Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Eur J Pharm Biopharm ; 199: 114308, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38688439

RESUMEN

We have previously developed an in vitro instrument, termed subcutaneous injection site simulator (SCISSOR), that can be used to monitor release properties of an active pharmaceutical ingredient (API) and formulation components of a medicine designed for SC injection. Initial studies to validate the SCISSOR instrument applications used a simple hyaluronic acid (HA) hydrogel to monitor early release events. We now report a type of cross-linked HA that can, when combined with HA, provide a hydrogel (HA-XR) with optical clarity and rheological properties that remain stable for at least 6 days. Incorporation of 0.05-0.1 mg/mL of collagens isolated from human fibroblasts (Col F), bovine type I collagen (Col I), chicken collagen type II (Col II), or chondroitin sulphate (CS) produced HA or HA-XR hydrogel formats with optical clarity and rheological properties comparable to HA or HA-XR alone. HA + Col F hydrogel had a much greater effect on release rates of 70 kDa compared to 4 kDa dextran, while Col F incorporated into the HA-XR hydrogel accentuated differences in release rates of prandial and basal forms of insulin as well as decreased the release rate of denosumab. A hydrogel format of HA + Col I was used to examine the complex events for bevacizumab release under conditions where a target ligand (vascular endothelial growth factor) can interact with extracellular matrix (ECM). Together, these data have demonstrated the feasibility of using a cross-linked HA format to examine API release over multiple days and incorporation of specific ECM elements to prepare more biomimetic hydrogels that allow for tractable examination of their potential impact of API release.


Asunto(s)
Ácido Hialurónico , Hidrogeles , Inyecciones Subcutáneas , Ácido Hialurónico/química , Hidrogeles/química , Humanos , Animales , Interacciones Farmacológicas/fisiología , Bovinos , Reología , Sulfatos de Condroitina/química , Sulfatos de Condroitina/administración & dosificación , Insulina/administración & dosificación , Insulina/química , Bevacizumab/administración & dosificación , Bevacizumab/química , Colágeno/química
2.
Anal Bioanal Chem ; 415(17): 3341-3362, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37162525

RESUMEN

Therapeutical monoclonal antibodies are structurally and functionally complex, whereas the innovator's manufacturing processes are proprietary. With respect to the similarity assessment, a proposed biosimilar product needs to demonstrate a side-by-side comparison between the reference product (RP) and candidate product in terms of physicochemical properties and biological activities, as well as nonclinical and clinical outcomes. Here, a comprehensive analytical similarity assessment was performed for in-depth comparison of HLX04, China-sourced Avastin® (CN-Avastin®), and Europe-sourced Avastin® (EU-Avastin®) following a tier-based quality attribute (QA) evaluation. A series of orthogonal and state-of-the-art analytical techniques were developed for the assessment. Ten lots of HLX04 were compared with 29 lots bevacizumab RP. Referred to the characterization results, HLX04 is highly similar to the RPs with respect to physicochemical properties and biological functions. In addition, HLX04 was found with similar stability and degradation behaviors upon multiple stressed conditions to bevacizumab. Minor differences were observed in glycosylation, aggregates, FcγRIIIa(F), and FcγRIIIa(V) binding activities; nevertheless, they were evaluated and demonstrated not to impact clinical outcomes. According to the reported clinical results, the totality of evidence, including the pharmacokinetic, efficacy, safety, and immunogenicity, further shows that HLX04 is similar to CN-/EU-Avastin®.


Asunto(s)
Biosimilares Farmacéuticos , Bevacizumab/química , Biosimilares Farmacéuticos/química , Glicosilación , China , Europa (Continente)
3.
J Pharm Biomed Anal ; 223: 115121, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36308924

RESUMEN

Aggregate of therapeutic antibodies is usually considered as one of the most important critical quality attributes (CQA). The propensity of aggregates formation for bevacizumab is higher than other monoclonal antibody (mAb) drugs due to its tendency of self-association via the non-covalent interaction between the Fab arm of one bevacizumab molecule and the K445 residue on the heavy chain of another bevacizumab molecule. HLX04 has been developed as a biosimilar to bevacizumab (Avastin®) by Shanghai Henlius Biotech. To perform a head-to-head similarity evaluation with respect to aggregates or higher molecular weight species (HMWS) between HLX04 and Avastin®, we developed a robust high performance liquid chromatography (SEC-HPLC) method for aggregates analysis. Our characterization data indicated that HMWS of bevacizumab were mainly composed of dimers, and the dimer formation-dissociation equilibrium was influenced by protein concentration and storage temperature. Based on the characterization data of aggregates, we optimized the key parameters for SEC-HPLC based aggregates analysis method including mobile phase components and pH, autosampler temperature, as well as incubation conditions for sample pretreatment. The developed method was applied in HLX04 and Avastin® aggregates assessment and the similarity were confirmed among HLX04, China-sourced, and Europe-sourced Avastin® using both the pharmaceutical dosage forms and forced degradation samples. The method was also validated per ICH Q2 (R1) guidelines by challenging the parameters including specificity, accuracy, precision, linearity, range, limit of quantitation, and robustness. The validated method was applied in release test and stability study of HLX04 samples generated from commercial manufacturing process.


Asunto(s)
Anticuerpos Monoclonales , Biosimilares Farmacéuticos , Bevacizumab/química , China , Anticuerpos Monoclonales/análisis , Biosimilares Farmacéuticos/química , Temperatura
4.
J Pharm Sci ; 111(12): 3243-3250, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36007559

RESUMEN

The presence of monoclonal antibody (mAb) fragments in pharmaceutical mAb products is a critical quality attribute and should be controlled for safety. Several mAb fragments derived from clip formation in the complementarity determining regions (CDRs), as well as from cleavage in the hinge region, have been reported. However, the properties of CDR-clipped variants are not fully understood because of difficulties in separating them from intact mAbs under non-denaturing conditions due to similarities in size. We have established a method for separating CDR-clipped variants under non-denaturing conditions using an appropriate size exclusion chromatography column.1 In this report, we provide a comprehensive characterization of a CDR-clipped variant from bevacizumab. The variant exhibited a lower pI, a higher tendency to form dimers, and a lower affinity for both neonatal Fc receptor (FcRn) and Fcγ receptor (FcγR). The effects of clip formation in CDR H3 on the higher order structure were analyzed by hydrogen/deuterium exchange mass spectrometry, and the observed changes in the structures of the VH, CH2, and VL domains were in agreement with the lowered affinity for antigen, FcRn, and FcγR. These findings suggest that clip formation in the CDR may affect the efficacy, safety, and pharmacokinetics of pharmaceutical mAbs.


Asunto(s)
Bevacizumab , Regiones Determinantes de Complementariedad , Receptores de IgG , Bevacizumab/química
5.
Biomacromolecules ; 23(7): 2914-2929, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35735135

RESUMEN

Retinal diseases are the leading cause of visual impairment worldwide. The effectiveness of antibodies for the treatment of retinal diseases has been demonstrated. Despite the clinical success, achieving sufficiently high concentrations of these protein therapeutics at the target tissue for an extended period is challenging. Patients suffering from macular degeneration often receive injections once per month. Therefore, there is a growing need for suitable systems that can help reduce the number of injections and adverse effects while improving patient complacency. This study systematically characterized degradable "in situ" forming hydrogels that can be easily injected into the vitreous cavity using a small needle (29G). After intravitreal injection, the formulation is designed to undergo a sol-gel phase transition at the administration site to obtain an intraocular depot system for long-term sustained release of bioactives. A Diels-Alder reaction was exploited to crosslink hyaluronic acid-bearing furan groups (HAFU) with 4 arm-PEG10K-maleimide (4APM), yielding stable hydrogels. Here, a systematic investigation of the effects of polymer composition and the ratio between functional groups on the physicochemical properties of hydrogels was performed to select the most suitable formulation for protein delivery. Rheological analysis showed rapid hydrogel formation, with the fastest gel formation within 5 min after mixing the hydrogel precursors. In this study, the mechanical properties of an ex vivo intravitreally formed hydrogel were investigated and compared to the in vitro fabricated samples. Swelling and degradation studies showed that the hydrogels are biodegradable by the retro-Diels-Alder reaction under physiological conditions. The 4APM-HAFU (ratio 1:5) hydrogel formulation showed sustained release of bevacizumab > 400 days by a combination of diffusion, swelling, and degradation. A bioassay showed that the released bevacizumab remained bioactive. The hydrogel platform described in this study offers high potential for the sustained release of therapeutic antibodies to treat ocular diseases.


Asunto(s)
Hidrogeles , Enfermedades de la Retina , Bevacizumab/química , Preparaciones de Acción Retardada/química , Humanos , Ácido Hialurónico/química , Hidrogeles/química
6.
Biologicals ; 77: 1-15, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35667958

RESUMEN

The majority of recombinant mAb products contain heterogeneous charge variants, commonly the result of post-translational modifications occurring during cell culture and accumulated during production, formulation and storage. MB02 is a biosimilar mAb to bevacizumab. Similarity data of charge variants for biosimilars against its reference products must be generated to demonstrate consistency in product quality and to ensure efficacy and safety. The goal of this work was to isolate seven charge variants of MB02 and Avastin® by semi-preparative cation exchange chromatography followed by purity test and extended analytical characterization to prove similarity. Although poor purity obtained for minor variants complicated data interpretation, an in-depth insight into the charge variants pattern of MB02 compared to Avastin® was obtained, contributing to a better understanding of modifications associated to microheterogeneity. To our knowledge, this is the first comparative analytical study of individual charge variants of a bevacizumab biosimilar following a head-to head approach and the most comprehensive N-glycosylation assessment of IgG1 charge variants. Although modifications related to N- and C-terminal, N-glycans, size heterogeneity or deamidation were specifically enriched among low abundant charge variants, they did not affect binding affinity to VEGF or FcRn and in vitro potency compared with the main species or unfractionated material.


Asunto(s)
Biosimilares Farmacéuticos , Bevacizumab/química , Bevacizumab/farmacología , Biosimilares Farmacéuticos/química , Biosimilares Farmacéuticos/farmacología , Glicosilación , Inmunoglobulina G
7.
Pharm Res ; 39(5): 851-865, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35355206

RESUMEN

BACKGROUND: Lysine variants of monoclonal antibodies (mAbs) result from incomplete clipping of the C-terminal lysine residues of the heavy chain. Although the structure of the lysine variants has been determined for several mAb products, a detailed study that investigates the impact of lysine charge variants on PK/PD and preclinical safety is yet to be published. OBJECTIVE: An in-depth investigation of the impact of C- terminal lysine clipping of mAbs on safety and efficacy for bevacizumab charge variants. METHOD: Charge variant isolation using semi-preparative chromatography is followed by a comparative analysis of FcRn binding, pharmacokinetics, and pharmacodynamics in relevant animal models. RESULTS: K1 variant exhibited improved FcRn binding affinity (4-fold), half-life (1.3-fold), and anti-tumor activity (1.3-fold) as compared to the K0 (main) product. However, the K2 variant, even though exhibited higher FcRn affinity (2-fold), displayed lower half-life (1.6-fold) and anti-tumor activity at medium and low doses. Differential proteomic analysis revealed that seven pathways (such as glycolysis, gluconeogenesis, carbon metabolism, synthesis of amino acids) were significantly enriched. Higher efficacy of the K1 variant is likely due to higher bioavailability of the drug, leading to complete downregulation of the pathways that facilitate catering of the energy requirements of the proliferating tumor cells. On the contrary, the K2 variant exhibits a shorter half-life, resulting only in partial reduction in the metabolic/energy requirements of the growing tumor cells. CONCLUSION: Overall, we conclude that the mAb half-life, dosage, and efficacy of a biotherapeutic product are significantly impacted by the charge variant profile of a biotherapeutic product.


Asunto(s)
Antineoplásicos Inmunológicos , Receptores Fc , Animales , Anticuerpos Monoclonales/farmacocinética , Bevacizumab/química , Semivida , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Lisina , Proteómica , Receptores Fc/genética , Receptores Fc/metabolismo
8.
PLoS One ; 17(2): e0261925, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35143514

RESUMEN

PURPOSE: Vitreous humor is a complex biofluid whose composition determines its structure and function. Vitreous viscosity will affect the delivery, distribution, and half-life of intraocular drugs, and key physiological molecules. The central pig vitreous is thought to closely match human vitreous viscosity. Diffusion is inversely related to viscosity, and diffusion is of fundamental importance for all biochemical reactions. Fluorescence Recovery After Photobleaching (FRAP) may provide a novel means of measuring intravitreal diffusion that could be applied to drugs and physiological macromolecules. It would also provide information about vitreous viscosity, which is relevant to drug elimination, and delivery. METHODS: Vitreous viscosity and intravitreal macromolecular diffusion of fluorescently labelled macromolecules were investigated in porcine eyes using fluorescence recovery after photobleaching (FRAP). Fluorescein isothiocyanate conjugated (FITC) dextrans and ficolls of varying molecular weights (MWs), and FITC-bovine serum albumin (BSA) were employed using FRAP bleach areas of different diameters. RESULTS: The mean (±standard deviation) viscosity of porcine vitreous using dextran, ficoll and BSA were 3.54 ± 1.40, 2.86 ± 1.13 and 4.54 ± 0.13 cP respectively, with an average of 3.65 ± 0.60 cP. CONCLUSIONS: FRAP is a feasible and practical optical method to quantify the diffusion of macromolecules through vitreous.


Asunto(s)
Recuperación de Fluorescencia tras Fotoblanqueo/métodos , Cuerpo Vítreo/metabolismo , Animales , Bevacizumab/química , Bevacizumab/metabolismo , Dextranos/química , Difusión , Ficoll/química , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/química , Ranibizumab/química , Ranibizumab/metabolismo , Receptores de Factores de Crecimiento Endotelial Vascular/química , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Albúmina Sérica Bovina/química , Porcinos , Viscosidad
9.
J Cancer Res Clin Oncol ; 148(2): 487-496, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33866430

RESUMEN

PURPOSE: Bevacizumab is a recombinant humanized monoclonal antibody that inhibits vascular endothelial growth factor-specific angiogenesis in some cancers. MYL-1402O is a proposed bevacizumab biosimilar. METHODS: The primary objective of this single-center, randomized, double-blind, three-arm, parallel-group, phase 1 study in healthy male volunteers was to evaluate bioequivalence of MYL-1402O to EU and US-reference bevacizumab, and EU-reference bevacizumab to US-reference bevacizumab. The primary pharmacokinetic parameter was area under the serum concentration-time curve from 0 extrapolated to infinity (AUC0-∞). Pharmacokinetic parameters were analyzed using general linear models of analysis of variance. Secondary endpoints included safety and tolerability. RESULTS: Of 111 enrolled subjects, 110 were included in the pharmacokinetic analysis (MYL-1402O, n = 37; EU-reference bevacizumab, n = 36; US-reference bevacizumab, n = 37). Bioequivalence was demonstrated between MYL-1402O and EU-reference bevacizumab, MYL-1402O and US-reference bevacizumab, and between EU- and US-reference bevacizumab where least squares mean ratios of AUC0-∞ were close to 1, and 90% CIs were within the equivalence range (0.80-1.25). Secondary pharmacokinetic parameters (AUC from 0 to time of last quantifiable concentration [AUC0-t], peak serum concentration [Cmax], time to Cmax, elimination rate constant, and elimination half-life) were also comparable, with 90% CIs for ratios of AUC0-t and Cmax within 80-125%. Treatment-emergent adverse events were similar across all three treatment groups and were consistent with clinical data for bevacizumab. CONCLUSION: MYL-1402O was well tolerated and demonstrated pharmacokinetic and safety profiles similar to EU-reference bevacizumab and US-reference bevacizumab in healthy male volunteers. No new significant safety issues emerged (ClinicalTrials.gov, NCT02469987; ClinicalTrialsRegister.eu EudraCT, 2014-005621-12; June 12, 2015).


Asunto(s)
Bevacizumab/farmacocinética , Biosimilares Farmacéuticos/farmacocinética , Adolescente , Adulto , Bevacizumab/química , Biosimilares Farmacéuticos/química , Método Doble Ciego , Composición de Medicamentos/métodos , Composición de Medicamentos/normas , Europa (Continente) , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Países Bajos , Equivalencia Terapéutica , Estados Unidos , Adulto Joven
10.
Nanotechnology ; 33(16)2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-34965522

RESUMEN

Nanomedicine and aptamer have excellent potential in giving play to passive and active targeting respectively, which are considered to be effective strategies in the retro-ocular drug delivery system. The presence of closely adjoined tissue structures in the eye makes it difficult to administer the drug in the posterior segment of the eye. The application of nanomedicine could represent a new avenue for the treatment, since it could improve penetration, achieve targeted release, and improve bioavailability. Additionally, a novel type of targeted molecule aptamer with identical objective was proposed. As an emerging molecule, aptamer shows the advantages of penetration, non-toxicity, and high biocompatibility, which make it suitable for ocular drug administration. The purpose of this paper is to summarize the recent studies on the effectiveness of nanoparticles as a drug delivery to the posterior segment of the eye. This paper also creatively looks forward to the possibility of the combined application of nanocarriers and aptamers as a new method of targeted drug delivery system in the field of post-ophthalmic therapy.


Asunto(s)
Aptámeros de Nucleótidos/química , Portadores de Fármacos/química , Nanopartículas/química , Animales , Bevacizumab/química , Bevacizumab/uso terapéutico , Oftalmopatías/tratamiento farmacológico , Humanos , Nanomedicina , Ranibizumab/química , Ranibizumab/uso terapéutico
11.
Biologicals ; 73: 41-56, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34593306

RESUMEN

The majority of recombinant mAb products contain heterogeneous charge variants, commonly the result of post-translational modifications occurring during cell culture and accumulated during production, formulation and storage. MB02 is a biosimilar mAb to bevacizumab. Similarity data of charge variants for biosimilars against its reference products must be generated to demonstrate consistency in product quality and to ensure efficacy and safety. The goal of this work was to isolate seven charge variants of MB02 and Avastin® by semi-preparative cation exchange chromatography followed by purity test and extended analytical characterization to prove similarity. Although poor purity obtained for minor variants complicated data interpretation, an in-depth insight into the charge variants pattern of MB02 compared to Avastin® was obtained, contributing to a better understanding of modifications associated to microheterogeneity. To our knowledge, this is the first comparative analytical study of individual charge variants of a bevacizumab biosimilar following a head-to head approach and the most comprehensive N-glycosylation assessment of IgG1 charge variants. Although modifications related to N- and C-terminal, N-glycans, size heterogeneity or deamidation were specifically enriched among low abundant charge variants, they did not affect binding affinity to VEGF or FcRn and in vitro potency compared with the main species or unfractionated material.


Asunto(s)
Bevacizumab/química , Biosimilares Farmacéuticos , Biosimilares Farmacéuticos/química , Biosimilares Farmacéuticos/normas , Glicosilación , Inmunoglobulina G
12.
Molecules ; 26(14)2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34299401

RESUMEN

Bevacizumab (BCZ) is a recombinant humanized monoclonal antibody against the vascular endothelial growth factor, which is involved in the angiogenesis process. Pathologic angiogenesis is observed in several diseases including ophthalmic disorders and cancer. The multiple administrations of BCZ can cause adverse effects. In this way, the development of controlled release systems for BCZ delivery can promote the modification of drug pharmacokinetics and, consequently, decrease the dose, toxicity, and cost due to improved efficacy. This review highlights BCZ formulated in organic nanoparticles providing an overview of the physicochemical characterization and in vitro and in vivo biological evaluations. Moreover, the main advantages and limitations of the different approaches are discussed. Despite difficulties in working with antibodies, those nanocarriers provided advantages in BCZ protection against degradation guaranteeing bioactivity maintenance.


Asunto(s)
Bevacizumab/farmacología , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Nanopartículas/administración & dosificación , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos Inmunológicos/administración & dosificación , Antineoplásicos Inmunológicos/química , Antineoplásicos Inmunológicos/farmacología , Bevacizumab/administración & dosificación , Bevacizumab/química , Humanos , Nanopartículas/química
13.
Curr Eye Res ; 46(5): 751-757, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33896277

RESUMEN

AIM: The development of a polyarginine cell-penetrating peptide (CPP) could enable the treatment of age-related macular degeneration, with drugs like bevacizumab, to be administered using eye drops instead of intravitreal injections. Topical formulations have a vast potential impact on healthcare by increasing patient compliance while reducing the financial burden. However, as the ocular preparations may contain several doses, it is essential to understand the stability of the bevacizumab+CPP conjugate produced. MATERIALS AND METHODS: In this work, we examine the stability of a bevacizumab solution with and without cell-penetrating peptide using dynamic light scattering and circular dichroism to assess the physical stability. We use HPLC to assess the chemical stability and ELISA to assess its biological activity. We also examine the potential of the CPP to be used as an antimicrobial agent in place of preservatives in the eye drop. RESULTS: The structural stability of bevacizumab with and without the CPP was found not to be affected by temperature: samples stored at either 20°C or 4°C were identical in behavior. However, physical instability was observed after five weeks, leading to aggregation and precipitation. Further investigation revealed that the addition of the polypeptide led to increased aggregation, as revealed through dynamic light scattering and concentration analysis of the peptide through HPLC. Complexing the bevacizumab with CPP had no effect on biological stability or degradation. CONCLUSIONS: Our findings suggest that the shelf life of CPP+bevacizumab complexes is at least 38 days from its initial formulation. Currently, the mechanism for aggregation is not fully understood but does not appear to occur through chemical degradation.


Asunto(s)
Inhibidores de la Angiogénesis/química , Bevacizumab/química , Péptidos de Penetración Celular/química , Degeneración Macular/tratamiento farmacológico , Péptidos/química , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Cromatografía Líquida de Alta Presión , Dicroismo Circular , Sistemas de Liberación de Medicamentos , Estabilidad de Medicamentos , Ensayo de Inmunoadsorción Enzimática , Luz , Soluciones Oftálmicas , Preparaciones Farmacéuticas , Dispersión de Radiación
14.
Sci Rep ; 11(1): 2899, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33536498

RESUMEN

Vascular endothelial growth factor-A (VEGF-A) is assumed to play a crucial role in the development and rupture of vulnerable plaques in the atherosclerotic process. We used a VEGF-A targeted fluorescent antibody (bevacizumab-IRDye800CW [bevacizumab-800CW]) to image and visualize the distribution of VEGF-A in (non-)culprit carotid plaques ex vivo. Freshly endarterectomized human plaques (n = 15) were incubated in bevacizumab-800CW ex vivo. Subsequent NIRF imaging showed a more intense fluorescent signal in the culprit plaques (n = 11) than in the non-culprit plaques (n = 3). A plaque received from an asymptomatic patient showed pathologic features similar to the culprit plaques. Cross-correlation with VEGF-A immunohistochemistry showed co-localization of VEGF-A over-expression in 91% of the fluorescent culprit plaques, while no VEGF-A expression was found in the non-culprit plaques (p < 0.0001). VEGF-A expression was co-localized with CD34, a marker for angiogenesis (p < 0.001). Ex vivo near-infrared fluorescence (NIRF) imaging by incubation with bevacizumab-800CW shows promise for visualizing VEGF-A overexpression in culprit atherosclerotic plaques in vivo.


Asunto(s)
Bevacizumab/farmacología , Estenosis Carotídea/diagnóstico , Imagen Óptica/métodos , Placa Aterosclerótica/complicaciones , Factor A de Crecimiento Endotelial Vascular/análisis , Anciano , Enfermedades Asintomáticas , Bencenosulfonatos/química , Bevacizumab/química , Estenosis Carotídea/etiología , Estenosis Carotídea/patología , Estenosis Carotídea/cirugía , Endarterectomía Carotidea , Estudios de Factibilidad , Femenino , Colorantes Fluorescentes/química , Humanos , Indoles/química , Masculino , Persona de Mediana Edad , Imagen Molecular/métodos , Placa Aterosclerótica/patología , Placa Aterosclerótica/cirugía , Índice de Severidad de la Enfermedad , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/metabolismo
15.
Ann Nucl Med ; 35(4): 514-522, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33582981

RESUMEN

OBJECTIVE: Pretargeting radioimmunotherapy (PRIT) is a promising approach that can reduce long-time retention of blood radioactivity and consequently reduce hematotoxicity. Among the PRIT strategies, the combination of biotin-conjugated mAb and radiolabeled streptavidin (StAv) is a simple and convenient method because of its ease of preparation. This study performed three-step (3-step) PRIT using the sequential injection of (1) biotinylated bevacizumab (Bt-BV), (2) avidin, and (3) radiolabeled StAv for the treatment of triple-negative breast cancer (TNBC). METHODS: Four biodistribution studies were performed using 111In in tumor-bearing mice to optimize each step of our PRIT methods. Further, a therapeutic study was performed with optimized 3-step PRIT using 90Y-labeled StAv. RESULTS: Based on the biodistribution studies, the protein dose of Bt-BV and avidin was optimized to 100 µg and 10 molar equivalent of BV, respectively. Succinylation of StAv significantly decreased the kidney accumulation level (with succinylation (6.96 ± 0.91) vs without succinylation (20.60 ± 1.47) at 1 h after injection, p < 0.0001) with little effect on the tumor accumulation level. In the therapeutic study, tumor growth was significantly suppressed in treatment groups with optimized 3-step PRIT using 90Y-labeled succinylated StAv compared to that of the no-treatment group (p < 0.05). CONCLUSIONS: The 3-step PRIT strategy of this study achieved fast blood clearance and low kidney uptake with little effect on the tumor accumulation level, and a certain degree of therapeutic effect was consequently observed. These results indicated that the pretargeting treatment of the current study may be effective for human TNBC treatment.


Asunto(s)
Antineoplásicos Inmunológicos/farmacocinética , Bevacizumab/farmacocinética , Radioisótopos de Indio/química , Indio/química , Estreptavidina/farmacocinética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Antineoplásicos Inmunológicos/química , Bevacizumab/química , Biotina/química , Relación Dosis-Respuesta Inmunológica , Femenino , Xenoinjertos , Inmunoconjugados/uso terapéutico , Riñón , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Radioinmunoterapia , Estreptavidina/química , Succinimidas/química
16.
Sci Rep ; 11(1): 2487, 2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33514790

RESUMEN

The present study investigates the impact of charge variants on bevacizumab's structure, stability, and biological activity. Five basic and one acidic charge variants were separated using semi-preparative cation exchange chromatography using linear pH gradient elution with purity > 85%. Based on the commercial biosimilar product's composition, two basic variants, one acidic and the main bevacizumab product, were chosen for further investigation. Intact mass analysis and tryptic peptide mapping established the basic variants' identity as those originating from an incomplete clipping of either one or both C-terminal lysine residues in the heavy chain of bevacizumab. Based on peptide mapping data, the acidic variant formation was attributed to deamidation of asparagine residue (N84), oxidation of M258, and preservation of C-terminal lysine residue, located on the heavy chain of bevacizumab. None of the observed charge heterogeneities in bevacizumab were due to differences in glycosylation among the variants. The basic (lysine) variants exhibited similar structural, functional, and stability profiles as the bevacizumab main product. But it was also noted that both the variants did not improve bevacizumab's therapeutic utility when pooled in different proportions with the main product. The acidic variant was found to have an equivalent secondary structure with subtle differences in the tertiary structure. The conformational difference also translated into a ~ 62% decrease in biological activity. Based on these data, it can be concluded that different charge variants behave differently with respect to their structure and bioactivity. Hence, biopharmaceutical manufacturers need to incorporate this understanding into their process and product development guidelines to maintain consistency in product quality.


Asunto(s)
Antineoplásicos Inmunológicos/química , Antineoplásicos Inmunológicos/farmacología , Bevacizumab/química , Bevacizumab/farmacología , Biosimilares Farmacéuticos/química , Biosimilares Farmacéuticos/farmacología , Proliferación Celular/efectos de los fármacos , Espectrometría de Masas/métodos , Animales , Células CHO , Cromatografía por Intercambio Iónico/métodos , Cricetulus , Estabilidad de Medicamentos , Glicosilación , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Mapeo Peptídico/métodos , Estabilidad Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores
17.
Molecules ; 25(21)2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33113897

RESUMEN

Vascular endothelial growth factor (VEGF) expression increased significantly in the pathogenesis of age-related macular degeneration, which induced the formation of pathological blood vessels. Dexamethasone is an exogenous anti-angiogenic drug while bevacizumab is an endogenous anti-angiogenic drug. They both have been widely used in ophthalmology. However, independent administration is not enough to completely block the development of choroidal neovascularization (CNV), and the number of eyes vitreous injections is limited. Reasonable combination of drugs may produce significantly better therapeutic effect than single drug treatment. The cyclic RGD (cRGD) peptide has a particularly high affinity with retinal pigment epithelial cells, where VEGF secretes from. In this study, we prepared nanoparticles of bevacizumab and dexamethasone with cRGD peptide as the target (aBev/cRGD-DPPNs). The particle size of the aBev/cRGD-DPPNs was 213.8 ± 1.5 nm, SEM results showed that the nano-carriers were well dispersed and spherical. The cell uptake study demonstrated the selectivity of the aBev/cRGD-DPPN to ARPE-19 with αVß3 over expressed. The aBev/cRGD-DPPNs had a better apoptosis induction effect and an obvious inhibitory effect on migration, invasion, and capillary-like structures formation of human umbilical vein epithelial cells. The fluorescein fundus angiography study, immunohistochemistry and histopathological evaluation showed the aBev/cRGD-DPPNs greatly reduced the development of CNV on a rabbit model.


Asunto(s)
Portadores de Fármacos/química , Degeneración Macular/tratamiento farmacológico , Nanopartículas/química , Péptidos Cíclicos/química , Adulto , Bevacizumab/administración & dosificación , Bevacizumab/química , Bevacizumab/uso terapéutico , Transporte Biológico , Línea Celular , Dexametasona/administración & dosificación , Dexametasona/química , Dexametasona/uso terapéutico , Portadores de Fármacos/metabolismo , Células Epiteliales/metabolismo , Humanos , Degeneración Macular/metabolismo , Péptidos Cíclicos/metabolismo , Polímeros/química , Retina/citología , Factor A de Crecimiento Endotelial Vascular/metabolismo
18.
Anal Bioanal Chem ; 412(24): 6583-6593, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32691086

RESUMEN

Manufacturing of biopharmaceuticals involves recombinant protein expression in host cells followed by extensive purification of the target protein. Yet, host cell proteins (HCPs) may persist in the final drug product, potentially reducing its quality with respect to safety and efficacy. Consequently, residual HCPs are closely monitored during downstream processing by techniques such as enzyme-linked immunosorbent assay (ELISA) or high-performance liquid chromatography combined with tandem mass spectrometry (HPLC-MS/MS). The latter is especially attractive as it provides information with respect to protein identities. Although the applied HPLC-MS/MS methodologies are frequently optimized with respect to HCP identification, acquired data is typically analyzed using standard settings. Here, we describe an improved strategy for evaluating HPLC-MS/MS data of HCP-derived peptides, involving probabilistic protein inference and peptide detection in the absence of fragment ion spectra. This data analysis workflow was applied to data obtained for drug products of various biotherapeutics upon protein A affinity depletion. The presented data evaluation strategy enabled in-depth comparative analysis of the HCP repertoires identified in drug products of the monoclonal antibodies rituximab and bevacizumab, as well as the fusion protein etanercept. In contrast to commonly applied ELISA strategies, the here presented workflow is process-independent and may be implemented into existing HPLC-MS/MS setups for drug product characterization and process development. Graphical abstract.


Asunto(s)
Bevacizumab/química , Contaminación de Medicamentos , Etanercept/química , Rituximab/química , Productos Biológicos/química , Cromatografía Líquida de Alta Presión/métodos , Ensayo de Inmunoadsorción Enzimática , Humanos , Proteínas Recombinantes de Fusión/química , Espectrometría de Masas en Tándem/métodos
19.
Biomater Sci ; 8(13): 3720-3729, 2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32500879

RESUMEN

Colorectal cancer (CRC) is one of the most common and deadly cancers in the world, mainly due to its metastatic and metabolic ability. The CD44 receptor isoform containing exon 6 (CD44v6) is a transmembrane protein that plays an important role in the establishment of tumors and metastasis, which make this molecule a potential target for therapy and diagnosis of tumors. Aiming at a targeted therapy, the anti-VEGF monoclonal antibody (mAb) bevacizumab was loaded into poly(lactic-co-glycolic acid)-polyethylene glycol (PLGA-PEG) nanoparticles (NPs) functionalized with an antibody fragment (Fab) specific for CD44v6-expressing human cancer cells. The sizes of NPs were in the range of 150-250 nm and they had a negative charge between -5 and -10 mV, with an association efficiency (AE) of bevacizumab of 86%. v6 Fab-PLGA-PEG NPs containing bevacizumab specifically bonded to the CD44v6 cell surface receptor and exhibited higher internalization into CD44v6+ epithelial cells than bare and (-) Fab-PLGA-PEG NPs. To understand the biological effect of NP targeting, the intracellular levels of bevacizumab and VEGF were evaluated after the incubation of targeted and untargeted NPs. The intracellular levels of bevacizumab were significantly higher in cells incubated with v6 Fab-PLGA-PEG NPs and these NPs resulted in a significant decrease in the intracellular VEGF compared to untargeted NPs and free bevacizumab. PLGA-PEG NPs, surface-functionalized with a v6-specific Fab, have the potential to intracellularly deliver bevacizumab into CD44v6 expressing cancer cells.


Asunto(s)
Antineoplásicos Inmunológicos/farmacología , Bevacizumab/farmacología , Neoplasias del Colon/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Receptores de Hialuranos/antagonistas & inhibidores , Antineoplásicos Inmunológicos/química , Bevacizumab/química , Materiales Biocompatibles/química , Supervivencia Celular/efectos de los fármacos , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Portadores de Fármacos/química , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Receptores de Hialuranos/metabolismo , Nanopartículas/química , Polietilenglicoles/química , Células Tumorales Cultivadas
20.
Pharm Res ; 37(6): 91, 2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-32385723

RESUMEN

PURPOSE: Bevacizumab (BCZ) is a recombinant monoclonal antibody that inhibits the biological activity of the vascular endothelial growth factor, which has an important role in angiogenesis for tumoral growth and progression. In this way, our objective was to develop chitosan-coated lipid-core nanocapsules functionalized with BCZ by an organometallic complex using gold-III. METHODS: The formulation was produced and characterized in relation to physicochemical characteristics. Furthermore, the antitumoral and antiangiogenic activities were evaluated against C6 glioma cell line and chicken embryo chorioallantoic membrane (CAM), respectively. RESULTS: Final formulation showed nanometric size, narrow polydispersity, positive zeta potential and gold clusters size lower than 2 nm. BCZ in aqueous solution (0.01-0.10 µmol L-1) did not show cytotoxic activity in vitro against C6 glioma cell line; although, MLNC-Au-BCZ showed cytotoxicity with a median inhibition concentration of 30 nmol L-1 of BCZ. Moreover, MLNC-Au-BCZ demonstrated cellular internalization dependent on incubation time and BCZ concentration. BCZ solution did not induce significant apoptosis as compared to MLNC-Au-BCZ within 24 h of treatment. CAM assay evidenced potent antiangiogenic activity for MLNC-Au-BCZ, representing a decrease of 5.6 times in BCZ dose comparing to BCZ solution. CONCLUSION: MLNC-Au-BCZ is a promising product for the treatment of solid tumors.


Asunto(s)
Inhibidores de la Angiogénesis/química , Bevacizumab/química , Quitosano/química , Glioma/tratamiento farmacológico , Oro/química , Lípidos/química , Nanocápsulas/química , Inhibidores de la Angiogénesis/farmacología , Animales , Apoptosis/efectos de los fármacos , Bevacizumab/metabolismo , Línea Celular Tumoral , Permeabilidad de la Membrana Celular , Embrión de Pollo , Membrana Corioalantoides/efectos de los fármacos , Complejos de Coordinación/química , Relación Dosis-Respuesta a Droga , Composición de Medicamentos/métodos , Hexosas/química , Humanos , Lectinas de Plantas/química , Polisorbatos/química , Proteínas de Soja/química , Propiedades de Superficie , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA