Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 943, 2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39098939

RESUMEN

To enhance health benefits, a probiotic can be co-administered with a metabolizable prebiotic forming a synergistic synbiotic. We assessed the synergies resulting from combining Bifidobacterium longum subsp. infantis LMG 11588 and an age-adapted blend of six human milk oligosaccharides (HMOs) in ex vivo colonic incubation bioreactors seeded with fecal background microbiota from infant and toddler donors. When HMOs were combined with B. infantis LMG 11588, they were rapidly and completely consumed. This resulted in increased short chain fatty acid (SCFA) production compared to the summed SCFA production from individual ingredients (synergy). Remarkably, HMOs were partially consumed for specific infant donors in the absence of B. infantis LMG 11588, yet all donors showed increased SCFA production upon B. infantis LMG 11588 supplementation. We found specific bacterial taxa associated with the differential response pattern to HMOs. Our study shows the importance of carefully selecting pre- and probiotic into a synergistic synbiotic that could benefit infants.


Asunto(s)
Bifidobacterium longum subspecies infantis , Ácidos Grasos Volátiles , Leche Humana , Oligosacáridos , Humanos , Leche Humana/metabolismo , Leche Humana/química , Oligosacáridos/metabolismo , Ácidos Grasos Volátiles/metabolismo , Lactante , Bifidobacterium longum subspecies infantis/metabolismo , Bifidobacterium/metabolismo , Probióticos/administración & dosificación , Microbioma Gastrointestinal , Heces/microbiología , Femenino , Simbióticos/administración & dosificación , Preescolar
2.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38896583

RESUMEN

Probiotics have gained significant attention as a potential strategy to improve health by modulating host-microbe interactions, particularly in situations where the normal microbiota has been disrupted. However, evidence regarding their efficacy has been inconsistent, with considerable interindividual variability in response. We aimed to explore whether a common genetic variant that affects the production of mucosal α(1,2)-fucosylated glycans, present in around 20% of the population, could explain the observed interpersonal differences in the persistence of commonly used probiotics. Using a mouse model with varying α(1,2)-fucosylated glycans secretion (Fut2WT or Fut2KO), we examined the abundance and persistence of Bifidobacterium strains (infantis, breve, and bifidum). We observed significant differences in baseline gut microbiota characteristics between Fut2WT and Fut2KO littermates, with Fut2WT mice exhibiting enrichment of species able to utilize α(1,2)-fucosylated glycans. Following antibiotic exposure, only Fut2WT animals showed persistent engraftment of Bifidobacterium infantis, a strain able to internalize α(1,2)-fucosylated glycans, whereas B. breve and B. bifidum, which cannot internalize α(1,2)-fucosylated glycans, did not exhibit this difference. In mice with an intact commensal microbiota, the relationship between secretor status and B. infantis persistence was reversed, with Fut2KO animals showing greater persistence compared to Fut2WT. Our findings suggest that the interplay between a common genetic variation and antibiotic exposure plays a crucial role in determining the dynamics of B. infantis in the recipient gut, which could potentially contribute to the observed variation in response to this commonly used probiotic species.


Asunto(s)
Antibacterianos , Fucosiltransferasas , Galactósido 2-alfa-L-Fucosiltransferasa , Microbioma Gastrointestinal , Probióticos , Animales , Ratones , Fucosiltransferasas/genética , Fucosiltransferasas/metabolismo , Probióticos/administración & dosificación , Antibacterianos/farmacología , Bifidobacterium longum subspecies infantis/genética , Bifidobacterium longum subspecies infantis/metabolismo , Polisacáridos/metabolismo , Interacciones Microbiota-Huesped , Ratones Endogámicos C57BL , Ratones Noqueados , Bifidobacterium/genética , Bifidobacterium/metabolismo
3.
Genes (Basel) ; 15(4)2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38674400

RESUMEN

Bifidobacterium longum subsp. infantis YLGB-1496 (YLGB-1496) is a probiotic strain isolated from human breast milk. The application of YLGB-1496 is influenced by carbohydrate utilization and genetic stability. This study used genome sequencing and morphology during continuous subculture to determine the carbohydrate utilization characteristics and genetic stability of YLGB-1496. The complete genome sequence of YLGB-1496 consists of 2,758,242 base pairs, 2442 coding sequences, and a GC content of 59.87%. A comparison of carbohydrate transport and metabolism genes of Bifidobacterium longum subsp. infantis (B. infantis) showed that YLGB-1496 was rich in glycosyl hydrolase 13, 20, 25, and 109 gene families. During continuous subculture, the growth characteristics and fermentation activity of the strain were highly stable. The bacterial cell surface and edges of the 1000th-generation strains were progressively smoother and well-defined, with no perforations or breaks in the cell wall. There were 20 SNP loci at the 1000th generation, fulfilling the requirement of belonging to the same strain. The presence of genes associated with cell adhesion and the absence of resistance genes supported the probiotic characteristics of the strain. The data obtained in this study provide insights into broad-spectrum carbohydrate utilization, genomic stability, and probiotic properties of YLGB-1496, which provide theoretical support to promote the use of YLGB-1496.


Asunto(s)
Bifidobacterium , Metabolismo de los Hidratos de Carbono , Genoma Bacteriano , Bifidobacterium/genética , Bifidobacterium/metabolismo , Metabolismo de los Hidratos de Carbono/genética , Humanos , Probióticos , Inestabilidad Genómica , Bifidobacterium longum subspecies infantis/genética , Bifidobacterium longum subspecies infantis/metabolismo
4.
mSystems ; 9(3): e0071523, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38363147

RESUMEN

Bifidobacterium longum subsp. infantis is a representative and dominant species in the infant gut and is considered a beneficial microbe. This organism displays multiple adaptations to thrive in the infant gut, regarded as a model for human milk oligosaccharides (HMOs) utilization. These carbohydrates are abundant in breast milk and include different molecules based on lactose. They contain fucose, sialic acid, and N-acetylglucosamine. Bifidobacterium metabolism is complex, and a systems view of relevant metabolic pathways and exchange metabolites during HMO consumption is missing. To address this limitation, a refined genome-scale network reconstruction of this bacterium is presented using a previous reconstruction of B. infantis ATCC 15967 as a template. The latter was expanded based on an extensive revision of genome annotations, current literature, and transcriptomic data integration. The metabolic reconstruction (iLR578) accounted for 578 genes, 1,047 reactions, and 924 metabolites. Starting from this reconstruction, we built context-specific genome-scale metabolic models using RNA-seq data from cultures growing in lactose and three HMOs. The models revealed notable differences in HMO metabolism depending on the functional characteristics of the substrates. Particularly, fucosyl-lactose showed a divergent metabolism due to a fucose moiety. High yields of lactate and acetate were predicted under growth rate maximization in all conditions, whereas formate, ethanol, and 1,2-propanediol were substantially lower. Similar results were also obtained under near-optimal growth on each substrate when varying the empirically observed acetate-to-lactate production ratio. Model predictions displayed reasonable agreement between central carbon metabolism fluxes and expression data across all conditions. Flux coupling analysis revealed additional connections between succinate exchange and arginine and sulfate metabolism and a strong coupling between central carbon reactions and adenine metabolism. More importantly, specific networks of coupled reactions under each carbon source were derived and analyzed. Overall, the presented network reconstruction constitutes a valuable platform for probing the metabolism of this prominent infant gut bifidobacteria.IMPORTANCEThis work presents a detailed reconstruction of the metabolism of Bifidobacterium longum subsp. infantis, a prominent member of the infant gut microbiome, providing a systems view of its metabolism of human milk oligosaccharides.


Asunto(s)
Fucosa , Leche Humana , Lactante , Femenino , Humanos , Leche Humana/química , Fucosa/análisis , Lactosa/análisis , Oligosacáridos/análisis , Bifidobacterium/genética , Bifidobacterium longum subspecies infantis/metabolismo , Acetatos/análisis , Carbono/análisis , Lactatos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...