RESUMEN
Bisphenol analogues are the typical class of endocrine disrupting chemicals (EDCs) that interfere with binding of endogenous hormones to androgen receptor (AR). With the expansion of industrial activities and the intensification of environmental pollution, an increasing array of bisphenol analogues is being released into the environment and food chain. This highlights the urgency to develop sensitive methods for the detection of bisphenol analogues. Here, we propose a biomimetic AR-based biosensor platform for detecting bisphenol analogues (BPF, TBBPA, and TBBPS) by binding with Aggregation-Induced Emission (AIE) probes. Following a comparison of the PROSS and ABACUS methods, biomimetic AR was designed using the ABACUS approach and subsequently expressed in vitro via the E. coli expression system. Through molecular docking and the observation of fluorescence changes upon binding with biomimetic AR, BS-46006 was selected as the AIE probe for the biosensor. The biomimetic AR-based biosensor showed sensitive detections of BPF, TBBPA, and TBBPS within a range of 0-50 mM. To further elucidate the multi-residue recognition mechanism, molecular orbitals, Electron Localization Function (ELF), and Localized Orbital Locator (LOL) were systematically calculated in this study. Lowest unoccupied molecular orbital and highest occupied molecular orbital indicated the energy gap of BPF, TBBPA, and TBBPS, which correspond to 0.12812, 0.19689, and 0.18711 eV, respectively. ELF and LOL offered clearer perspective through heat maps to visually represent the electron delocalization in BPF, TBBPA, and TBBPS. The matrix effect analysis suggested that the responses of bisphenol analogues in soil matrices could be effectively mitigated through sample pretreatment. The analysis of spiked soil samples showed the acceptable recoveries ranged from 91 % to 105 %. Additionally, the biomimetic AR-based AIE biosensor, which combines multi-residue detection with Tolerable Daily Intakes, shows great promise for the risk assessment of bisphenol analogues. This research may present a viable approach for the analysis of environmental pollutants.
Asunto(s)
Compuestos de Bencidrilo , Técnicas Biosensibles , Simulación del Acoplamiento Molecular , Fenoles , Receptores Androgénicos , Técnicas Biosensibles/métodos , Receptores Androgénicos/metabolismo , Receptores Androgénicos/química , Fenoles/química , Fenoles/análisis , Compuestos de Bencidrilo/análisis , Compuestos de Bencidrilo/química , Disruptores Endocrinos/análisis , Disruptores Endocrinos/química , Materiales Biomiméticos/química , Bifenilos Polibrominados/análisis , Bifenilos Polibrominados/química , Biomimética , HumanosRESUMEN
Copper-catalyzed click chemistry offers creative strategies for activation of therapeutics without disrupting biological processes. Despite tremendous efforts, current copper catalysts face fundamental challenges in achieving high efficiency, atom economy, and tissue-specific selectivity. Herein, we develop a facile "mix-and-match synthetic strategy" to fabricate a biomimetic single-site copper-bipyridine-based cerium metal-organic framework (Cu/Ce-MOF@M) for efficient and tumor cell-specific bioorthogonal catalysis. This elegant methodology achieves isolated single-Cu-site within the MOF architecture, resulting in exceptionally high catalytic performance. Cu/Ce-MOF@M favors a 32.1-fold higher catalytic activity than the widely used MOF-supported copper nanoparticles at single-particle level, as first evidenced by single-molecule fluorescence microscopy. Furthermore, with cancer cell-membrane camouflage, Cu/Ce-MOF@M demonstrates preferential tropism for its parent cells. Simultaneously, the single-site CuII species within Cu/Ce-MOF@M are reduced by upregulated glutathione in cancerous cells to CuI for catalyzing the click reaction, enabling homotypic cancer cell-activated in situ drug synthesis. Additionally, Cu/Ce-MOF@M exhibits oxidase and peroxidase mimicking activities, further enhancing catalytic cancer therapy. This study guides the reasonable design of highly active heterogeneous transition-metal catalysts for targeted bioorthogonal reactions.
Asunto(s)
Materiales Biomiméticos , Cobre , Humanos , Cobre/química , Materiales Biomiméticos/química , Catálisis , Estructuras Metalorgánicas/química , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Cerio/química , Línea Celular Tumoral , Animales , Química Clic/métodos , Biomimética/métodos , RatonesRESUMEN
Insulin resistance and pancreatic ß-cell dysfunction are the main pathogenesis of type 2 diabetes mellitus (T2DM). However, insulin therapy and diabetes medications do not effectively solve the two problems simultaneously. In this study, a biomimetic oral hydrogen nanogenerator that leverages the benefits of edible plant-derived exosomes and hydrogen therapy was constructed to overcome this dilemma by modulating gut microbiota and ameliorating oxidative stress and inflammatory responses. Hollow mesoporous silica (HMS) nanoparticles encapsulating ammonia borane (A) were used to overcome the inefficiency of H2 delivery in traditional hydrogen therapy, and exosomes originating from ginger (GE) were employed to enhance biocompatibility and regulate intestinal flora. Our study showed that HMS/A@GE not only considerably ameliorated insulin resistance and liver steatosis, but inhibited the dedifferentiation of islet ß-cell and enhanced pancreatic ß-cell proportion in T2DM model mice. In addition to its antioxidant and anti-inflammatory effects, HMS/A@GE augmented the abundance of Lactobacilli spp. and tryptophan metabolites, such as indole and indole acetic acid, which further activated the AhR/IL-22 pathway to improve intestinal-barrier function and metabolic impairments. This study offers a potentially viable strategy for addressing the current limitations of diabetes treatment by integrating gut-microbiota remodelling with antioxidant therapies.
Asunto(s)
Antioxidantes , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Resistencia a la Insulina , Células Secretoras de Insulina , Nanopartículas , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Animales , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Antioxidantes/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Nanopartículas/química , Ratones , Masculino , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Ratones Endogámicos C57BL , Zingiber officinale/química , Dióxido de Silicio/química , Exosomas/metabolismo , Biomimética/métodos , Estrés Oxidativo/efectos de los fármacosRESUMEN
Chemotherapy-induced cellular senescence leads to an increased proportion of cancer stem cells (CSCs) in breast cancer (BC), contributing to recurrence and metastasis, while effective means to clear them are currently lacking. Herein, we aim to develop new approaches for selectively killing senescent-escape CSCs. High CD276 (95.60%) expression in multidrug-resistant BC cells, facilitates immune evasion by low-immunogenic senescent escape CSCs. CALD1, upregulated in ADR-resistant BC, promoting senescent-escape of CSCs with an anti-apoptosis state and upregulating CD276, PD-L1 to promote chemoresistance and immune escape. We have developed a controlled-released thermosensitive hydrogel containing pH- responsive anti-CD276 scFV engineered biomimetic nanovesicles to overcome BC in primary, recurrent, metastatic and abscopal humanized mice models. Nanovesicles coated anti-CD276 scFV selectively fuses with cell membrane of senescent-escape CSCs, then sequentially delivers siCALD1 and ADR due to pH-responsive MnP shell. siCALD1 together with ADR effectively induce apoptosis of CSCs, decrease expression of CD276 and PD-L1, and upregulate MHC I combined with Mn2+ to overcome chemoresistance and promote CD8+T cells infiltration. This combined therapeutic approach reveals insights into immune surveillance evasion by senescent-escape CSCs, offering a promising strategy to immunotherapy effectiveness in cancer therapy.
Asunto(s)
Neoplasias de la Mama , Senescencia Celular , Resistencia a Antineoplásicos , Células Madre Neoplásicas , Humanos , Animales , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/terapia , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Senescencia Celular/efectos de los fármacos , Línea Celular Tumoral , Ratones , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Ingeniería Genética/métodos , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Nanopartículas/química , Anticuerpos de Cadena Única/química , Escape del Tumor/efectos de los fármacos , Antígeno B7-H1/metabolismo , Apoptosis/efectos de los fármacos , Biomimética/métodos , Antígenos B7RESUMEN
Inspired by the concept of "natural camouflage," biomimetic drug delivery systems have emerged to address the limitations of traditional synthetic nanocarriers, such as poor targeting, susceptibility to identification and clearance, inadequate biocompatibility, low permeability, and systemic toxicity. Biomimetic nanocarriers retain the proteins, nucleic acids, and other components of the parent cells. They not only facilitate drug delivery but also serve as communication media to inhibit tumor cells. This paper delves into the communication mechanisms between various cell-derived biomimetic nanocarriers, tumor cells, and the tumor microenvironment, as well as their applications in drug delivery. In addition, the additional communication capabilities conferred on the modified biomimetic nanocarriers, such as targeting and environmental responsiveness, are outlined. Finally, we propose future development directions for biomimetic nanocarriers, hoping to inspire researchers in their design efforts and ultimately achieve clinical translation.
Asunto(s)
Materiales Biomiméticos , Portadores de Fármacos , Nanopartículas , Neoplasias , Microambiente Tumoral , Microambiente Tumoral/efectos de los fármacos , Humanos , Neoplasias/tratamiento farmacológico , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Portadores de Fármacos/química , Nanopartículas/química , Animales , Sistemas de Liberación de Medicamentos/métodos , Comunicación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Biomimética/métodosRESUMEN
Changes in the expression of cornified envelope (CE) components are a hallmark of numerous pathological skin conditions and aging, underlying the importance of this stratum corneum structure in the homeostasis of the epidermal barrier. We performed a detailed characterisation of LCE6A, a member of the Late Cornified Envelope protein family. Immunohistochemical and immunoblot experiments confirmed that LCE6A is expressed late during epidermal differentiation. Crosslinking assays of recombinant LCE6A performed either in situ on human skin sections or in vitro demonstrated that LCE6A is indeed a substrate of transglutaminases and crosslinked to CEs. LCE6A-derived peptides containing a glutamine-lysine sequence retained these properties of the full-length protein and reinforced the mechanical resistance of CE submitted to sonication. We designed P26, a LCE6A-derived biomimetic peptide that similarly reinforced CE in vitro, and evaluated its protective properties ex vivo, on human skin explants, and in two double blind and vehicle-controlled clinical trials. P26 was able to protect the skin from barrier disruption, to limit the damage resulting from a defective barrier, and could improve the signs of aging such as loss of skin firmness and increased skin roughness. Hence, our detailed characterisation of LCE6A as a component of the CE enabled us to develop a LCE6A-derived peptide, biologically active with a new and original mode of action that could be of great interest as a cosmetic ingredient and a pharmacologic agent.
Asunto(s)
Proteínas Ricas en Prolina del Estrato Córneo , Péptidos , Envejecimiento de la Piel , Humanos , Proteínas Ricas en Prolina del Estrato Córneo/metabolismo , Péptidos/química , Péptidos/farmacología , Envejecimiento de la Piel/efectos de los fármacos , Epidermis/metabolismo , Femenino , Método Doble Ciego , Adulto , Persona de Mediana Edad , Transglutaminasas/metabolismo , Piel/metabolismo , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Biomimética , Diferenciación CelularRESUMEN
This paper aims to evaluate the acoustic radiation characteristics of thin plates featuring a layer of small-scale biomimetic shark skin type additive surface treatment. The shark skin dermal denticles are modelled as point masses arranged in a bi-directional pattern on both the upper and lower surfaces of the plate. The governing equations are obtained through a variational approach, incorporating the Dirac Delta function in the derivation of the proposed semi-analytical model for the shark skin layer. A semi-analytical method based on the Rayleigh-Ritz formulation is utilized to analyze the vibrations of these plates with surface modification. The sound radiation characteristics are then derived from the solution of the Rayleigh integral. A comprehensive investigation is performed on the influence of surface modification on different vibro-acoustic characteristics, using a continuous structural mode and power transfer matrix-based approach. Notable observations include a reduction in peak vibro-acoustic responses with dense denticle arrangements, especially at resonance, demonstrating a direct relationship with mass ratios, i.e., the ratio of denticle mass to plate mass. The study further reveals a shift of vibro-acoustic responses towards low frequencies with an increase in mass ratios. A thorough comparative study indicates that while additive surface modifications inspired by shark skin may weaken sound radiation characteristics at resonance frequencies, a reverse effect can be observed at intermittent operational frequencies.
Asunto(s)
Acústica , Tiburones , Piel , Animales , Piel/efectos de la radiación , Sonido , Propiedades de Superficie , Vibración , Biomimética/métodosRESUMEN
Paleontologists must confront the challenge of studying the forms and functions of extinct species for which data from preserved fossils are extremely limited, yielding only a fragmented picture of life in deep time. In response to this hurdle, we describe the nascent field of paleoinspired robotics, an innovative method that builds upon established techniques in bioinspired robotics, enabling the exploration of the biology of ancient organisms and their evolutionary trajectories. This Review presents ways in which robotic platforms can fill gaps in existing research using the exemplars of notable transitions in vertebrate locomotion. We examine recent case studies in experimental paleontology, highlighting substantial contributions made by engineering and robotics techniques, and further assess how the efficient application of robotic technologies in close collaboration with paleontologists and biologists can offer additional insights into the study of evolution that were previously unattainable.
Asunto(s)
Evolución Biológica , Fósiles , Paleontología , Robótica , Robótica/instrumentación , Animales , Paleontología/métodos , Locomoción/fisiología , Vertebrados , Humanos , BiomiméticaRESUMEN
Electrical stimulation has been used clinically as an adjunct therapy to accelerate the healing of bone defects, and its mechanism requires further investigations. The complexity of the physiological microenvironment makes it challenging to study the effect of electrical signal on cells alone. Therefore, an artificial system mimicking cell microenvironment in vitro was developed to address this issue. In this work, a novel electrical stimulation system was constructed based on polypyrrole nanowires (ppyNWs) with a high aspect ratio. Synthesized ppyNWs formed a conductive network in the composited hydrogel which contained modified gelatin with methacrylate, providing a conductive cell culture matrix for bone marrow mesenchymal stem cells. The dual-network conductive hydrogel had improved mechanical, electrical, and hydrophilic properties. It was able to imitate the three-dimensional structure of the cell microenvironment and allowed adjustable electrical stimulations in the following system. This hydrogel was integrated with cell culture plates, platinum electrodes, copper wires, and external power sources to construct the artificial electrical stimulation system. The optimum voltage of the electrical stimulation system was determined to be 2 V, which exhibited remarkable biocompatibility. Moreover, this system had significant promotion in cell spreading, osteogenic makers, and bone-related gene expression of stem cells. RNA-seq analysis revealed that osteogenesis was correlated to Notch, BMP/Smad, and calcium signal pathways. It was proven that this biomimetic system could regulate the osteogenesis procedure, and it provided further information about how the electrical signal regulates osteogenic differentiations.
Asunto(s)
Diferenciación Celular , Estimulación Eléctrica , Células Madre Mesenquimatosas , Nanocables , Osteogénesis , Pirroles , Osteogénesis/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Diferenciación Celular/efectos de los fármacos , Nanocables/química , Pirroles/química , Pirroles/farmacología , Polímeros/química , Polímeros/farmacología , Animales , Hidrogeles/química , Hidrogeles/farmacología , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Células Cultivadas , Biomimética/métodos , RatasRESUMEN
Melanogenesis, a natural responsive mechanism of human skin to harmful radiation, is a self-triggered defensive neural activity safeguarding the body from radiation exposure in advance. With the increasing significance of radiation shielding in diverse medical health care and wearable applications, a biomimetic neuromorphic optoelectronic system with adaptive radiation shielding capability is often needed. Here, we demonstrate a transparent and flexible metal oxide-based photovoltaic neuromorphic defensive system. By using a monolithically integrated ultraflexible optoelectronic circuitry and electrochromic device, seamless neural processing for ultraviolet (UV) radiation shielding including history-based sensing, memorizing, risk recognition, and blocking can be realized with piling the entire signal chain into the flexible devices. The UV shielding capability of the system can be evaluated as autonomous blocking up to 97% of UV radiation from 5 to 90 watts per square meter in less than 16.9 seconds, demonstrating autonomously modulated sensitivity and response time corresponding to UV environmental conditions and supplied bias.
Asunto(s)
Biomimética , Rayos Ultravioleta , Humanos , Biomimética/métodos , Protección Radiológica/instrumentación , Protección Radiológica/métodos , Dispositivos Electrónicos Vestibles , Piel/efectos de la radiación , Materiales BiomiméticosRESUMEN
Alzheimer's disease (AD) is a common neurodegenerative disease characterized by progressive cognitive and physical impairment. Neuroinflammation is related to AD, and the misfolding and aggregation of amyloid protein in the brain creates an inflammatory microenvironment. Microglia are the predominant contributors to neuroinflammation, and abnormal activation of microglia induces the release of a large amount of inflammatory factors, promotes neuronal apoptosis, and leads to cognitive impairment. In this study, we used microglial membranes containing caffeic acid-coupled carbon quantum dots to prepare a novel biomimetic nanocapsule (CDs-CA-MGs) for the treatment of AD. The application of CDs-CA-MGs via nasal administration can bypass the bloodâbrain barrier (BBB) and directly target the site of inflammation. After treatment with CDs-CA-MGs, AD mice showed reduced inflammation in the brain, decreased neuronal apoptosis, and significantly improved learning and memory abilities. In addition, CDs-CA-MGs affect inflammation-related JAK-STAT and Toll-like receptor signaling pathways in AD mice. CDs-CA-MGs significantly downregulated interleukins (IL-1ß and IL-6) and tumor necrosis factor (TNF-α). This finding suggested that CDs-CA-MGs may improve cognitive impairment by modulating inflammatory responses. In conclusion, the use of CDs-CA-MGs provides a possible therapeutic strategy for the treatment of AD.
Asunto(s)
Administración Intranasal , Enfermedad de Alzheimer , Ácidos Cafeicos , Carbono , Puntos Cuánticos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Ácidos Cafeicos/química , Ácidos Cafeicos/farmacología , Animales , Puntos Cuánticos/química , Ratones , Carbono/química , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Microglía/efectos de los fármacos , Microglía/metabolismo , Masculino , Biomimética/métodos , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/patología , Modelos Animales de Enfermedad , Apoptosis/efectos de los fármacosRESUMEN
Soft peristaltic pumps, which use soft ring actuators instead of mechanical pistons or rollers, offer advantages in transporting liquids with non-uniform solids, such as slurry, food, and sewage. Recent advances in 3D printing with flexible thermoplastic polyurethane (TPU) present the potential for single-step fabrication of these pumps, distinguished from handcrafted, multistep traditional silicone casting methods. However, because of the relatively high hardness of TPU, TPU-based soft peristaltic pumps contract insufficiently and thus cannot perform as well as silicone-based ones. Improving the performance is crucial for fully automated, one-step manufactured soft pumps to lead to industrial use. This study aims to enhance TPU-based soft pumps through bioinspired design. Specifically, it proposed a design inspired by embryonic tubular hearts, in contrast to previous studies that mimicked digestive tracts. The new design facilitated long-axis stretching of an elliptical lumen during non-concentric contractile motion, akin to embryonic tubular hearts. The design was optimized for ring actuators and pumps 3D-printed with shore hardness 85 A TPU filament. The ring actuator achieved over 99% lumen closure with the best designs. The soft pumps transported water at flow rates of up to 218 ml min-1and generated a maximum discharge pressure of 355 mm Hg, comparable to the performance of blood pumps used in continuous renal replacement therapy.
Asunto(s)
Diseño de Equipo , Poliuretanos , Impresión Tridimensional , Robótica , Poliuretanos/química , Robótica/instrumentación , Corazón/fisiología , Animales , Biomimética/instrumentación , Materiales Biomiméticos/química , DurezaRESUMEN
Integrating self-healing capabilities into epidermal electrodes is crucial to improving their reliability and longevity. Self-healing nanofibrous materials are considered an ideal candidate for constructing ultrathin, long-lasting wearable epidermal electrodes due to their lightweight and high breathability. However, due to the strong interaction between fibers, self-healing nanofiber membranes cannot exist stably. Therefore, the development of self-healing and breathable nanofibrous epidermal electrodes still remains a major challenge. Here, a hierarchical confinement strategy that combines molecular and spatial confinement to overcome supramolecular hydrogen bonding between self-healing nanofibers is reported, and an ultrathin self-healing nanofibrous epidermal electrode with a neural net-like structure is developed. It can achieve real-time monitoring of electrophysiological signals through long-term conformal attachment to skin or plants and has no adverse effects on skin health or plant growth. Given the almost imperceptible nature of epidermal electrodes to users and plants, it lays the foundation for the development of biocompatible, self-healing, wearable, flexible electronics.
Asunto(s)
Electrodos , Epidermis , Nanofibras , Nanofibras/química , Materiales Biomiméticos/química , Humanos , Dispositivos Electrónicos Vestibles , Biomimética , Membranas ArtificialesRESUMEN
Preclinical and clinical studies suggest that lipid-induced hepatic insulin resistance is a primary defect that predisposes to dysfunction in islets, implicating a perturbed liver-pancreas axis underlying the comorbidity of T2DM and MASLD. To investigate this hypothesis, we developed a human biomimetic microphysiological system (MPS) coupling our vascularized liver acinus MPS (vLAMPS) with pancreatic islet MPS (PANIS) enabling MASLD progression and islet dysfunction to be assessed. The modular design of this system (vLAMPS-PANIS) allows intra-organ and inter-organ dysregulation to be deconvoluted. When compared to normal fasting (NF) conditions, under early metabolic syndrome (EMS) conditions, the standalone vLAMPS exhibited characteristics of early stage MASLD, while no significant differences were observed in the standalone PANIS. In contrast, with EMS, the coupled vLAMPS-PANIS exhibited a perturbed islet-specific secretome and a significantly dysregulated glucose stimulated insulin secretion response implicating direct signaling from the dysregulated liver acinus to the islets. Correlations between several pairs of a vLAMPS-derived and a PANIS-derived factors were significantly altered under EMS, as compared to NF conditions, mechanistically connecting MASLD and T2DM associated hepatic-factors with islet-derived GLP-1 synthesis and regulation. Since vLAMPS-PANIS is compatible with patient-specific iPSCs, this platform represents an important step towards addressing patient heterogeneity, identifying disease mechanisms, and advancing precision medicine.
Asunto(s)
Biomimética , Islotes Pancreáticos , Islotes Pancreáticos/metabolismo , Humanos , Hígado Graso/metabolismo , Hígado Graso/patología , Hígado/metabolismo , Hígado/patología , Síndrome Metabólico/metabolismoRESUMEN
Integrating biological material within soft microfluidic systems made of hydrogels offers countless possibilities in biomedical research to overcome the intrinsic limitations of traditional microfluidics based on solid, non-biodegradable, and non-biocompatible materials. Hydrogel-based microfluidic technologies have the potential to transformin vitrocell/tissue culture and modeling. However, most hydrogel-based microfluidic platforms are associated with device deformation, poor structural definition, reduced stability/reproducibility due to swelling, and a limited range in rigidity, which threatens their applicability. Herein, we describe a new methodological approach for developing a soft cell-laden microfluidic device based on enzymatically-crosslinked silk fibroin (SF) hydrogels. Its unique mechano-chemical properties and high structural fidelity, make this platform especially suited forin vitrodisease modelling, as demonstrated by reproducing the native dynamic 3D microenvironment of colorectal cancer and its response to chemotherapeutics in a simplistic way. Results show that from all the tested concentrations, 14 wt% enzymatically-crosslinked SF microfluidic platform has outstanding structural stability and the ability to perfuse fluid while displayingin vivo-like biological responses. Overall, this work shows a novel technique to obtain an enzymatically-crosslinked SF microfluidic platform that can be employed for developing soft lab-on-a-chipin vitromodels.
Asunto(s)
Técnicas de Cocultivo , Fibroínas , Hidrogeles , Dispositivos Laboratorio en un Chip , Fibroínas/química , Hidrogeles/química , Humanos , Biomimética , Técnicas de Cultivo Tridimensional de Células , Animales , Microfluídica , Reactivos de Enlaces Cruzados/química , Materiales Biocompatibles/química , Bombyx , Materiales Biomiméticos/química , Ingeniería de Tejidos/métodos , Seda/química , Neoplasias Colorrectales/patología , Línea Celular TumoralRESUMEN
Robots support and facilitate tasks in all life fields. Soft robots specifically have the advantages of inherent compliance, safe interaction and flexible deformability. Soft pneumatic network (Pneu-Net) is a soft pneumatic actuator (SPA) composed of network of chambers that is actuated by pneumatic power. Soft Pneu-Net fits the human interface applications perfectly. In this paper, a bio-inspired modular based design for Pneu-Net actuator is developed. The actuator mimics the elephant trunk curling to be employed for rehabilitation of human hand fingers. The actuator is an integrated four Pneu-Net modules actuator which is attached to hand's finger. The main introduced advantages in the new developed actuator are: providing four degrees of freedom (DoF) essential for finger's motion by single compound actuator and developing a methodology for a modular soft Pneu-Net actuator that is efficiently reproducible. The actuator's design is developed using computer aided design (CAD) software SOLIDWORKS. The design is simulated using finite element modeling (FEM) software ABAQUS. Fabrication process uses 3D printed molds. Soft material is molded in the 3D printed molds, forming actuator's modules. Actuator's modules are integrated by adhesion using the soft material. A proposed non-standard hyper-elastic material biaxial tension test is introduced as a quick material properties identification method that can produce a test table used for material identification in the FEM. Enhanced version for the actuator uses reinforcement fibers. Results show advances for the reinforced actuator, as it limits the unwanted actuator's strain and deformation. The reinforced actuator shows improved energy efficiency reaches to 46%.
Asunto(s)
Diseño de Equipo , Locomoción , Robótica , Robótica/instrumentación , Humanos , Locomoción/fisiología , Animales , Elefantes/fisiología , Diseño Asistido por Computadora , Torso/fisiología , Biomimética/instrumentación , Biomimética/métodos , Análisis de Elementos Finitos , Impresión TridimensionalRESUMEN
With a growing global population and ageing demographics, the food industry stands at a pivotal crossroads, necessitating bespoke solutions and groundbreaking innovations. In vitro experiments can help understanding food oral processing and formulating products meeting the specific needs of different populations. However, current in vitro models do not reproduce well human oral anatomy and tongue biomechanics, essential for assessing the behaviour of novel and texturized foods under physiologically relevant oral conditions. In response, we unveil a novel 3D biomimetic artificial mouth, showcasing a pneumatic multi-degree-of-freedom artificial tongue meticulously crafted to mirror the mechanical properties and wettability of the human tongue. This cutting-edge technology, featuring tongue surface papillae, is capable of performing lifelike movements. The comparison with in vivo data demonstrates that it accurately reproduces oral processing of three, vastly different, soft foods. Textural characteristics (firmness, adhesive and cohesive properties) and shear viscosities-measured at oral and oropharyngeal-relevant shear rates-of in vitro food boli closely mirrored those observed in vivo. This in vitro device presents unprecedented opportunities for studying the dynamics of food transformation in the mouth, to adapt texture towards food that can be swallowed with ease and to improve food palatability, accommodating specific health needs critical for older adults (e.g., reduced salivary secretion, tongue weakness or poor coordination).
Asunto(s)
Biomimética , Lengua , Humanos , Biomimética/métodos , Lengua/fisiología , Boca/fisiología , Boca/anatomía & histología , Fenómenos Biomecánicos , Alimentos , Materiales Biomiméticos , Órganos ArtificialesRESUMEN
Drug-carrying nanoparticles can be recognized and captured by macrophages and cleared away by the immune system, resulting in reduced drug efficacy and representing the main drawbacks. Biomimetic nanoparticles, which are coated with cell membranes from natural resources, have been applied to address this problem. This type of nanoparticle maintains some specific biological activities, allowing them to carry drugs reaching designated tissues effectively and have a longer time in circulation. This review article aims to summarize recent progress on biomimetic nanoparticles based on cell membranes. In this paper, we have introduced the classification of biomimetic nanoparticles, their preparation and characterization, and their applications in inflammatory diseases and malignant tumors. We have also analyzed the shortcomings and prospects of this technology, hoping to provide some clues for basic researchers and clinicians engaged in this field.
Asunto(s)
Materiales Biomiméticos , Membrana Celular , Sistemas de Liberación de Medicamentos , Inflamación , Nanopartículas , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Membrana Celular/metabolismo , Inflamación/tratamiento farmacológico , Nanopartículas/química , Materiales Biomiméticos/química , Sistemas de Liberación de Medicamentos/métodos , Biomimética/métodos , AnimalesRESUMEN
Bird-like flapping-wing aerial vehicles (BFAVs) have attracted significant attention due to their advantages in endurance, range, and load capacity. For a long time, biologists have been studying the enigma of bird flight to understand its mechanism. In contrast, aviation designers focus more on bionic flight systems. This paper presents a comprehensive review of the development of BFAV design. The study aims to provide insights into building a flyable model from the perspective of aviation designers, focusing on the methods in the process of overall design, flapping wing design and drive system design. The review examines the annual progress of flight-capable BFAVs, analyzing changes in prototype size and performance over the years. Additionally, the paper highlights various applications of these vehicles. Furthermore, it discusses the challenges encountered in BFAV design and proposes several possible directions for future research, including perfecting design methods, improving component performance, and promoting practical application. This review will provide essential guidelines and insights for designing BFAVs with higher performance.
Asunto(s)
Aeronaves , Aves , Diseño de Equipo , Vuelo Animal , Alas de Animales , Animales , Vuelo Animal/fisiología , Alas de Animales/fisiología , Aves/fisiología , Aeronaves/instrumentación , Biomimética/métodos , AviaciónRESUMEN
P. aeruginosa employs specific quorum sensing (QS) mechanisms to orchestrate biofilm formation, enhancing resistance to host defences. In physiological conditions, QS molecules permeate the lung environment and cellular membrane to reach the cytoplasmic Aryl Hydrocarbon Receptor (AhR) that is pivotal for activating the immune response against infection. In pathological conditions like cystic fibrosis (CF) this interkingdom communication is altered, favouring P. aeruginosa persistence and chronic infection. Here, we aim to investigate the molecular journey of QS molecules from CF-like environments to the cytoplasm by quantifying via HPLC-MS the permeability of selected QS molecules (quinolones, lactones, and phenazines) through in vitro models of the two main biological lung barriers: CF-mucus and cellular membrane. While QS molecules not activating AhR exhibit intermediate permeability through the cellular membrane model (PAMPA) (1.0-4.0 × 10-6 cm/s), the AhR-activating molecule (pyocyanin) shows significantly higher permeability (8.6 ± 1.4 × 10-6 cm/s). Importantly, combining the CF mucus model with PAMPA induces a 50% decrease in pyocyanin permeability, indicating a strong mucus-shielding effect with pathological implications in infection eradication. This study underscores the importance of quantitatively describing the AhR-active bacterial molecules, even in vitro, to offer new perspectives for understanding P. aeruginosa virulence mechanisms and for proposing new antibacterial therapeutic approaches.