RESUMEN
BACKGROUND: Cellular therapy has emerged as a promising strategy to minimize the use of conventional immunosuppressive drugs and ultimately induce long-term graft survival. Myeloid-derived suppressor cells (MDSCs) can be used for immunosuppressive treatment of solid organ transplants. METHODS: Granular macrophage colony-stimulating factor (GM-CSF) and bexarotene, an X receptor-selective retinoid, were used for in vitro MDSC induction. Cell phenotypes were detected using flow cytometry, while mRNA was detected via real-time PCR. A mouse skin transplantation model was used to verify the inhibitory effects of this treatment. RESULTS: The combination of GM-CSF and bexarotene-induced MDSC differentiation. MDSCs induce immune tolerance by inhibiting T-cell proliferation, influencing cytokine secretion, and inducing T-cell transformation into Treg cells. Combination treatment significantly up-regulated Arg-1 expression in MDSCs. The Arg-1 inhibitor nor-NOHA neutralized the immunosuppressive activity of MDSCs, suggesting the involvement of Arg-1 in MDSC-mediated immunosuppression. GM-CSF and bexarotene-induced MDSCs prolong graft survival in mouse skin transplants, exhibiting in vivo immunosuppressive effects. CONCLUSIONS: A new method for inducing MDSCs is presented. The combination of GM-CSF and bexarotene induces MDSCs with remarkable regulatory functions. Adoptive transfer of the induced MDSCs extended allograft survival. These results suggest that MDSCs can potentially be used in future clinical transplants to inhibit rejection, reduce adverse events, and induce operative tolerance.
Asunto(s)
Arginasa , Bexaroteno , Diferenciación Celular , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Células Supresoras de Origen Mieloide , Transducción de Señal , Trasplante de Piel , Tetrahidronaftalenos , Animales , Bexaroteno/farmacología , Células Supresoras de Origen Mieloide/efectos de los fármacos , Células Supresoras de Origen Mieloide/inmunología , Transducción de Señal/efectos de los fármacos , Tetrahidronaftalenos/farmacología , Diferenciación Celular/efectos de los fármacos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Ratones , Arginasa/metabolismo , Arginasa/genética , Supervivencia de Injerto/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Endogámicos BALB C , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Proliferación Celular/efectos de los fármacosAsunto(s)
Bexaroteno , Proteínas Proto-Oncogénicas c-ret , Humanos , Bexaroteno/uso terapéutico , Bexaroteno/farmacología , Proteínas Proto-Oncogénicas c-ret/genética , Pirazoles/uso terapéutico , Mielofibrosis Primaria/tratamiento farmacológico , Mielofibrosis Primaria/genética , Antineoplásicos/uso terapéutico , Tetrahidronaftalenos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Mutación , Piridinas/uso terapéutico , Proteínas Proto-Oncogénicas c-met/genética , Aprobación de Drogas , Leucemia-Linfoma de Células T del Adulto/tratamiento farmacológico , Leucemia-Linfoma de Células T del Adulto/genética , Leucemia-Linfoma de Células T del Adulto/patología , Pirimidinas/uso terapéutico , Morfolinas/uso terapéutico , Tiazoles/uso terapéutico , Tiazoles/farmacología , Exones , BenzamidasRESUMEN
BACKGROUND: Bexarotene, also recognized as Targretin, is categorized as a retinoid, a type of cancer drug. Nevertheless, the precise mechanisms of bexarotene in relation to colon cancer remain unclear. In colon cancer, SEZ6L2 was suggested as one of the biomarkers and targets. This study presents a comprehensive exploration of the role of SEZ6L2 in colon cancer. METHODS: We utilized both TCGA data and a cohort of Chinese patients. In a meticulous analysis of 478 colon cancer cases, SEZ6L2 expression levels were examined in relation to clinical characteristics, staging parameters, and treatment outcomes. Additionally, we investigated the pharmacological impact of bexarotene on SEZ6L2, demonstrating a significant downregulation of SEZ6L2 at both mRNA and protein levels in colon cancer patients following bexarotene treatment. RESULTS: SEZ6L2 consistently overexpresses in colon cancer, serving as a potential universal biomarker with prognostic significance, validated in a diverse Chinese cohort. In vitro, SEZ6L2 promotes cell viability without affecting migration. Bexarotene treatment inhibits SEZ6L2 expression, correlating with reduced viability both in vitro and in vivo. SEZ6L2 overexpression accelerates declining survival rates in an in vivo context. Bexarotene's efficacy is context-dependent, effective in parental cells but not with SEZ6L2 overexpression. Computational predictions suggest a direct SEZ6L2-bexarotene interaction, warranting further experimental exploration. CONCLUSION: The study provides valuable insights into SEZ6L2 as a prognostic biomarker in colon cancer, revealing its intricate relationship with clinical parameters, treatment outcomes, and bexarotene effects. Context-dependent therapeutic responses emphasize the nuanced understanding required for SEZ6L2's role in colon cancer, paving the way for targeted therapeutic strategies.
Asunto(s)
Bexaroteno , Neoplasias del Colon , Humanos , Bexaroteno/farmacología , Bexaroteno/uso terapéutico , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/mortalidad , Neoplasias del Colon/patología , Neoplasias del Colon/genética , Masculino , Femenino , Animales , Pronóstico , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Ratones , Persona de Mediana Edad , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral , Tasa de SupervivenciaRESUMEN
OBJECTIVES: The aim of this study was to determine the single and combined antidiabetic activity and side effects of the retinoid X receptor agonist bexarotene and the thioredoxin-interacting protein inhibitor and peroxisome proliferator-activated receptor γ and AMP-activated protein kinase activator icariin. METHODS: The rats were grouped as healthy (control), diabetes, diabetes + bexarotene (20 mg/kg), diabetes + icariin (60 mg/kg), diabetes + bexarotene (10 mg/kg) + icariin (30 mg/kg) low-dose combination and diabetes + bexarotene (20 mg/kg) + icariin (60 mg/kg) high-dose combination groups. KEY FINDINGS: Icariin treatment led to a significant reduction in glucose levels compared with the diabetes control group, a remarkable outcome observed 45 days after the initial application. HbA1c levels of the icariin and low-dose combination treatment groups were significantly lower than in the diabetes group. Notably, icariin treatment also significantly elevated HOMA-ß levels, which is indicative of improved ß-cell function. Icariin significantly decreased glucose levels at 30 and 120 min in the oral glucose tolerance test. Moreover, it ameliorated hepatocyte degeneration, hepatic cord dissociation, congestion, mononuclear cell infiltration in the liver, and degeneration in the pancreas. CONCLUSIONS: Icariin treatment exhibited robust antidiabetic effects with fewer side effects than other treatment options in this study. In future studies, long-term and varying doses of icariin will contribute to the development of novel antidiabetic drugs.
Asunto(s)
Bexaroteno , Glucemia , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Quimioterapia Combinada , Flavonoides , Hipoglucemiantes , Animales , Flavonoides/farmacología , Bexaroteno/farmacología , Hipoglucemiantes/farmacología , Masculino , Diabetes Mellitus Experimental/tratamiento farmacológico , Ratas , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Ratas Sprague-Dawley , Hemoglobina Glucada/metabolismo , Prueba de Tolerancia a la Glucosa , PPAR gamma/metabolismo , PPAR gamma/agonistas , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Receptores X Retinoide/agonistas , Receptores X Retinoide/metabolismo , Relación Dosis-Respuesta a DrogaRESUMEN
The Cambridge Centre for Myelin Repair One (CCMR-One) trial showed that 6 months of bexarotene reduces visual evoked potential (VEP) latency in people with relapsing-remitting multiple sclerosis (MS). In a single-centre follow-up study of these participants, we re-examined full-field VEP and clinical assessments. Twenty participants (12 bexarotene and 8 placebo) were seen on average 27 months after their trial involvement. In an analysis of all eyes with recordable signal (24 bexarotene and 14 placebo), the adjusted bexarotene-placebo treatment difference in P100 latency was -7.79 (95% confidence interval (CI) = -14.76, -0.82) ms, p = 0.044. We conclude that there were durable improvements in VEP latency, suggesting long-term benefits from exposure to a remyelinating drug.
Asunto(s)
Bexaroteno , Potenciales Evocados Visuales , Esclerosis Múltiple Recurrente-Remitente , Humanos , Potenciales Evocados Visuales/efectos de los fármacos , Masculino , Femenino , Adulto , Bexaroteno/farmacología , Estudios de Seguimiento , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Esclerosis Múltiple Recurrente-Remitente/fisiopatología , Persona de Mediana Edad , Tetrahidronaftalenos/farmacología , Tetrahidronaftalenos/administración & dosificación , Resultado del Tratamiento , Método Doble CiegoRESUMEN
GZ17-6.02, composed of curcumin, harmine and isovanillin, has undergone phase I evaluation in patients with solid tumors (NCT03775525) with an RP2D of 375 mg PO BID. The biology of GZ17-6.02 in malignant T cells and in particular those derived from mycosis fungoides (MF) patients, has not been studied. GZ17-6.02 alone and in combination with standard-of-care agents was effective in killing MF cells. All three components are necessary for optimal killing of MF cells. GZ17-6.02 activated ATM, the AMPK, NFκB and PERK and inactivated ERK1/2, AKT, ULK1, mTORC1, eIF2α, and reduced the expression of BCL-XL and MCL1. GZ17-6.02 increased ATG13 S318 phosphorylation and the expression of Beclin1, ATG5, BAK and BIM. GZ17-6.02 in a dose-dependent fashion enhanced autophagosome formation and autophagic flux, and tumor cell killing. Signaling by ATM and AMPK were both required for efficient killing but not for the dose-response effect whereas ER stress (eIF2α) and macroautophagy (Beclin1, ATG5) were required for both efficient killing and the dose-response. Knock down of the death receptor CD95 reduced killing by ~20% and interacted with autophagy inhibition to further reduce killing, collectively, by ~70%. Inhibition of autophagy and knock down of death-mediators downstream of the mitochondrion, AIF and caspase 3, almost abolished tumor cell killing. Hence in MF cells, GZ17-6.02 is a multi-factorial killer, utilizing ER stress, macroautophagy, death receptor signaling and directly causing mitochondrial dysfunction.
Asunto(s)
Antineoplásicos , Micosis Fungoide , Neoplasias Cutáneas , Humanos , Bexaroteno/farmacología , Proteínas Quinasas Activadas por AMP , Beclina-1/genética , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/genética , Receptores de Muerte CelularRESUMEN
Bexarotene, a drug approved for treatment of cutaneous T-cell lymphoma (CTCL), is classified as a rexinoid by its ability to act as a retinoid X receptor (RXR) agonist with high specificity. Rexinoids are capable of inducing RXR homodimerization leading to the induction of apoptosis and inhibition of proliferation in human cancers. Numerous studies have shown that bexarotene is effective in reducing viability and proliferation in CTCL cell lines. However, many treated patients present with cutaneous toxicity, hypothyroidism, and hyperlipidemia due to crossover activity with retinoic acid receptor (RAR), thyroid hormone receptor (TR), and liver X receptor (LXR) signaling, respectively. In this study, 10 novel analogs and three standard compounds were evaluated side-by-side with bexarotene for their ability to drive RXR homodimerization and subsequent binding to the RXR response element (RXRE). In addition, these analogs were assessed for proliferation inhibition of CTCL cells, cytotoxicity, and mutagenicity. Furthermore, the most effective analogs were analyzed via qPCR to determine efficacy in modulating expression of two critical tumor suppressor genes, ATF3 and EGR3. Our results suggest that these new compounds may possess similar or enhanced therapeutic potential since they display enhanced RXR activation with equivalent or greater reduction in CTCL cell proliferation, as well as the ability to induce ATF3 and EGR3. This work broadens our understanding of RXR-ligand relationships and permits development of possibly more efficacious pharmaceutical drugs. Modifications of RXR agonists can yield agents with enhanced biological selectivity and potency when compared to the parent compound, potentially leading to improved patient outcomes.
Asunto(s)
Linfoma Cutáneo de Células T , Neoplasias Cutáneas , Humanos , Bexaroteno/farmacología , Bexaroteno/uso terapéutico , Tetrahidronaftalenos/farmacología , Tetrahidronaftalenos/uso terapéutico , Linfoma Cutáneo de Células T/metabolismo , Receptores X Retinoide/metabolismo , Neoplasias Cutáneas/tratamiento farmacológicoRESUMEN
Upon heterodimerizing with other nuclear receptors, retinoid X receptors (RXR) act as ligand-dependent transcription factors, regulating transcription of critical signaling pathways that impact numerous hallmarks of cancer. By controlling both inflammation and immune responses, ligands that activate RXR can modulate the tumor microenvironment. Several small molecule agonists of these essential receptors have been synthesized. Historically, RXR agonists were tested for inhibition of growth in cancer cells, but more recent drug discovery programs screen new molecules for inhibition of inflammation or activation of immune cells. Bexarotene is the first successful example of an effective therapeutic that molecularly targets RXR; this drug was approved to treat cutaneous T cell lymphoma and is still used as a standard of care treatment for this disease. No additional RXR agonists have yet achieved FDA approval, but several promising novel compounds are being developed. In this review, we provide an overview of the multiple mechanisms by which RXR signaling regulates inflammation and tumor immunity. We also discuss the potential of RXR-dependent immune cell modulation for the treatment or prevention of cancer and concomitant challenges and opportunities.
Asunto(s)
Neoplasias , Humanos , Receptores X Retinoide/agonistas , Receptores X Retinoide/metabolismo , Bexaroteno/farmacología , Bexaroteno/uso terapéutico , Neoplasias/tratamiento farmacológico , Inflamación , Sistema Inmunológico/metabolismo , Microambiente TumoralRESUMEN
A better understanding of the abnormal protein aggregation and the effect of anti-aggregation agents on the fibrillation pathways and the secondary structure of aggregates can determine strategies for the early treatment of dementia. Herein, we present a combination of experimental and theoretical studies providing new insights into the influence of the anti-aggregation drug bexarotene on the secondary structure of individual amyloid-ß aggregates and its primary aggregation. The molecular rearrangements and the spatial distribution of ß-sheets within individual aggregates were monitored at the nanoscale with infrared nanospectroscopy. We observed that bexarotene limits the parallel ß-sheets formation, known to be highly abundant in fibrils at later phases of the amyloid-ß aggregation composed of in-register cross-ß structure. Moreover, we applied molecular dynamics to provide molecular-level insights into the investigated system. Both theoretical and experimental results revealed that bexarotene slows down the protein aggregation process via steric effects, largely prohibiting the antiparallel to parallel ß-sheet rearrangement. We also found that bexarotene interacts not only via the single hydrogen bond formation with the peptide backbone but also with the amino acid side residue via a hydrophobic effect. The studied model of the drug-amyloid-ß interaction contributes to a better understanding of the inhibition mechanism of the amyloid-ß aggregation by the small molecule drugs. However, our nanoscale findings need to meet in vivo research requiring different analytical approaches.
Asunto(s)
Péptidos beta-Amiloides , Agregado de Proteínas , Bexaroteno/farmacología , AminoácidosRESUMEN
Retinoid X receptor (RXR), particularly RXRα, has been implicated in cardiovascular diseases. However, the functional role of RXR activation in myocardial infarction (MI) remains unclear. This study aimed to determine the effects of RXR agonists on MI and to dissect the underlying mechanisms. Sprague-Dawley (SD) rats were subjected to MI and then treated (once daily for 4 weeks) with either RXR agonist bexarotene (10 or 30 mg/kg body weight) or vehicle. Heart function was determined using echocardiography and cardiac hemodynamic measurements. Four weeks post MI, myocardial tissues were collected to evaluate cardiac remodeling. Primary cardiac fibroblasts (CFs) were treated with or without RXR ligand 9-cis-RA followed by stimulation with TGF-ß1. Immunoblot, immunofluorescence, and co-immunoprecipitation were performed to elucidate the regulatory role of RXR agonists in TGF-ß1/Smad signaling. In vivo treatment with Bexarotene moderately affects systemic inflammation and apoptosis and ameliorated left ventricular dysfunction after MI in rat model. In contrast, bexarotene significantly inhibited post-MI myocardial fibrosis. Immunoblot analysis of heart tissue homogenates from MI rats revealed that bexarotene regulated the activation of the TGF-ß1/Smad signaling pathway. In vitro, 9-cis-RA inhibited the TGF-ß1-induced proliferation and collagen production of CFs. Importantly, upon activation by 9-cis-RA, RXRα interacted with p-Smad2 in cytoplasm, inhibiting the TGF-ß1-induced nuclear translocation of p-Smad2, thereby negatively regulating TGF-ß1/Smad signaling and attenuating the fibrotic response of CFs. These findings suggest that RXR agonists ameliorate post-infarction myocardial fibrosis, maladaptive remodeling, and heart dysfunction via attenuation of fibrotic response in CFs through inhibition of the TGF-ß1/Smad pathway activation.
Asunto(s)
Cardiomiopatías , Infarto del Miocardio , Ratas , Animales , Ratas Sprague-Dawley , Receptores X Retinoide , Bexaroteno/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Remodelación Ventricular , Infarto del Miocardio/metabolismo , Cardiomiopatías/patología , Fibroblastos/metabolismo , Fibrosis , Miocardio/metabolismoRESUMEN
Aberrant expression of multidrug resistance (MDR) proteins is one of the features of cancer stem cells (CSCs) that make them escape chemotherapy. A well-orchestrated regulation of multiple MDRs by different transcription factors in cancer cells confers this drug resistance. An in silico analysis of the major MDR genes revealed a possible regulation by RFX1 and Nrf2. Previous reports also noted that Nrf2 is a positive regulator of MDR genes in NT2 cells. But we, for the first time, report that Regulatory factor X1 (RFX1), a pleiotropic transcription factor, negatively regulates the major MDR genes, Abcg2, Abcb1, Abcc1, and Abcc2, in NT2 cells. The levels of RFX1 in undifferentiated NT2 cells were found to be very low, which significantly increased upon RA-induced differentiation. Ectopic expression of RFX1 reduced the levels of transcripts corresponding to MDRs and stemness-associated genes. Interestingly, Bexarotene, an RXR agonist that acts as an inhibitor of Nrf2-ARE signaling, could increase the transcription of RFX1. Further analysis revealed that the RFX1 promoter has binding sites for RXRα, and upon Bexarotene exposure RXRα could bind and activate the RFX1 promoter. Bexarotene, alone or in combination with Cisplatin, could inhibit many cancer/CSC-associated properties in NT2 cells. Also, it significantly reduced the expression of drug resistance proteins and made the cells sensitive towards Cisplatin. Our study proves that RFX1 could be a potent molecule to target MDRs, and Bexarotene can induce RXRα-mediated RFX1 expression, therefore, would be a better chemo-assisting drug during therapy.
Asunto(s)
Carcinoma , Resistencia a Antineoplásicos , Factor Regulador X1 , Humanos , Bexaroteno/farmacología , Cisplatino/farmacología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factores de Transcripción del Factor Regulador X , Factor Regulador X1/efectos de los fármacos , Factor Regulador X1/metabolismo , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacosRESUMEN
Podocytes are specialized epithelial cells that maintain the glomerular filtration barrier. These cells are susceptible to lipotoxicity in the obese state and irreversibly lost during kidney disease leading to proteinuria and renal injury. PPARγ is a nuclear receptor whose activation can be renoprotective. This study examined the role of PPARγ in the lipotoxic podocyte using a PPARγ knockout (PPARγKO) cell line and since the activation of PPARγ by Thiazolidinediones (TZD) is limited by their side effects, it explored other alternative therapies to prevent podocyte lipotoxic damage. Wild-type and PPARγKO podocytes were exposed to the fatty acid palmitic acid (PA) and treated with the TZD (Pioglitazone) and/or the Retinoid X receptor (RXR) agonist Bexarotene (BX). It revealed that podocyte PPARγ is essential for podocyte function. PPARγ deletion reduced key podocyte proteins including podocin and nephrin while increasing basal levels of oxidative and ER stress causing apoptosis and cell death. A combination therapy of low-dose TZD and BX activated both the PPARγ and RXR receptors reducing PA-induced podocyte damage. This study confirms the crucial role of PPARγ in podocyte biology and that their activation in combination therapy of TZD and BX may be beneficial in the treatment of obesity-related kidney disease.
Asunto(s)
Enfermedades Renales , Podocitos , Tiazolidinedionas , Humanos , PPAR gamma/metabolismo , Pioglitazona/farmacología , Tiazolidinedionas/metabolismo , Tiazolidinedionas/farmacología , Tiazolidinedionas/uso terapéutico , Enfermedades Renales/tratamiento farmacológico , Bexaroteno/farmacologíaRESUMEN
We previously synthesized two retinoid X receptor (RXR) agonists, 4'-hydroxy-3'-propyl-[1,1'-biphenyl]-3-propanoic acid ethyl ester (4'OHE) and 6-hydroxy-3'-propyl-[1,1'-biphenyl]-3-propanoic acid ethyl ester (6OHE), based on the structure of magnaldehyde B, a natural product obtained from Magnolia obovata. 4'OHE and 6OHE exhibited different selectivities for peroxisome proliferator-activated receptor (PPAR)/RXR heterodimers. To examine the regulatory effects of these compounds in adipogenesis, 3T3-L1 mouse preadipocytes were treated with a differentiation cocktail with or without test compounds to induce differentiation, and subsequently treated with test compounds in insulin-containing medium every alternate day. Lipid droplets were stained with Oil Red O to examine lipid accumulation. In addition, adipogenesis-related gene expression was measured using RT-qPCR and immunoblotting. The results showed that a PPARγ agonist, 4'OHE, which exerts agonistic effects on PPARγ and RXRα, enhanced adipogenesis similar to rosiglitazone. However, unlike GW501516, a PPARδ agonist, 6OHE and its hydrolysis product (6OHA), which exert agonistic effects on PPARδ and RXRα, suppressed adipogenesis. In a manner similar to 6OHE and 6OHA, bexarotene, an RXR agonist, suppressed adipocyte differentiation, and its anti-adipogenic effect was reversed by an RXR antagonist. Furthermore, 6OHA and bexarotene inhibited the increase in Pparγ2 and Cebpa mRNA levels 2 days after the induction of differentiation. We demonstrated the adipogenic effect of 4'OHE and anti-adipogenic effects of 6OHE and 6OHA in 3T3-L1 cells. Previously, RXR agonists have been reported to positively regulate the differentiation of mesenchymal stem cells into adipocytes, but our current data showed that they inhibited the differentiation of preadipocytes, at least 3T3-L1 cells, into adipocytes.
Asunto(s)
Lignanos , PPAR delta , Animales , Ratones , Adipogénesis , PPAR gamma/farmacología , Receptores X Retinoide/farmacología , Células 3T3-L1 , Propionatos/farmacología , Bexaroteno/farmacología , PPAR delta/farmacología , Diferenciación Celular , Lignanos/farmacologíaRESUMEN
Bexarotene is an FDA-approved drug for the treatment of cutaneous T-cell lymphoma (CTCL); however, its use provokes or disrupts other retinoid-X-receptor (RXR)-dependent nuclear receptor pathways and thereby incites side effects including hypothyroidism and raised triglycerides. Two novel bexarotene analogs, as well as three unique CD3254 analogs and thirteen novel NEt-TMN analogs, were synthesized and characterized for their ability to induce RXR agonism in comparison to bexarotene (1). Several analogs in all three groups possessed an isochroman ring substitution for the bexarotene aliphatic group. Analogs were modeled for RXR binding affinity, and EC50 as well as IC50 values were established for all analogs in a KMT2A-MLLT3 leukemia cell line. All analogs were assessed for liver-X-receptor (LXR) activity in an LXRE system to gauge the potential for the compounds to provoke raised triglycerides by increasing LXR activity, as well as to drive LXRE-mediated transcription of brain ApoE expression as a marker for potential therapeutic use in neurodegenerative disorders. Preliminary results suggest these compounds display a broad spectrum of off-target activities. However, many of the novel compounds were observed to be more potent than 1. While some RXR agonists cross-signal the retinoic acid receptor (RAR), many of the rexinoids in this work displayed reduced RAR activity. The isochroman group did not appear to substantially reduce RXR activity on its own. The results of this study reveal that modifying potent, selective rexinoids like bexarotene, CD3254, and NEt-TMN can provide rexinoids with increased RXR selectivity, decreased potential for cross-signaling, and improved anti-proliferative characteristics in leukemia models compared to 1.
Asunto(s)
Leucemia , Linfoma Cutáneo de Células T , Neoplasias Cutáneas , Humanos , Bexaroteno/farmacología , Receptores X Retinoide/metabolismo , Tetrahidronaftalenos/farmacología , Receptores X del Hígado , Retinoides/farmacología , TriglicéridosRESUMEN
Fibrillization of the protein amyloid ß is assumed to trigger Alzheimer's pathology. Approaches that target amyloid plaques, however, have garnered limited clinical success, and their failures may relate to the scarce understanding of the impact of potential drugs on the intertwined stages of fibrillization. Here, we demonstrate that bexarotene, a T-cell lymphoma medication with known antiamyloid activity both in vitro and in vivo, suppresses amyloid fibrillization by promoting an alternative fibril structure. We employ time-resolved in situ atomic force microscopy to quantify the kinetics of growth of individual fibrils and supplement it with structure characterization by cryo-EM. We show that fibrils with structure engineered by the drug nucleate and grow substantially slower than "normal" fibrils; remarkably, growth remains stunted even in drug-free solutions. We find that the suppression of fibril growth by bexarotene is not because of the drug binding to the fibril tips or to the peptides in the solution. Kinetic analyses attribute the slow growth of drug-enforced fibril polymorph to the distinctive dynamics of peptide chain association to their tips. As an additional benefit, the bexarotene fibrils kill primary rat hippocampal neurons less efficiently than normal fibrils. In conclusion, the suggested drug-driven polymorph transformation presents a mode of action to irreversibly suppress toxic aggregates not only in Alzheimer's but also potentially in myriad diverse pathologies that originate with protein condensation.
Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Animales , Ratas , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/metabolismo , Bexaroteno/farmacología , Amiloide/química , Placa Amiloide , Fragmentos de Péptidos/químicaRESUMEN
OBJECTIVE: In multiple sclerosis chronic demyelination is associated with axonal loss, and ultimately contributes to irreversible progressive disability. Enhancing remyelination may slow, or even reverse, disability. We recently trialled bexarotene versus placebo in 49 people with multiple sclerosis. While the primary MRI outcome was negative, there was converging neurophysiological and MRI evidence of efficacy. Multiple factors influence lesion remyelination. In this study we undertook a systematic exploratory analysis to determine whether treatment response - measured by change in magnetisation transfer ratio - is influenced by location (tissue type and proximity to CSF) or the degree of abnormality (using baseline magnetisation transfer ratio and T1 values). METHODS: We examined treatment effects at the whole lesion level, the lesion component level (core, rim and perilesional tissues) and at the individual lesion voxel level. RESULTS: At the whole lesion level, significant treatment effects were seen in GM but not WM lesions. Voxel-level analyses detected significant treatment effects in WM lesion voxels with the lowest baseline MTR, and uncovered gradients of treatment effect in both WM and CGM lesional voxels, suggesting that treatment effects were lower near CSF spaces. Finally, larger treatment effects were seen in the outer and surrounding components of GM lesions compared to inner cores. INTERPRETATION: Remyelination varies markedly within and between lesions. The greater remyelinating effect in GM lesions is congruent with neuropathological observations. For future remyelination trials, whole GM lesion measures require less complex post-processing compared to WM lesions (which require voxel level analyses) and markedly reduce sample sizes.
Asunto(s)
Esclerosis Múltiple , Remielinización , Bexaroteno/farmacología , Encéfalo/patología , Humanos , Imagen por Resonancia Magnética , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/patologíaRESUMEN
BACKGROUND AND PURPOSE: Enhancing phagocytosis can facilitate the removal of inflammatory molecules, limit the toxicity of dead cells and debris, and promote recovery after brain injury. In this study, we aimed to explore the role of bexarotene (Bex), a retinoid X receptor (RXR) agonist, in promoting astrocyte phagocytosis and neurobehavioral recovery after subarachnoid hemorrhage (SAH). METHODS: Mice SAH model was induced by pre-chiasmatic injection of blood. Modified Garcia score, novel object recognition, rotarod test, and Morris water maze were performed to assess neurological function. Immunofluorescence and electron microscopy were used to evaluate astrocyte phagocytosis in vivo. In additionï¼ ABCA1/MEGF10&GULP1, the primary astrocyte phagocytosis pathway, were stimulated by Bex or suppressed by HX531 (a RXR antagonist) to evaluate their impacts on astrocyte phagocytosis and neurological recovery. RESULTS: Astrocytes phagocytosis of blood components were observed in mice after SAH induction, which is further increased by Bex treatment. Bex dramatically attenuated neuroinflammation, reduced brain edema, improved early neurological performance and promoted neurocognitive recovery. Meanwhile, Bex decreased neurotoxic reactive astrocytes and preserved neurogenesis after SAH. Bex increased the expression of astrocyte phagocytosis-related proteins ABCA1, MEGF10, and GULP1. Bex also increased the lysosomal processing of engulfed blood components in astrocytes. Moreover, Bex significantly promoted astrocytes to phagocytize debris in vitro by increasing the expression of ABCA1, MEGF10 and GULP1, while HX531 inhibited astrocyte phagocytosis and decreased these protein levels. CONCLUSIONS: Bex enhanced astrocyte phagocytosis through the ABCA1-mediated pathways, and promoted neurobehavior recovery in mice after SAH induction.
Asunto(s)
Hemorragia Subaracnoidea , Transportador 1 de Casete de Unión a ATP , Animales , Astrocitos/metabolismo , Benzoatos , Bexaroteno/farmacología , Bexaroteno/uso terapéutico , Compuestos de Bifenilo , Modelos Animales de Enfermedad , Proteínas de la Membrana/metabolismo , Ratones , Fagocitosis , Receptores X Retinoide/agonistas , Hemorragia Subaracnoidea/tratamiento farmacológicoRESUMEN
Bexarotene is a specific retinoid X receptor agonist that has been used for the treatment of cutaneous T-cell lymphoma (CTCL). Because bexarotene causes hypothyroidism, it requires the administration of levothyroxine. However, levothyroxine, in addition to its ubiquitous nuclear receptors, can activate the αVß3 integrin that is overexpressed in CTCL, potentially interfering the antineoplastic effect of bexarotene. We thus investigated the biological effect of levothyroxine in relation to bexarotene treatment. Although in isolated CTCL cells levothyroxine decreased, in an αVß3-dependent manner, the antineoplastic effect of bexarotene, levothyroxine supplementation in preclinical models was necessary to avoid suppression of lymphoma immunity. Accordingly, selective genetic and pharmacologic inhibition of integrin αVß3 improved the antineoplastic effect of bexarotene plus levothyroxine replacement while maintaining lymphoma immunity. Our results provide a mechanistic rationale for clinical testing of integrin αVß3 inhibitors as part of CTCL regimens based on bexarotene administration. TEASER: Inhibiting αVß3 integrin improves the antineoplastic effect of bexarotene while maintaining lymphoma immunity.
Asunto(s)
Anticarcinógenos , Antineoplásicos , Linfoma Cutáneo de Células T , Neoplasias Cutáneas , Anticarcinógenos/farmacología , Anticarcinógenos/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Bexaroteno/farmacología , Bexaroteno/uso terapéutico , Humanos , Integrina alfaVbeta3 , Linfoma Cutáneo de Células T/tratamiento farmacológico , Linfoma Cutáneo de Células T/patología , Neoplasias Cutáneas/patología , Tetrahidronaftalenos/farmacología , Tetrahidronaftalenos/uso terapéutico , Tiroxina/uso terapéuticoRESUMEN
Bexarotene selectively activates retinoid X receptor, which is a commonly used anticancer agent for cutaneous T-cell lymphoma. In this study, we aimed to investigate the anticancer effect of bexarotene and its underlying mechanism in ovarian cancer in vitro. The ES2 and NIH:OVACAR3 ovarian cancer cell lines were treated with 0, 5, 10, or 20 µM of bexarotene. After 24 h, cell number measurement and lactate dehydrogenase (LDH) cytotoxicity assay were performed. The effect of bexarotene on CDKN1A expression, cell cycle-related protein, cell cycle, pyroptosis, and apoptosis was evaluated. Bexarotene reduced cell proliferation in all concentrations in both the cells. At concentrations of > 10 µM, extracellular LDH activity increased with cell rupture. Treatment using 10 µM of bexarotene increased CDKN1A mRNA levels, decreased cell cycle-related protein expression, and increased the sub-G1 cell population in both cells. In ES2 cells, caspase-4 and GSDME were activated, whereas caspase-3 was not, indicating that bexarotene-induced cell death might be pyroptosis. A clinical setting concentration of bexarotene induced cell death through caspase-4-mediated pyroptosis in ovarian cancer cell lines. Thus, bexarotene may serve as a novel therapeutic agent for ovarian cancer.
Asunto(s)
Neoplasias Ováricas , Neoplasias Cutáneas , Bexaroteno/farmacología , Carcinoma Epitelial de Ovario , Proteínas de Ciclo Celular , Muerte Celular , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Piroptosis , Neoplasias Cutáneas/patologíaRESUMEN
Remyelination efficiency declines with advancing age in animal models, but this has been harder to demonstrate in people with multiple sclerosis. We show that bexarotene, a putatively remyelinating retinoid-X receptor agonist, shortened the visual evoked potential latency in patients with chronic optic neuropathy aged under 42 years only (with the effect diminishing by 0.45 ms per year of age); and increased the magnetization transfer ratio of deep gray matter lesions in those under 43 years only. Addressing this age-related decline in human remyelination capacity will be an important step in the development of remyelinating therapies that work across the lifespan.