Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Gene ; 927: 148748, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38969245

RESUMEN

Biomineralization processes in bivalves, particularly the initial production of molecular components (such as matrix deposition and calcification) in the early stages of shell development are highly complex and well-organized. This study investigated the temporal dynamics of organic matrix and calcium carbonate (CaCO3) deposition in Pacific oysters (Crassostrea gigas) across various development stages. The shell-field initiated matrix secretion during the gastrula stage. Subsequent larval development triggered central shell-field calcification, accompanied by expansion of the calcium ring from its interior to the periphery. Notably, the expression patterns of CgTyrp-2 and CgTyr closely correlated with matrix deposition and calcification during early developmental stages, with peak expression occurring in oyster's gastrula and D-veliger stages. Subsequently, the CRISPR/Cas9 system was utilized to knock out CgTyrp-2 and CgTyr with more distinct phenotypic alterations observed when both genes were concurrently knocked out. The relative gene expression was analyzed post-knockout, indicating that the knockout of CgTyr or CgTyrp-2 led to reduced expression of CgChs1, along with increased expression of CgChit4. Furthermore, when dual-sgRNAs were employed to knockout CgTyrp-2, a large deletion (2 kb) within the CgTyrp-2 gene was identified. In summary, early shell formation in C. gigas is the result of a complex interplay of multiple molecular components with CgTyrp-2 and CgTyr playing key roles in regulating CaCO3 deposition.


Asunto(s)
Exoesqueleto , Sistemas CRISPR-Cas , Calcificación Fisiológica , Carbonato de Calcio , Crassostrea , Técnicas de Inactivación de Genes , Animales , Crassostrea/genética , Crassostrea/crecimiento & desarrollo , Crassostrea/metabolismo , Exoesqueleto/metabolismo , Exoesqueleto/crecimiento & desarrollo , Técnicas de Inactivación de Genes/métodos , Calcificación Fisiológica/genética , Carbonato de Calcio/metabolismo , ARN Guía de Sistemas CRISPR-Cas/genética , Biomineralización/genética
2.
Gene ; 927: 148747, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38972557

RESUMEN

The gold inner shell of Turbo argyrostomus is an important morphological classification characteristic in Gastropoda. However, the gene sets responsible for shell formation in gastropods remain poorly explored. In this study, we investigated the microstructure using scanning electron microscopy (SEM), hematoxylin-eosin (HE) and Alcian blue staining-periodic acid-Schiff (AB-PAS) staining. The SEM results illustrated that the T. argyrostomus shell exhibited a special "sandwich" microstructure. The results of histological observation demonstrated two major cell types: adipocytes and mucin cells. A total of 318 differentially expressed genes were identified between edge mantle and central mantle, among which whey acidic protein, N66, and nacre-like proteins, and Lam G and EGF domains may be related to shell microstructure. 22.39% - 25.20% of the mucin genes had biomineralization related domains, which supported for the relationship between mucins and shell formation. Moreover, this study revealed energy distribution differences between the edge mantle and central mantle. These results provide insights for further understanding of the biomineralization mechanism in Gastropoda.


Asunto(s)
Exoesqueleto , Gastrópodos , Perfilación de la Expresión Génica , Transcriptoma , Animales , Exoesqueleto/ultraestructura , Exoesqueleto/metabolismo , Gastrópodos/genética , Gastrópodos/metabolismo , Gastrópodos/ultraestructura , Perfilación de la Expresión Génica/métodos , Mucinas/genética , Mucinas/metabolismo , Biomineralización/genética , Microscopía Electrónica de Rastreo
3.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38542120

RESUMEN

China leads the world in freshwater pearl production, an industry in which the triangle sail mussel (Sinohyriopsis cumingii) plays a pivotal role. In this paper, we report a high-quality chromosome-level genome assembly of S. cumingii with a size of 2.90 Gb-the largest yet reported among bivalves-and 89.92% anchorage onto 19 linkage groups. The assembled genome has 37,696 protein-coding genes and 50.86% repeat elements. A comparative genomic analysis revealed expansions of 752 gene families, mostly associated with biomineralization, and 237 genes under strong positive selection. Notably, the fibrillin gene family exhibited gene family expansion and positive selection simultaneously, and it also exhibited multiple high expressions after mantle implantation by transcriptome analysis. Furthermore, RNA silencing and an in vitro calcium carbonate crystallization assay highlighted the pivotal role played by one fibrillin gene in calcium carbonate deposition and aragonite transformation. This study provides a valuable genomic resource and offers new insights into the mechanism of pearl biomineralization.


Asunto(s)
Bivalvos , Unionidae , Animales , Biomineralización/genética , Bivalvos/genética , Bivalvos/química , Unionidae/genética , Unionidae/metabolismo , Carbonato de Calcio , Agua Dulce , Fibrilinas/metabolismo
4.
Brief Funct Genomics ; 22(6): 509-516, 2023 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-37592885

RESUMEN

Biomineralisation is the process by which living organisms produce hard structures such as shells and bone. There are multiple independent origins of biomineralised skeletons across the tree of life. This review gives a glimpse into the diversity of spiralian biominerals and what they can teach us about the evolution of novelty. It discusses different levels of biological organisation that may be informative to understand the evolution of biomineralisation and considers the relationship between skeletal and non-skeletal biominerals. More specifically, this review explores if cell type and gene regulatory network approaches could enhance our understanding of the evolutionary origins of biomineralisation.


Asunto(s)
Biomineralización , Redes Reguladoras de Genes , Biomineralización/genética
5.
BMC Genomics ; 23(1): 699, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36217140

RESUMEN

BACKGROUND: One of the most complex prokaryotic organelles are magnetosomes, which are formed by magnetotactic bacteria as sensors for navigation in the Earth's magnetic field. In the alphaproteobacterium Magnetospirillum gryphiswaldense magnetosomes consist of chains of magnetite crystals (Fe3O4) that under microoxic to anoxic conditions are biomineralized within membrane vesicles. To form such an intricate structure, the transcription of > 30 specific structural genes clustered within the genomic magnetosome island (MAI) has to be coordinated with the expression of an as-yet unknown number of auxiliary genes encoding several generic metabolic functions. However, their global regulation and transcriptional organization in response to anoxic conditions most favorable for magnetite biomineralization are still unclear. RESULTS: Here, we compared transcriptional profiles of anaerobically grown magnetosome forming cells with those in which magnetosome biosynthesis has been suppressed by aerobic condition. Using whole transcriptome shotgun sequencing, we found that transcription of about 300 of the > 4300 genes was significantly enhanced during magnetosome formation. About 40 of the top upregulated genes are directly or indirectly linked to aerobic and anaerobic respiration (denitrification) or unknown functions. The mam and mms gene clusters, specifically controlling magnetosome biosynthesis, were highly transcribed, but constitutively expressed irrespective of the growth condition. By Cappable-sequencing, we show that the transcriptional complexity of both the MAI and the entire genome decreased under anaerobic conditions optimal for magnetosome formation. In addition, predominant promoter structures were highly similar to sigma factor σ70 dependent promoters in other Alphaproteobacteria. CONCLUSIONS: Our transcriptome-wide analysis revealed that magnetite biomineralization relies on a complex interplay between generic metabolic processes such as aerobic and anaerobic respiration, cellular redox control, and the biosynthesis of specific magnetosome structures. In addition, we provide insights into global regulatory features that have remained uncharacterized in the widely studied model organism M. gryphiswaldense, including a comprehensive dataset of newly annotated transcription start sites and genome-wide operon detection as a community resource (GEO Series accession number GSE197098).


Asunto(s)
Magnetosomas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biomineralización/genética , Óxido Ferrosoférrico/análisis , Óxido Ferrosoférrico/metabolismo , Magnetosomas/genética , Magnetosomas/metabolismo , Magnetospirillum , Factor sigma/genética , Transcriptoma
6.
Sci Rep ; 12(1): 4743, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35304539

RESUMEN

The shells of window pane oyster Placuna placenta are very thin and exhibit excellent optical transparency and mechanical robustness. However, little is known about the biomineralization-related proteins of the shells of P. placenta. In this work, we report the comprehensive transcriptome of the mantle tissue of P. placenta for the first time. The unigenes of the mantle tissue of P. placenta were annotated by using the public databases such as nr, GO, KOG, KEGG, and Pfam. 24,343 unigenes were annotated according to Pfam database, accounting for 21.48% of the total unigenes. We find that half of the annotated unigenes of the mantle tissue of P. placenta are consistent to the annotated unigenes from pacific oyster Crassostrea gigas according to nr database. The unigene sequence analysis from the mantle tissue of P. placenta indicates that 465,392 potential single nucleotide polymorphisms (SNPs) and 62,103 potential indel markers were identified from 60,371 unigenes. 178 unigenes of the mantle tissue of P. placenta are found to be homologous to those reported proteins related to the biomineralization process of molluscan shells, while 18 of them are highly expressed unigenes in the mantle tissue. It is proposed that four unigenes with the highest expression levels in the mantle tissue are very often related to the biomineralization process, while another three unigenes are potentially related to the biomineralization process according to the Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) analysis. In summary, the transcriptome analysis of the mantle tissue of P. Placenta shows the potential biomineralization-related proteins and this work may shed light for the shell formation mechanism of bivalves.


Asunto(s)
Biomineralización , Crassostrea , Exoesqueleto/metabolismo , Animales , Biomineralización/genética , Crassostrea/genética , Femenino , Perfilación de la Expresión Génica , Placenta , Embarazo , Transcriptoma
7.
Genome Biol Evol ; 14(3)2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35143662

RESUMEN

Cyanobacteria have massively contributed to carbonate deposition over the geological history. They are traditionally thought to biomineralize CaCO3 extracellularly as an indirect byproduct of photosynthesis. However, the recent discovery of freshwater cyanobacteria-forming intracellular amorphous calcium carbonates (iACC) challenges this view. Despite the geochemical interest of such a biomineralization process, its molecular mechanisms and evolutionary history remain elusive. Here, using comparative genomics, we identify a new gene (ccyA) and protein family (calcyanin) possibly associated with cyanobacterial iACC biomineralization. Proteins of the calcyanin family are composed of a conserved C-terminal domain, which likely adopts an original fold, and a variable N-terminal domain whose structure allows differentiating four major types among the 35 known calcyanin homologs. Calcyanin lacks detectable full-length homologs with known function. The overexpression of ccyA in iACC-lacking cyanobacteria resulted in an increased intracellular Ca content. Moreover, ccyA presence was correlated and/or colocalized with genes involved in Ca or HCO3- transport and homeostasis, supporting the hypothesis of a functional role of calcyanin in iACC biomineralization. Whatever its function, ccyA appears as diagnostic of intracellular calcification in cyanobacteria. By searching for ccyA in publicly available genomes, we identified 13 additional cyanobacterial strains forming iACC, as confirmed by microscopy. This extends our knowledge about the phylogenetic and environmental distribution of cyanobacterial iACC biomineralization, especially with the detection of multicellular genera as well as a marine species. Moreover, ccyA was probably present in ancient cyanobacteria, with independent losses in various lineages that resulted in a broad but patchy distribution across modern cyanobacteria.


Asunto(s)
Biomineralización , Cianobacterias , Biomineralización/genética , Carbonato de Calcio/metabolismo , Carbonatos/metabolismo , Cianobacterias/metabolismo , Filogenia
8.
Mar Biotechnol (NY) ; 24(1): 82-96, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34989931

RESUMEN

Growth of the eastern oyster Crassostrea virginica, a major aquaculture species in the USA, is highly variable and not well understood at molecular levels. As growth of mollusks is confined in shells constructed by the mantle, mantle transcriptomes of large (fast-growing) and small (slow-growing) eastern oysters were sequenced and compared in this study. Transcription was observed for 31,186 genes, among which 104 genes were differentially expressed between the large and small oysters, including 48 upregulated and 56 downregulated in large oysters. Differentially expressed genes (DEGs) included genes from diverse pathways highlighting the complexity of shell formation and growth regulations. Seventeen of the 48 upregulated DEGs were related to shell matrix formation, most of which were upregulated in large oysters, indicating that large oysters are more active in biomineralization and shell formation. Genomic and transcriptomic analyses identified 22 genes encoding novel polyalanine containing proteins (Pacps) with characteristic motifs for matrix function that are tandemly duplicated on one chromosome, all specifically expressed in mantle and at higher levels in large oysters, suggesting that these expanded Pacps play important roles in shell formation and growth. Analysis of sequence variation identified 244,964 SNPs with 328 associated with growth. This study provides novel candidate genes and markers for shell formation and growth, and suggests that genes related to shell formation are important for the complex regulation of growth in the eastern oyster and possibly other bivalve mollusks. Results of this study show that both transcriptional modulation and functional polymorphism are important in determining growth.


Asunto(s)
Crassostrea , Animales , Biomineralización/genética , Crassostrea/genética , Perfilación de la Expresión Génica , Genoma , Transcriptoma
9.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35012979

RESUMEN

Animals use geomagnetic fields for navigational cues, yet the sensory mechanism underlying magnetic perception remains poorly understood. One idea is that geomagnetic fields are physically transduced by magnetite crystals contained inside specialized receptor cells, but evidence for intracellular, biogenic magnetite in eukaryotes is scant. Certain bacteria produce magnetite crystals inside intracellular compartments, representing the most ancient form of biomineralization known and having evolved prior to emergence of the crown group of eukaryotes, raising the question of whether magnetite biomineralization in eukaryotes and prokaryotes might share a common evolutionary history. Here, we discover that salmonid olfactory epithelium contains magnetite crystals arranged in compact clusters and determine that genes differentially expressed in magnetic olfactory cells, contrasted to nonmagnetic olfactory cells, share ancestry with an ancient prokaryote magnetite biomineralization system, consistent with exaptation for use in eukaryotic magnetoreception. We also show that 11 prokaryote biomineralization genes are universally present among a diverse set of eukaryote taxa and that nine of those genes are present within the Asgard clade of archaea Lokiarchaeota that affiliates with eukaryotes in phylogenomic analysis. Consistent with deep homology, we present an evolutionary genetics hypothesis for magnetite formation among eukaryotes to motivate convergent approaches for examining magnetite-based magnetoreception, molecular origins of matrix-associated biomineralization processes, and eukaryogenesis.


Asunto(s)
Biomineralización/genética , Óxido Ferrosoférrico/química , Fenómenos Magnéticos , Animales , Evolución Biológica , Genómica , Magnetosomas/genética , Salmón
10.
PLoS One ; 17(1): e0262425, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35030221

RESUMEN

In this study, we examined the total bacterial community associated with ureolytic biomineralization from urine drainage systems. Biomineral samples were obtained from 11 California Department of Transportation public restrooms fitted with waterless, low-flow, or conventional urinals in 2019. Following high throughput 16S rRNA Illumina sequences processed using the DADA2 pipeline, the microbial diversity assessment of 169 biomineral and urine samples resulted in 3,869 reference sequences aggregated as 598 operational taxonomic units (OTUs). Using PERMANOVA testing, we found strong, significant differences between biomineral samples grouped by intrasystem sampling location and urinal type. Biomineral microbial community profiles and alpha diversities differed significantly when controlling for sampling season. Observational statistics revealed that biomineral samples obtained from waterless urinals contained the largest ureC/16S gene copy ratios and were the least diverse urinal type in terms of Shannon indices. Waterless urinal biomineral samples were largely dominated by the Bacilli class (86.1%) compared to low-flow (41.3%) and conventional samples (20.5%), and had the fewest genera that account for less than 2.5% relative abundance per OTU. Our findings are useful for future microbial ecology studies of urine source-separation technologies, as we have established a comparative basis using a large sample size and study area.


Asunto(s)
Aparatos Sanitarios/microbiología , Microbiota/genética , Bacterias/genética , Biomineralización/genética , California/epidemiología , ADN Bacteriano/genética , Drenaje de Agua/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN/métodos , Cuartos de Baño
11.
Int J Mol Sci ; 22(22)2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34830225

RESUMEN

Biomineralization is a crucial process whereby organisms produce mineralized tissues such as teeth for mastication, bones for support, and shells for protection. Mineralized tissues are composed of hierarchically organized hydroxyapatite crystals, with a limited capacity to regenerate when demineralized or damaged past a critical size. Thus, the development of protein-based materials that act as artificial scaffolds to guide hydroxyapatite growth is an attractive goal both for the design of ordered nanomaterials and for tissue regeneration. In particular, amelogenin, which is the main protein that scaffolds the hierarchical organization of hydroxyapatite crystals in enamel, amelogenin recombinamers, and amelogenin-derived peptide scaffolds have all been investigated for in vitro mineral growth. Here, we describe uniaxial hydroxyapatite growth on a nanoengineered amelogenin scaffold in combination with amelotin, a mineral promoting protein present during enamel formation. This bio-inspired approach for hydroxyapatite growth may inform the molecular mechanism of hydroxyapatite formation in vitro as well as possible mechanisms at play during mineralized tissue formation.


Asunto(s)
Amelogenina/química , Materiales Biomiméticos/química , Biomineralización/genética , Proteínas del Esmalte Dental/química , Durapatita/química , Nanoestructuras/química , Amelogenina/genética , Biomimética/métodos , Cristalización , Esmalte Dental/química , Proteínas del Esmalte Dental/genética , Humanos , Nanotecnología/métodos , Ingeniería de Proteínas/métodos , Pliegue de Proteína , Proteínas Recombinantes/química , Diente/química
12.
J Struct Biol ; 213(4): 107797, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34530133

RESUMEN

Biomineralization is the process in which soft organic tissues use minerals to produce shells, skeletons and teeth for various functions such as protection and physical support. The ability of the cells to control the time and place of crystal nucleation as well as crystal orientation and stiffness is far beyond the state-of-the art of human technologies. Thus, understanding the biological control of biomineralization will promote our understanding of embryo development as well as provide novel approaches for material engineering. Sea urchin larval skeletogenesis offers an excellent platform for functional analyses of both the molecular control system and mineral uptake and deposition. Here we describe the current understanding of the genetic, molecular and cellular processes that underlie sea urchin larval skeletogenesis. We portray the regulatory genes that define the specification of the skeletogenic cells and drive the various morphogenetic processes that occur in the skeletogenic lineage, including: epithelial to mesenchymal transition, cell migration, spicule cavity formation and mineral deposition into the spicule cavity. We describe recent characterizations of the size, motion and mineral concentration of the calcium-bearing vesicles in the skeletogenic cells. We review the distinct specification states within the skeletogenic lineage that drive localized skeletal growth at the tips of the spicules. Finally, we discuss the surprising similarity between the regulatory network and cellular processes that drive sea urchin skeletogenesis and those that control vertebrate vascularization. Overall, we illustrate the novel insights on the biological regulation and evolution of biomineralization, gained from studies of the sea urchin larval skeletogenesis.


Asunto(s)
Biomineralización/genética , Calcificación Fisiológica/genética , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Morfogénesis/genética , Erizos de Mar/genética , Animales , Movimiento Celular/genética , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Transición Epitelial-Mesenquimal/genética , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Erizos de Mar/embriología , Erizos de Mar/metabolismo
13.
BMC Vet Res ; 17(1): 281, 2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34419016

RESUMEN

BACKGROUND: The oviduct of a hen provides a conducive environment for egg formation, which needs a large amount of mineral elements from the blood via trans-epithelial permeability. Eggshell is the calcified layer on the outside of an egg that provides protection and is critical for egg quality. However, little is known about the genes or proteins involved in eggshell formation, and their relationship to dietary microminerals. We hypothesized that dietary selenium supplementation in chickens will influence genes involved in eggshell biomineralization, and improve laying hen antioxidant capacity. The objective of this research was to investigate how organic and inorganic dietary selenium supplementation affected mRNA expression of shell gland genes involved in eggshell biomineralization, and selenoproteins gene expression in Lohman Brown-Classic laying hens. RESULTS: Shell gland (Uterus) and liver tissue samples were collected from hens during the active growth phase of calcification (15-20 h post-ovulation) for RT-PCR analysis. In the oviduct (shell gland and magnum) and liver of laying hens, the relative expression of functional eggshell and hepatic selenoproteins genes was investigated. Results of qPCR confirmed the higher (p < 0.05) mRNA expression of OC-17 and OC-116 in shell gland of organic Se hen compared to inorganic and basal diet treatments. Similarly, dietary Se treatments affected the mRNA expression of OCX-32 and OCX-36 in the shell gland of laying hens. In the magnum, mRNA expression of OC-17 was significantly (p < 0.05) higher in hens fed-bacterial organic, while OC-116 mRNA expression was down-regulated in dietary Se supplemented groups compared to non-Se supplemented hens. Moreover, when compared to sodium selenite, only ADS18 bacterial Se showed significantly (p < 0.05) higher mRNA levels in GPX1, GPX4, DIO1, DIO2 and SELW1, while Se-yeast showed significantly (p < 0.05) higher mRNA levels in TXNRD1 than the non-Se group. CONCLUSIONS: Dietary Se supplementation especially that from a bacterial organic source, improved shell gland and hepatic selenoproteins gene expression in laying hens, indicating that it could be used as a viable alternative source of Se in laying hens. The findings could suggest that organic Se upregulation of shell gland genes and hepatic selenoproteins in laying hens is efficient.


Asunto(s)
Biomineralización/genética , Dieta/veterinaria , Oviductos/metabolismo , Selenio/administración & dosificación , Alimentación Animal/análisis , Animales , Antioxidantes/análisis , Pollos , Cáscara de Huevo/química , Femenino , Expresión Génica , Hígado , Selenio/química , Selenoproteínas/metabolismo
14.
J Struct Biol ; 213(4): 107782, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34455069

RESUMEN

Despite their simple body plan, stony corals (order Scleractinia, phylum Cnidaria) can produce massive and complex exoskeletal structures in shallow, tropical and subtropical regions of Earth's oceans. The species-specific macromorphologies of their aragonite skeletons suggest a highly coordinated biomineralization process that is rooted in their genomes, and which has persisted across major climatic shifts over the past 400 + million years. The mechanisms by which stony corals produce their skeletons has been the subject of interest for at least the last 160 years, and the pace of understanding the process has increased dramatically in the past decade since the sequencing of the first coral genome in 2011. In this review, we detail what is known to date about the genetic basis of the stony coral biomineralization process, with a focus on advances in the last several years as well as ways that physical and chemical tools can be combined with genetics, and then propose next steps forward for the coming decade.


Asunto(s)
Antozoos/genética , Biomineralización/genética , Calcificación Fisiológica/genética , Metamorfosis Biológica/genética , Animales , Antozoos/clasificación , Antozoos/crecimiento & desarrollo , Carbonato de Calcio/metabolismo , Epigenómica/métodos , Epigenómica/tendencias , Predicción , Edición Génica/métodos , Edición Génica/tendencias , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Filogenia , Especificidad de la Especie
15.
Int J Biol Macromol ; 188: 800-810, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34339790

RESUMEN

The biomineralization mechanism of mollusc shell has been studied for a long time, but there is a lack of understanding about the relationship between the shell formation in vitro and the signaling system in vivo. In this study, we cloned a novel shell matrix protein gene (hc-temptin), which only be characterized as a water-borne protein pheromone of molluscs in previous studies, from the freshwater mussel Hyriopsis cumingii. By bioinformatics analysis we found that temptin was a gene unique to the clade Lophotrochozoa, and it exists in all mollusc taxa except Cephalopoda. The current data supported the premise that temptin was generated in the early emergence of molluscs and that it maintained a high mutation rate to evolve relative independently. The specificity of hc-temptin expression in the mantle tissue suggests its potential to participate in biomineralization. Its sequence contained typical Ca2+ binding sites. Our experiments involving the pearl formation process, damaged shell repair process, and RNAi experiment showed that hc-temptin was a shell matrix protein that plays an important role in formation of the prismatic layer. The results of this study provided new insights about the origin of the temptin gene and its role in molluscs.


Asunto(s)
Biomineralización/genética , Filogenia , Proteínas/genética , Unionidae/genética , Unionidae/fisiología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , ADN Complementario/genética , Evolución Molecular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Silenciador del Gen , Nácar/metabolismo , Proteínas/química , Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
16.
Sci Rep ; 11(1): 11722, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-34083647

RESUMEN

During their life, crustaceans undergo several molts, which if theoretically compared to the human body would be equivalent to replacing all bones at a single event. Such a dramatic repetitive event is coupled to unique molecular mechanisms of mineralization so far mostly unknown. Unlike human bone mineralized with calcium phosphate, the crustacean exoskeleton is mineralized mainly by calcium carbonate. Crustacean growth thus necessitates well-timed mobilization of bicarbonate to specific extracellular sites of biomineralization at distinct molt cycle stages. Here, by looking at the crayfish Cherax quadricarinatus at different molting stages, we suggest that the mechanisms of bicarbonate ion transport for mineralization in crustaceans involve the SLC4 family of transporters and that these proteins play a key role in the tight coupling between molt cycle events and mineral deposition. This discovery of putative bicarbonate transporters in a pancrustacean with functional genomic evidence from genes encoding the SLC4 family-mostly known for their role in pH control-is discussed in the context of the evolution of calcium carbonate biomineralization.


Asunto(s)
Astacoidea/fisiología , Biomineralización/genética , Muda/genética , Simportadores de Sodio-Bicarbonato/genética , Animales , Transporte Biológico , Biología Computacional , Expresión Génica , Perfilación de la Expresión Génica , Humanos , Inmunohistoquímica , Modelos Biológicos , Fenotipo , Filogenia , Simportadores de Sodio-Bicarbonato/metabolismo
17.
Glob Chang Biol ; 27(16): 3779-3797, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33964098

RESUMEN

Biomineralization is one of the key processes that is notably affected in marine calcifiers such as oysters under ocean acidification (OA). Understanding molecular changes in the biomineralization process under OA and its heritability, therefore, is key to developing conservation strategies for protecting ecologically and economically important oyster species. To do this, in this study, we have explicitly chosen the tissue involved in biomineralization (mantle) of an estuarine commercial oyster species, Crassostrea hongkongensis. The primary aim of this study is to understand the influence of DNA methylation over gene expression of mantle tissue under decreased ~pH 7.4, a proxy of OA, and to extrapolate if these molecular changes can be observed in the product of biomineralization-the shell. We grew early juvenile C. hongkongensis, under decreased ~pH 7.4 and control ~pH 8.0 over 4.5 months and studied OA-induced DNA methylation and gene expression patterns along with shell properties such as microstructure, crystal orientation and hardness. The population of oysters used in this study was found to be moderately resilient to OA at the end of the experiment. The expression of key biomineralization-related genes such as carbonic anhydrase and alkaline phosphatase remained unaffected; thus, the mechanical properties of the shell (shell growth rate, hardness and crystal orientation) were also maintained without any significant difference between control and OA conditions with signs of severe dissolution. In addition, this study makes three major conclusions: (1) higher expression of Ca2+ binding/signalling-related genes in the mantle plays a key role in maintaining biomineralization under OA; (2) DNA methylation changes occur in response to OA; however, these methylation changes do not directly control gene expression; and (3) OA would be more of a 'dissolution problem' rather than a 'biomineralization problem' for resilient species that maintain calcification rate with normal shell growth and mechanical properties.


Asunto(s)
Biomineralización , Crassostrea , Exoesqueleto , Animales , Biomineralización/genética , Dióxido de Carbono , Crassostrea/genética , Concentración de Iones de Hidrógeno , Océanos y Mares , Agua de Mar
18.
Cell ; 184(11): 2973-2987.e18, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33945788

RESUMEN

Stony corals are colonial cnidarians that sustain the most biodiverse marine ecosystems on Earth: coral reefs. Despite their ecological importance, little is known about the cell types and molecular pathways that underpin the biology of reef-building corals. Using single-cell RNA sequencing, we define over 40 cell types across the life cycle of Stylophora pistillata. We discover specialized immune cells, and we uncover the developmental gene expression dynamics of calcium-carbonate skeleton formation. By simultaneously measuring the transcriptomes of coral cells and the algae within them, we characterize the metabolic programs involved in symbiosis in both partners. We also trace the evolution of these coral cell specializations by phylogenetic integration of multiple cnidarian cell type atlases. Overall, this study reveals the molecular and cellular basis of stony coral biology.


Asunto(s)
Antozoos/genética , Antozoos/metabolismo , Animales , Antozoos/crecimiento & desarrollo , Biomineralización/genética , Biomineralización/fisiología , Calcinosis/genética , Calcinosis/metabolismo , Arrecifes de Coral , Ecosistema , Inmunidad/genética , Filogenia , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Simbiosis/genética
19.
Mar Biotechnol (NY) ; 23(3): 417-429, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33929611

RESUMEN

Molluscan shell color polymorphism is important in genetic breeding, while the molecular information mechanism for shell coloring is unclear. Here, high-throughput RNA sequencing was used to compare expression profiles of coding and non-coding RNAs (ncRNAs) from Pacific oyster Crassostrea gigas with orange and black shell, which were from an F2 family constructed by crossing an orange shell male with a black shell female. First, 458, 13, and 8 differentially expressed genes (DEGs), lncRNAs (DELs), and miRNAs (DEMs) were identified, respectively. Functional analysis suggested that the DEGs were significantly enriched in 9 pathways including tyrosine metabolism and oxidative phosphorylation pathways. Several genes related to melanin synthesis and biomineralization expressed higher whereas genes associated with carotenoid pigmentation or metabolism expressed lower in orange shell oyster. Then, based on the ncRNA analysis, 163 and 20 genes were targeted by 13 and 8 differentially expressed lncRNAs (DELs) and miRNAs (DEMs), severally. Potential DELs-DEMs-DEGs interactions were also examined. Seven DEMs-DEGs pairs were detected, in which tyrosinase-like protein 1 was targeted by lgi-miR-133-3p and lgi-miR-252a and cytochrome P450 was targeted by dme-miRNA-1-3p. These results revealed that melanin synthesis-related genes and miRNAs-mRNA interactions functioned on orange shell coloration, which shed light on the molecular regulation of shell coloration in marine shellfish.


Asunto(s)
Exoesqueleto/química , Crassostrea/genética , Crassostrea/metabolismo , Animales , Biomineralización/genética , Carotenoides/metabolismo , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Melaninas/genética , Melaninas/metabolismo , MicroARNs , Pigmentación/genética , ARN no Traducido
20.
Genome Biol Evol ; 13(4)2021 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-33720344

RESUMEN

Understanding how selection shapes population differentiation and local adaptation in marine species remains one of the greatest challenges in the field of evolutionary biology. The selection of genes in response to environment-specific factors and microenvironmental variation often results in chaotic genetic patchiness, which is commonly observed in rocky shore organisms. To identify these genes, the expression profile of the marine gastropod Littoraria flava collected from four Southeast Brazilian locations in ten rocky shore sites was analyzed. In this first L. flava transcriptome, 250,641 unigenes were generated, and 24% returned hits after functional annotation. Independent paired comparisons between 1) transects, 2) sites within transects, and 3) sites from different transects were performed for differential expression, detecting 8,622 unique differentially expressed genes. Araçá (AR) and São João (SJ) transect comparisons showed the most divergent gene products. For local adaptation, fitness-related differentially expressed genes were chosen for selection tests. Nine and 24 genes under adaptative and purifying selection, respectively, were most related to biomineralization in AR and chaperones in SJ. The biomineralization-genes perlucin and gigasin-6 were positively selected exclusively in the site toward the open ocean in AR, with sequence variants leading to pronounced protein structure changes. Despite an intense gene flow among L. flava populations due to its planktonic larva, gene expression patterns within transects may be the result of selective pressures. Our findings represent the first step in understanding how microenvironmental genetic variation is maintained in rocky shore populations and the mechanisms underlying local adaptation in marine species.


Asunto(s)
Gastrópodos/genética , Transcriptoma , Animales , Biomineralización/genética , Brasil , Evolución Molecular , Variación Genética , Proteínas/química , Homología de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...