Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.998
Filtrar
1.
Mol Biomed ; 5(1): 17, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38724687

RESUMEN

Uveal cancer (UM) offers a complex molecular landscape characterized by substantial heterogeneity, both on the genetic and epigenetic levels. This heterogeneity plays a critical position in shaping the behavior and response to therapy for this uncommon ocular malignancy. Targeted treatments with gene-specific therapeutic molecules may prove useful in overcoming radiation resistance, however, the diverse molecular makeups of UM call for a patient-specific approach in therapy procedures. We need to understand the intricate molecular landscape of UM to develop targeted treatments customized to each patient's specific genetic mutations. One of the promising approaches is using liquid biopsies, such as circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA), for detecting and monitoring the disease at the early stages. These non-invasive methods can help us identify the most effective treatment strategies for each patient. Single-cellular is a brand-new analysis platform that gives treasured insights into diagnosis, prognosis, and remedy. The incorporation of this data with known clinical and genomics information will give a better understanding of the complicated molecular mechanisms that UM diseases exploit. In this review, we focused on the heterogeneity and molecular panorama of UM, and to achieve this goal, the authors conducted an exhaustive literature evaluation spanning 1998 to 2023, using keywords like "uveal melanoma, "heterogeneity". "Targeted therapies"," "CTCs," and "single-cellular analysis".


Asunto(s)
Heterogeneidad Genética , Melanoma , Terapia Molecular Dirigida , Neoplasias de la Úvea , Humanos , Melanoma/genética , Melanoma/patología , Melanoma/terapia , Melanoma/tratamiento farmacológico , Terapia Molecular Dirigida/métodos , Neoplasias de la Úvea/genética , Neoplasias de la Úvea/terapia , Neoplasias de la Úvea/patología , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología , Biomarcadores de Tumor/genética , Mutación , ADN Tumoral Circulante/genética , ADN Tumoral Circulante/sangre , Biopsia Líquida/métodos
2.
JAMA Netw Open ; 7(5): e2410171, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38713467

RESUMEN

This cross-sectional study evaluates the information on a circulating tumor DNA test available to the public on popular internet resources.


Asunto(s)
Acceso a la Información , Humanos , Biopsia Líquida/métodos , Femenino , Masculino , Persona de Mediana Edad
3.
Sci Rep ; 14(1): 11398, 2024 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762534

RESUMEN

Glioblastoma (GB) is a devastating tumor of the central nervous system characterized by a poor prognosis. One of the best-established predictive biomarker in IDH-wildtype GB is O6-methylguanine-DNA methyltransferase (MGMT) methylation (mMGMT), which is associated with improved treatment response and survival. However, current efforts to monitor GB patients through mMGMT detection have proven unsuccessful. Small extracellular vesicles (sEVs) hold potential as a key element that could revolutionize clinical practice by offering new possibilities for liquid biopsy. This study aimed to determine the utility of sEV-based liquid biopsy as a predictive biomarker and disease monitoring tool in patients with IDH-wildtype GB. Our findings show consistent results with tissue-based analysis, achieving a remarkable sensitivity of 85.7% for detecting mMGMT in liquid biopsy, the highest reported to date. Moreover, we suggested that liquid biopsy assessment of sEV-DNA could be a powerful tool for monitoring disease progression in IDH-wildtype GB patients. This study highlights the critical significance of overcoming molecular underdetection, which can lead to missed treatment opportunities and misdiagnoses, possibly resulting in ineffective therapies. The outcomes of our research significantly contribute to the field of sEV-DNA-based liquid biopsy, providing valuable insights into tumor tissue heterogeneity and establishing it as a promising tool for detecting GB biomarkers. These results have substantial implications for advancing predictive and therapeutic approaches in the context of GB and warrant further exploration and validation in clinical settings.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Encefálicas , Metilación de ADN , Metilasas de Modificación del ADN , Enzimas Reparadoras del ADN , Vesículas Extracelulares , Glioblastoma , Proteínas Supresoras de Tumor , Humanos , Glioblastoma/genética , Glioblastoma/patología , Glioblastoma/diagnóstico , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Biopsia Líquida/métodos , Metilasas de Modificación del ADN/genética , Metilasas de Modificación del ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Masculino , Femenino , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Persona de Mediana Edad , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/diagnóstico , Anciano , Adulto , Pronóstico
4.
Zhonghua Yi Xue Za Zhi ; 104(18): 1547-1554, 2024 May 14.
Artículo en Chino | MEDLINE | ID: mdl-38742339

RESUMEN

Lung cancer remains the most prevalent and lethal malignancy in our country. Early diagnosis and treatment are crucial for improving patient prognosis in lung cancer/pulmonary nodules. Recent advancements in non-invasive/minimally invasive liquid biopsy, multi-omics, and artificial intelligence technologies have significantly enhanced the accuracy of early lung cancer/pulmonary nodule diagnosis. However, an early diagnostic method with both high sensitivity and specificity is yet to be established. Furthermore, addressing the methods and extent of early precision surgery, local precision therapy, perioperative combined treatment, and postoperative recurrence and metastasis monitoring are urgent challenges in the early management of lung cancer/pulmonary nodules. Integrating the advantages of various treatment strategies and formulating personalized and precise treatment plans is key to further improving patient survival. In the future, while exploring new therapeutic strategies, it is necessary to continuously search for biomarkers to identify the population that will benefit from the treatment effectively. Additionally, large-sample randomized controlled clinical studies should be conducted to investigate the benefits of long-term patient survival under a diverse range of treatment strategies.


Asunto(s)
Detección Precoz del Cáncer , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/terapia , Pronóstico , Biopsia Líquida , Sensibilidad y Especificidad
5.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732099

RESUMEN

Medulloblastoma is the most common malignant brain tumor in childhood. Initial treatment generally includes surgery, irradiation, and chemotherapy. Approximately 20-30% of patients will experience a recurrence, which portends a very poor prognosis. The current standard of care for evaluation for relapse includes radiographic surveillance with magnetic resonance imaging at regular intervals. The presence of circulating tumor DNA in the cerebrospinal fluid has been demonstrated to be a predictor of a higher risk of progression in a research setting for patients with medulloblastoma treated on a prospective single institution clinical trial. We have previously published and clinically validated a liquid-biopsy-based genetic assay utilizing low-pass whole genome sequencing to detect copy number alterations in circulating tumor DNA. Here, we present two teenage patients with posterior fossa medulloblastoma with recurrent disease who have been monitored with serial liquid biopsies showing tumor evolution over time, demonstrating the clinical utility of these approaches.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Recurrencia Local de Neoplasia , Humanos , Meduloblastoma/líquido cefalorraquídeo , Meduloblastoma/genética , Meduloblastoma/diagnóstico , Meduloblastoma/patología , Meduloblastoma/diagnóstico por imagen , Biopsia Líquida/métodos , Recurrencia Local de Neoplasia/líquido cefalorraquídeo , Recurrencia Local de Neoplasia/genética , Adolescente , Neoplasias Cerebelosas/líquido cefalorraquídeo , Neoplasias Cerebelosas/diagnóstico , Neoplasias Cerebelosas/patología , Neoplasias Cerebelosas/genética , Masculino , ADN Tumoral Circulante/líquido cefalorraquídeo , ADN Tumoral Circulante/genética , ADN Tumoral Circulante/sangre , Femenino , Progresión de la Enfermedad , Imagen por Resonancia Magnética
6.
Hepatol Commun ; 8(6)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38727682

RESUMEN

BACKGROUND: Hepatoblastoma and HCC are the most common malignant hepatocellular tumors seen in children. The aim of this study was to develop a liquid biopsy test for circulating tumor cells (CTCs) for these tumors that would be less invasive and provide real-time information about tumor response to therapy. METHODS: For this test, we utilized indocyanine green (ICG), a far-red fluorescent dye used clinically to identify malignant liver cells during surgery. We assessed ICG accumulation in cell lines using fluorescence microscopy and flow cytometry. For our CTC test, we developed a panel of liver tumor-specific markers, including ICG, Glypican-3, and DAPI, and tested it with cell lines and noncancer control blood samples. We then used this panel to analyze whole-blood samples for CTC burden with a cohort of 15 patients with hepatoblastoma and HCC and correlated with patient characteristics and outcomes. RESULTS: We showed that ICG accumulation is specific to liver cancer cells, compared to nonmalignant liver cells, non-liver solid tumor cells, and other nonmalignant cells, and can be used to identify liver tumor cells in a mixed population of cells. Experiments with the ICG/Glypican-3/DAPI panel showed that it specifically tagged malignant liver cells. Using patient samples, we found that CTC burden from sequential blood samples from the same patients mirrored the patients' responses to therapy. CONCLUSIONS: Our novel ICG-based liquid biopsy test for CTCs can be used to specifically detect and quantify CTCs in the blood of pediatric patients with liver cancer.


Asunto(s)
Carcinoma Hepatocelular , Hepatoblastoma , Verde de Indocianina , Neoplasias Hepáticas , Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patología , Biopsia Líquida , Neoplasias Hepáticas/sangre , Neoplasias Hepáticas/patología , Niño , Femenino , Masculino , Preescolar , Hepatoblastoma/sangre , Hepatoblastoma/patología , Carcinoma Hepatocelular/sangre , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Biomarcadores de Tumor/sangre , Lactante , Adolescente , Colorantes
7.
ACS Nano ; 18(20): 12781-12794, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38733343

RESUMEN

Circulating tumor DNA (ctDNA) detection has been acknowledged as a promising liquid biopsy approach for cancer diagnosis, with various ctDNA assays used for early detection and treatment monitoring. Dispersible magnetic nanoparticle-based electrochemical detection methods have been proposed as promising candidates for ctDNA detection based on the detection performance and features of the platform material. This study proposes a nanoparticle surface-localized genetic amplification approach by integrating Fe3O4-Au core-shell nanoparticles into polymerase chain reactions (PCR). These highly dispersible and magnetically responsive superparamagnetic nanoparticles act as nano-electrodes that amplify and accumulate target ctDNA in situ on the nanoparticle surface upon PCR amplification. These nanoparticles are subsequently captured and subjected to repetitive electrochemical measurements to induce reconfiguration-mediated signal amplification for ultrasensitive (∼3 aM) and rapid (∼7 min) metastatic breast cancer ctDNA detection in vitro. The detection platform can also detect metastatic biomarkers from in vivo samples, highlighting the potential for clinical applications and further expansion to rapid and ultrasensitive multiplex detection of various cancers.


Asunto(s)
ADN Tumoral Circulante , Electrodos , Humanos , ADN Tumoral Circulante/sangre , ADN Tumoral Circulante/genética , Biopsia Líquida , Amplificación de Genes , Nanopartículas de Magnetita/química , Neoplasias de la Mama/sangre , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Oro/química , Propiedades de Superficie , Técnicas Electroquímicas/métodos , Reacción en Cadena de la Polimerasa , Femenino
8.
Cancer Control ; 31: 10732748241255548, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38764160

RESUMEN

Background: Ovarian cancer stands as the deadliest malignant tumor within the female reproductive tract. As a result of the absence of effective diagnostic and monitoring markers, 75% of ovarian cancer cases are diagnosed at a late stage, leading to a mere 50% survival rate within five years. The advancement of molecular biology is essential for accurate diagnosis and treatment of ovarian cancer. Methods: A review of several randomized clinical trials, focusing on the ovarian cancer, was undertaken. The advancement of molecular biology and diagnostic methods related to accurate diagnosis and treatment of ovarian cancer were examined. Results: Liquid biopsy is an innovative method of detecting malignant tumors that has gained increasing attention over the past few years. Cell-free DNA assay-based liquid biopsies show potential in delineating tumor status heterogeneity and tracking tumor recurrence. DNA methylation influences a multitude of biological functions and diseases, especially during the initial phases of cancer. The cell-free DNA methylation profiling system has emerged as a sensitive and non-invasive technique for identifying and detecting the biological origins of cancer. It holds promise as a biomarker, enabling early screening, recurrence monitoring, and prognostic evaluation of cancer. Conclusions: This review evaluates recent advancements and challenges associated with cell-free DNA methylation analysis for the diagnosis, prognosis monitoring, and assessment of therapeutic responses in the management of ovarian cancers, aiming to offer guidance for precise diagnosis and treatment of this disease.


Ovarian cancer stands as the deadliest malignant tumor within the female reproductive tract. As a result of the absence of effective diagnostic and monitoring markers, 75% of ovarian cancer cases are diagnosed at a late stage, leading to a mere 50% survival rate within five years. Nearly 80% of advanced stages have a poor prognosis or recurrence within five years. Ovarian cancer is linked to a grim long-term prognosis attributable to its elevated mortality and recurrence rates. The advancement of molecular biology and diagnostic methods is essential for accurate diagnosis and treatment of ovarian cancer. Liquid biopsy is an innovative method of detecting malignant tumors that has gained increasing attention over the past few years. Cell-free DNA assay-based liquid biopsies show potential in delineating tumor status heterogeneity and tracking tumor recurrence. DNA methylation represents a prevalent epigenetic modification. DNA methylation influences a multitude of biological functions and diseases, especially during the initial phases of cancer. The cell-free DNA methylation profiling system has emerged as a sensitive and non-invasive technique for identifying and detecting the biological origins of cancer. This review assesses recent progress and obstacles linked to cell-free DNA methylation analysis for diagnosing, prognostic monitoring, and evaluating therapeutic responses in managing ovarian cancers.


Asunto(s)
Biomarcadores de Tumor , Metilación de ADN , Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/genética , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/patología , Pronóstico , Biomarcadores de Tumor/genética , Ácidos Nucleicos Libres de Células/genética , Biopsia Líquida/métodos
9.
Technol Cancer Res Treat ; 23: 15330338241252706, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38766867

RESUMEN

Objectives: In this study, stool samples were evaluated for tumor mutation analysis via a targeted next generation sequencing (NGS) approach in a small patient cohort suffering from localized rectal cancer. Introduction: Colorectal cancer (CRC) causes the second highest cancer-related death rate worldwide. Thus, improvements in disease assessment and monitoring that may facilitate treatment allocation and allow organ-sparing "watch-and-wait" treatment strategies are highly relevant for a significant number of CRC patients. Methods: Stool-based results were compared with mutation profiles derived from liquid biopsies and the gold standard procedure of tumor biopsy from the same patients. A workflow was established that enables the detection of de-novo tumor mutations in stool samples of CRC patients via ultra-sensitive cell-free tumor DNA target enrichment. Results: Notably, only a 19% overall concordance was found in mutational profiles across the compared sample specimens of stool, tumor, and liquid biopsies. Conclusion: Based on these results, the analysis of stool and liquid biopsy samples can provide important additional information on tumor heterogeneity and potentially on the assessment of minimal residual disease and clonal tumor evolution.


Asunto(s)
Biomarcadores de Tumor , Heces , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación , Neoplasias del Recto , Humanos , Heces/química , Neoplasias del Recto/genética , Neoplasias del Recto/patología , Neoplasias del Recto/sangre , Biomarcadores de Tumor/genética , Biopsia Líquida/métodos , Femenino , Masculino , ADN Tumoral Circulante/genética , ADN Tumoral Circulante/sangre , Persona de Mediana Edad , Anciano , Análisis Mutacional de ADN , Heterogeneidad Genética , ADN de Neoplasias/sangre , ADN de Neoplasias/genética
10.
Anal Chim Acta ; 1308: 342578, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38740462

RESUMEN

Cancer is one of the serious threats to public life and health. Early diagnosis, real-time monitoring, and individualized treatment are the keys to improve the survival rate and prolong the survival time of cancer patients. Liquid biopsy is a potential technique for cancer early diagnosis due to its non-invasive and continuous monitoring properties. However, most current liquid biopsy techniques lack the ability to detect cancers at the early stage. Therefore, effective detection of a variety of cancers is expected through the combination of various techniques. Recently, DNA frameworks with tailorable functionality and precise addressability have attracted wide spread attention in biomedical applications, especially in detecting cancer biomarkers such as circulating tumor cells (CTCs), exosomes and circulating tumor nucleic acid (ctNA). Encouragingly, DNA frameworks perform outstanding in detecting these cancer markers, but also face some challenges and opportunities. In this review, we first briefly introduced the development of DNA frameworks and its typical structural characteristics and advantages. Then, we mainly focus on the recent progress of DNA frameworks in detecting commonly used cancer markers in liquid-biopsy. We summarize the advantages and applications of DNA frameworks for detecting CTCs, exosomes and ctNA. Furthermore, we provide an outlook on the possible opportunities and challenges for exploiting the structural advantages of DNA frameworks in the field of cancer diagnosis. Finally, we envision the marriage of DNA frameworks with other emerging materials and technologies to develop the next generation of disease diagnostic biosensors.


Asunto(s)
ADN , Neoplasias , Biopsia Líquida/métodos , Humanos , ADN/química , Neoplasias/diagnóstico , Neoplasias/patología , Biomarcadores de Tumor/análisis , Células Neoplásicas Circulantes/patología , ADN Tumoral Circulante/sangre , ADN Tumoral Circulante/análisis , Exosomas/química
11.
Sci Rep ; 14(1): 10199, 2024 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702437

RESUMEN

In pancreatic ductal adenocarcinoma (PDAC) patients, the importance of peritoneal lavage cytology, which indicates unresectability, remains controversial. This study sought to determine whether positive peritoneal lavage cytology (CY+) precludes pancreatectomy. Furthermore, we propose a novel liquid biopsy using peritoneal lavage fluid to detect viable peritoneal tumor cells (v-PTCs) with TelomeScan F35, a telomerase-specific replication-selective adenovirus engineered to express green fluorescent protein. Resectable cytologically or histologically proven PDAC patients (n = 53) were enrolled. CY was conducted immediately following laparotomy. The resulting fluid was examined by conventional cytology (conv-CY; Papanicolaou staining and MOC-31 immunostaining) and by the novel technique (Telo-CY; using TelomeScan F35). Of them, 5 and 12 were conv-CY+ and Telo-CY+, respectively. All underwent pancreatectomy. The two double-CY+ (conv-CY+ and Telo-CY+) patients showed early peritoneal recurrence (P-rec) postoperatively, despite adjuvant chemotherapy. None of the three conv-CY+ Telo-CY- patients exhibited P-rec. Six of the 10 Telo-CY+ conv-CY- patients (60%) relapsed with P-rec. Of the remaining 38 double-CY- [conv-CY-, Telo-CY-, conv-CY± (Class III)] patients, 3 (8.3%) exhibited P-rec. Although conv-CY+ status predicted poor prognosis and a higher risk of P-rec, Telo-CY was more sensitive for detecting v-PTC. Staging laparoscopy and performing conv-CY and Telo-CY are needed to confirm the indication for pancreatectomy.


Asunto(s)
Carcinoma Ductal Pancreático , Pancreatectomía , Neoplasias Pancreáticas , Lavado Peritoneal , Humanos , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/cirugía , Masculino , Femenino , Anciano , Persona de Mediana Edad , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/diagnóstico , Citodiagnóstico/métodos , Anciano de 80 o más Años , Recurrencia Local de Neoplasia/patología , Biopsia Líquida/métodos , Neoplasias Peritoneales/patología , Neoplasias Peritoneales/diagnóstico , Adulto , Citología
12.
J Transl Med ; 22(1): 462, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750555

RESUMEN

BACKGROUND: Comprehensive next-generation sequencing is widely used for precision oncology and precision prevention approaches. We aimed to determine the yield of actionable gene variants, the capacity to uncover hereditary predisposition and liquid biopsy appropriateness instead of, or in addition to, tumor tissue analysis, in a real-world cohort of cancer patients, who may benefit the most from comprehensive genomic profiling. METHODS: Seventy-eight matched germline/tumor tissue/liquid biopsy DNA and RNA samples were profiled using the Hereditary Cancer Panel (germline) and the TruSight Oncology 500 panel (tumor tissue/cfDNA) from 23 patients consecutively enrolled at our center according to at least one of the following criteria: no available therapeutic options; long responding patients potentially fit for other therapies; rare tumor; suspected hereditary cancer; primary cancer with high metastatic potential; tumor of unknown primary origin. Variants were annotated for OncoKB and AMP/ASCO/CAP classification. RESULTS: The overall yield of actionable somatic and germline variants was 57% (13/23 patients), and 43.5%, excluding variants previously identified by somatic or germline routine testing. The accuracy of tumor/cfDNA germline-focused analysis was demonstrated by overlapping results of germline testing. Five germline variants in BRCA1, VHL, CHEK1, ATM genes would have been missed without extended genomic profiling. A previously undetected BRAF p.V600E mutation was emblematic of the clinical utility of this approach in a patient with a liver undifferentiated embryonal sarcoma responsive to BRAF/MEK inhibition. CONCLUSIONS: Our study confirms the clinical relevance of performing extended parallel tumor DNA and cfDNA testing to broaden therapeutic options, to longitudinally monitor cfDNA during patient treatment, and to uncover possible hereditary predisposition following tumor sequencing in patient care.


Asunto(s)
Genómica , Mutación de Línea Germinal , Neoplasias , Humanos , Femenino , Biopsia Líquida , Neoplasias/genética , Neoplasias/patología , Masculino , Persona de Mediana Edad , Estudios de Cohortes , Mutación de Línea Germinal/genética , Genómica/métodos , Adulto , Anciano , Células Germinativas/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Predisposición Genética a la Enfermedad
13.
PLoS One ; 19(5): e0302129, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38753705

RESUMEN

Emerging technologies focused on the detection and quantification of circulating tumor DNA (ctDNA) in blood show extensive potential for managing patient treatment decisions, informing risk of recurrence, and predicting response to therapy. Currently available tissue-informed approaches are often limited by the need for additional sequencing of normal tissue or peripheral mononuclear cells to identify non-tumor-derived alterations while tissue-naïve approaches are often limited in sensitivity. Here we present the analytical validation for a novel ctDNA monitoring assay, FoundationOne®Tracker. The assay utilizes somatic alterations from comprehensive genomic profiling (CGP) of tumor tissue. A novel algorithm identifies monitorable alterations with a high probability of being somatic and computationally filters non-tumor-derived alterations such as germline or clonal hematopoiesis variants without the need for sequencing of additional samples. Monitorable alterations identified from tissue CGP are then quantified in blood using a multiplex polymerase chain reaction assay based on the validated SignateraTM assay. The analytical specificity of the plasma workflow is shown to be 99.6% at the sample level. Analytical sensitivity is shown to be >97.3% at ≥5 mean tumor molecules per mL of plasma (MTM/mL) when tested with the most conservative configuration using only two monitorable alterations. The assay also demonstrates high analytical accuracy when compared to liquid biopsy-based CGP as well as high qualitative (measured 100% PPA) and quantitative precision (<11.2% coefficient of variation).


Asunto(s)
ADN Tumoral Circulante , Neoplasias , Humanos , ADN Tumoral Circulante/sangre , ADN Tumoral Circulante/genética , Neoplasias/genética , Neoplasias/sangre , Neoplasias/diagnóstico , Genómica/métodos , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Sensibilidad y Especificidad , Algoritmos , Reacción en Cadena de la Polimerasa Multiplex/métodos , Biopsia Líquida/métodos
14.
World J Gastroenterol ; 30(15): 2175-2178, 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38681986

RESUMEN

With the rapid development of science and technology, cell-free DNA (cfDNA) is rapidly becoming an important biomarker for tumor diagnosis, monitoring and prognosis, and this cfDNA-based liquid biopsy technology has great potential to become an important part of precision medicine. cfDNA is the total amount of free DNA in the systemic circulation, including DNA fragments derived from tumor cells and all other somatic cells. Tumor cells release fragments of DNA into the bloodstream, and this source of cfDNA is called circulating tumor DNA (ctDNA). cfDNA detection has become a major focus in the field of tumor research in recent years, which provides a new opportunity for non-invasive diagnosis and prognosis of cancer. In this paper, we discuss the limitations of the study on the origin and dynamics analysis of ctDNA, and how to solve these problems in the future. Although the future faces major challenges, it also contains great potential.


Asunto(s)
Biomarcadores de Tumor , ADN Tumoral Circulante , Neoplasias , Humanos , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Ácidos Nucleicos Libres de Células/sangre , ADN Tumoral Circulante/sangre , ADN Tumoral Circulante/genética , Biopsia Líquida/métodos , Neoplasias/sangre , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/patología , Medicina de Precisión/métodos , Pronóstico
15.
Zhonghua Yi Xue Za Zhi ; 104(16): 1337-1340, 2024 Apr 23.
Artículo en Chino | MEDLINE | ID: mdl-38644279

RESUMEN

Peritoneal metastasis is the common route of metastasis in gastric cancer and is a major cause of death in advanced gastric cancer. Early intervention with comprehensive treatment can effectively improve the prognosis of some patients with peritoneal metastasis. However, early peritoneal metastasis in gastric cancer is predominantly micro-metastasis, which cannot be effectively evaluated by imaging studies. Moreover, the detection of disseminated cancer cells in peritoneal lavage suffers from a low detection rate and significant heterogeneity. In recent years, the development and application of new liquid biopsy technologies such as circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) have provided new means to assess potential peritoneal metastasis at the cellular and molecular levels, gradually becoming research hotspots in this field. This review will summarize the relevant progress of liquid biopsy in peritoneal metastasis, which holds significant importance for improving the prognosis of gastric cancer patients in China.


Asunto(s)
ADN Tumoral Circulante , Células Neoplásicas Circulantes , Neoplasias Peritoneales , Neoplasias Gástricas , Neoplasias Gástricas/patología , Neoplasias Gástricas/diagnóstico , Humanos , Biopsia Líquida/métodos , Neoplasias Peritoneales/secundario , Neoplasias Peritoneales/terapia , Neoplasias Peritoneales/diagnóstico , Pronóstico
16.
Int J Mol Sci ; 25(8)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38674117

RESUMEN

Up to 80% of patients under immune checkpoint inhibitors (ICI) face resistance. In this context, stereotactic ablative radiotherapy (SABR) can induce an immune or abscopal response. However, its molecular determinants remain unknown. We present early results of a translational study assessing biomarkers of response to combined ICI and SABR (I-SABR) in liquid biopsy from oligoprogressive patients in a prospective observational multicenter study. Cohort A includes metastatic patients in oligoprogression to ICI maintaining the same ICI due to clinical benefit and who receive concomitant SABR. B is a comparative group of oligometastatic patients receiving only SABR. Blood samples are extracted at baseline (T1), after the first (T2) and last (T3) fraction, two months post-SABR (T4) and at further progression (TP). Response is evaluated by iRECIST and defined by the objective response rate (ORR)-complete and partial responses. We assess peripheral blood mononuclear cells (PBMCs), circulating cell-free DNA (cfDNA) and small RNA from extracellular vesicles. Twenty-seven patients could be analyzed (cohort A: n = 19; B: n = 8). Most were males with non-small cell lung cancer and one progressing lesion. With a median follow-up of 6 months, the last ORR was 63% (26% complete and 37% partial response). A decrease in cfDNA from T2 to T3 correlated with a good response. At T2, CD8+PD1+ and CD8+PDL1+ cells were increased in non-responders and responders, respectively. At T2, 27 microRNAs were differentially expressed. These are potential biomarkers of response to I-SABR in oligoprogressive disease.


Asunto(s)
Biomarcadores de Tumor , Inhibidores de Puntos de Control Inmunológico , Neoplasias Pulmonares , Radiocirugia , Humanos , Masculino , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/radioterapia , Radiocirugia/métodos , Femenino , Anciano , Biomarcadores de Tumor/sangre , Persona de Mediana Edad , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunoterapia/métodos , Ácidos Nucleicos Libres de Células/sangre , Estudios Prospectivos , Carcinoma de Pulmón de Células no Pequeñas/sangre , Carcinoma de Pulmón de Células no Pequeñas/terapia , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Carcinoma de Pulmón de Células no Pequeñas/patología , Anciano de 80 o más Años , Metástasis de la Neoplasia , Progresión de la Enfermedad , Biopsia Líquida/métodos , Leucocitos Mononucleares/metabolismo , Resultado del Tratamiento
17.
Curr Treat Options Oncol ; 25(5): 659-678, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38656685

RESUMEN

OPINION STATEMENT: Diffuse large B-cell lymphoma (DLBCL) is a curable disease with variable outcomes due to underlying heterogeneous clinical and molecular features-features that are insufficiently characterized with our current tools. Due to these limitations, treatment largely remains a "one-size-fits-all" approach. Circulating tumor DNA (ctDNA) is a novel biomarker in cancers that is increasingly utilized for risk stratification and response assessment. ctDNA is readily detectable from the plasma of patients with DLBCL but has not yet been incorporated into clinical care to guide treatment. Here, we describe how ctDNA sequencing represents a promising technology in development to personalize the care of patients with DLBCL. We will review the different types of ctDNA assays being studied and the rapidly growing body of evidence supporting the utility of ctDNA in different treatment settings in DLBCL. Risk stratification by estimation of tumor burden and liquid genotyping, molecular response assessment during treatment, and monitoring for measurable residual disease (MRD) to identify therapy resistance and predict clinical relapse are all potential applications of ctDNA. It is time for clinical trials in DLBCL to utilize ctDNA as an integral biomarker for patient selection, response-adapted designs, and surrogate endpoints. As more ctDNA assays become commercially available for routine use, clinicians should consider liquid biopsy when treatment response is equivocal on imaging. Incorporating MRD may also guide decision-making if patients experience severe treatment toxicities. Though important barriers remain, we believe that ctDNA will soon be ready to transition from bench to bedside to individualize treatment for our patients with DLBCL.


Asunto(s)
Biomarcadores de Tumor , ADN Tumoral Circulante , Linfoma de Células B Grandes Difuso , Linfoma de Células B Grandes Difuso/terapia , Linfoma de Células B Grandes Difuso/diagnóstico , Linfoma de Células B Grandes Difuso/sangre , Linfoma de Células B Grandes Difuso/genética , Humanos , ADN Tumoral Circulante/sangre , Biomarcadores de Tumor/sangre , Biopsia Líquida/métodos , Manejo de la Enfermedad , Investigación Biomédica Traslacional , Medicina de Precisión/métodos , Pronóstico , Toma de Decisiones Clínicas , Susceptibilidad a Enfermedades
18.
Bioelectrochemistry ; 158: 108698, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38640856

RESUMEN

Dysregulation of miRNA expression occurs in many cancers, making miRNAs useful in cancer diagnosis and therapeutic guidance. In a clinical context using methods such as polymerase chain reaction (PCR), the limited amount of miRNAs in circulation often limits their quantification. Here, we present a PCR-free and sensitive singlet oxygen (1O2)-based strategy for the detection and quantification of miRNAs in untreated human plasma from patients diagnosed with prostate cancer. A target miRNA is specifically captured by functionalised magnetic beads and a detection oligonucleotide probe in a sandwich-like format. The formed complex is concentrated at the sensor surface via magnetic beads, providing an interface for the photoinduced redox signal amplification. The detection oligonucleotide probe bears a molecular photosensitiser, which produces 1O2 upon illumination, oxidising a redox reporter and creating a redox cycling loop, allowing quantification of pM level miRNA in diluted human plasma within minutes after hybridisation and without target amplification.


Asunto(s)
MicroARNs , Neoplasias de la Próstata , Oxígeno Singlete , Humanos , Masculino , MicroARNs/sangre , MicroARNs/genética , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/sangre , Biopsia Líquida/métodos , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos , Oxidación-Reducción
19.
Int J Cancer ; 155(2): 298-313, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38602058

RESUMEN

Treatment resistance remains a major issue in aggressive prostate cancer (PC), and novel genomic biomarkers may guide better treatment selection. Circulating tumor DNA (ctDNA) can provide minimally invasive information about tumor genomes, but the genomic landscape of aggressive PC based on whole-genome sequencing (WGS) of ctDNA remains incompletely characterized. Thus, we here performed WGS of tumor tissue (n = 31) or plasma ctDNA (n = 10) from a total of 41 aggressive PC patients, including 11 hormone-naïve, 15 hormone-sensitive, and 15 castration-resistant patients. Across all variant types, we found progressively more altered tumor genomic profiles in later stages of aggressive PC. The potential driver genes most frequently affected by single-nucleotide variants or insertions/deletions included the known PC-related genes TP53, CDK12, and PTEN and the novel genes COL13A1, KCNH3, and SENP3. Etiologically, aggressive PC was associated with age-related and DNA repair-related mutational signatures. Copy number variants most frequently affected 14q11.2 and 8p21.2, where no well-recognized PC-related genes are located, and also frequently affected regions near the known PC-related genes MYC, AR, TP53, PTEN, and BRCA1. Structural variants most frequently involved not only the known PC-related genes TMPRSS2 and ERG but also the less extensively studied gene in this context, PTPRD. Finally, clinically actionable variants were detected throughout all stages of aggressive PC and in both plasma and tissue samples, emphasizing the potential clinical applicability of WGS of minimally invasive plasma samples. Overall, our study highlights the feasibility of using liquid biopsies for comprehensive genomic characterization as an alternative to tissue biopsies in advanced/aggressive PC.


Asunto(s)
Biomarcadores de Tumor , ADN Tumoral Circulante , Neoplasias de la Próstata , Secuenciación Completa del Genoma , Humanos , Masculino , Secuenciación Completa del Genoma/métodos , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Anciano , Biopsia Líquida/métodos , ADN Tumoral Circulante/genética , ADN Tumoral Circulante/sangre , Persona de Mediana Edad , Biomarcadores de Tumor/genética , Variaciones en el Número de Copia de ADN , Mutación , Anciano de 80 o más Años , Genómica/métodos
20.
Prostate ; 84(9): 850-865, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38571290

RESUMEN

INTRODUCTION: We describe the development of a molecular assay from publicly available tumor tissue mRNA databases using machine learning and present preliminary evidence of functionality as a diagnostic and monitoring tool for prostate cancer (PCa) in whole blood. MATERIALS AND METHODS: We assessed 1055 PCas (public microarray data sets) to identify putative mRNA biomarkers. Specificity was confirmed against 32 different solid and hematological cancers from The Cancer Genome Atlas (n = 10,990). This defined a 27-gene panel which was validated by qPCR in 50 histologically confirmed PCa surgical specimens and matched blood. An ensemble classifier (Random Forest, Support Vector Machines, XGBoost) was trained in age-matched PCas (n = 294), and in 72 controls and 64 BPH. Classifier performance was validated in two independent sets (n = 263 PCas; n = 99 controls). We assessed the panel as a postoperative disease monitor in a radical prostatectomy cohort (RPC: n = 47). RESULTS: A PCa-specific 27-gene panel was identified. Matched blood and tumor gene expression levels were concordant (r = 0.72, p < 0.0001). The ensemble classifier ("PROSTest") was scaled 0%-100% and the industry-standard operating point of ≥50% used to define a PCa. Using this, the PROSTest exhibited an 85% sensitivity and 95% specificity for PCa versus controls. In two independent sets, the metrics were 92%-95% sensitivity and 100% specificity. In the RPCs (n = 47), PROSTest scores decreased from 72% ± 7% to 33% ± 16% (p < 0.0001, Mann-Whitney test). PROSTest was 26% ± 8% in 37 with normal postoperative PSA levels (<0.1 ng/mL). In 10 with elevated postoperative PSA, PROSTest was 60% ± 4%. CONCLUSION: A 27-gene whole blood signature for PCa is concordant with tissue mRNA levels. Measuring blood expression provides a minimally invasive genomic tool that may facilitate prostate cancer management.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/sangre , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/cirugía , Biopsia Líquida/métodos , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Anciano , Persona de Mediana Edad , Aprendizaje Automático , ARN Mensajero/sangre , ARN Mensajero/genética , Prostatectomía , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA