influence of nuclear DNA segments homologous to mtDNA (numt) need to be minimized. To detect heteroplasmy, we first excluded nuclear DNA sequences of sugar beet (Beta vulgaris) line EL10 from the sugar beet mtDNA sequence. NGS reads were obtained from single plants of sugar beet lines NK-195BRmm-O and NK-291BRmm-O and mapped to the unexcluded mtDNA regions. More than 1000 sites exhibited intra-individual polymorphism as detected by genome browsing analysis. We focused on a 309-bp region where 12 intra-individual polymorphic sites were closely linked to each other. Although the existence of DNA molecules having variant alleles at the 12 sites was confirmed by PCR amplification from NK-195BRmm-O and NK-291BRmm-O, these variants were not always called by six variant-calling programs, suggesting that these programs are inappropriate for intra-individual polymorphism detection. When we changed the nuclear DNA reference, a numt absent from EL10 was found to include the 309-bp region. Genetic segregation of an F2 population from NK-195BRmm-O x NK-291BRmm-O supported the numt origin of the variant alleles. Using four references, we found that numt detection exhibited reference dependency, and extreme polymorphism of numts exists among sugar beet lines. One of the identified numts absent from EL10 is also associated with another intra-individual polymorphic site in NK-195mm-O. Our data suggest that polymorphism among numts is unexpectedly high within sugar beets, leading to confusion about the true degree of heteroplasmy.


Asunto(s)
Beta vulgaris , Genoma Mitocondrial , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Beta vulgaris/genética , Beta vulgaris/metabolismo , Heteroplasmia , Análisis de Secuencia de ADN/métodos , Azúcares , Genoma Mitocondrial/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...